scispace - formally typeset

JournalISSN: 0009-2797

Chemico-Biological Interactions 

About: Chemico-Biological Interactions is an academic journal. The journal publishes majorly in the area(s): Glutathione & Oxidative stress. It has an ISSN identifier of 0009-2797. Over the lifetime, 8283 publication(s) have been published receiving 244936 citation(s).
Papers
More filters

Journal ArticleDOI
TL;DR: This review examines the evidence for involvement of the oxidative stress in the carcinogenesis process and the role of enzymatic and non-enzymatic antioxidants in the process of carcinogenesis as well as the antioxidant interactions with various regulatory factors.
Abstract: Oxygen-free radicals, more generally known as reactive oxygen species (ROS) along with reactive nitrogen species (RNS) are well recognised for playing a dual role as both deleterious and beneficial species. The “two-faced” character of ROS is substantiated by growing body of evidence that ROS within cells act as secondary messengers in intracellular signalling cascades, which induce and maintain the oncogenic phenotype of cancer cells, however, ROS can also induce cellular senescence and apoptosis and can therefore function as anti-tumourigenic species. The cumulative production of ROS/RNS through either endogenous or exogenous insults is termed oxidative stress and is common for many types of cancer cell that are linked with altered redox regulation of cellular signalling pathways. Oxidative stress induces a cellular redox imbalance which has been found to be present in various cancer cells compared with normal cells; the redox imbalance thus may be related to oncogenic stimulation. DNA mutation is a critical step in carcinogenesis and elevated levels of oxidative DNA lesions (8-OH-G) have been noted in various tumours, strongly implicating such damage in the etiology of cancer. It appears that the DNA damage is predominantly linked with the initiation process. This review examines the evidence for involvement of the oxidative stress in the carcinogenesis process. Attention is focused on structural, chemical and biochemical aspects of free radicals, the endogenous and exogenous sources of their generation, the metal (iron, copper, chromium, cobalt, vanadium, cadmium, arsenic, nickel)-mediated formation of free radicals (e.g. Fenton chemistry), the DNA damage (both mitochondrial and nuclear), the damage to lipids and proteins by free radicals, the phenomenon of oxidative stress, cancer and the redox environment of a cell, the mechanisms of carcinogenesis and the role of signalling cascades by ROS; in particular, ROS activation of AP-1 (activator protein) and NF-B (nuclear factor kappa B) signal transduction pathways, which in turn lead to the transcription of genes involved in cell growth regulatory pathways. The role of enzymatic (superoxide dismutase (Cu, Zn-SOD, Mn-SOD), catalase, glutathione peroxidase) and non-enzymatic antioxidants (Vitamin C, Vitamin E, carotenoids, thiol antioxidants (glutathione, thioredoxin and lipoic acid), flavonoids, selenium and others) in the process of carcinogenesis as well as the antioxidant interactions with various regulatory factors, including Ref-1, NF-B, AP-1 are also reviewed. © 2006 Elsevier Ireland Ltd. All rights reserved.

5,396 citations


Journal ArticleDOI
Tuba Ak1, İlhami Gülçin1Institutions (1)
TL;DR: The antioxidant activity of curcumin was determined by employing various in vitro antioxidant assays such as 1,1-diphenyl-2-picryl-hydrazyl free radical (DPPH*) scavenging, 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical scavenging activity, N,N-dimethyl-p-phenylenediamine dihydrochloride
Abstract: Curcumin (diferuoyl methane) is a phenolic compound and a major component of Curcuma longa L. In the present paper, we determined the antioxidant activity of curcumin by employing various in vitro antioxidant assays such as 1,1-diphenyl-2-picryl-hydrazyl free radical (DPPH*) scavenging, 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical scavenging activity, N,N-dimethyl-p-phenylenediamine dihydrochloride (DMPD) radical scavenging activity, total antioxidant activity determination by ferric thiocyanate, total reducing ability determination by the Fe(3+)-Fe(2+) transformation method, superoxide anion radical scavenging by the riboflavin/methionine/illuminate system, hydrogen peroxide scavenging and ferrous ions (Fe(2+)) chelating activities. Curcumin inhibited 97.3% lipid peroxidation of linoleic acid emulsion at 15 microg/mL concentration (20 mM). On the other hand, butylated hydroxyanisole (BHA, 123 mM), butylated hydroxytoluene (BHT, 102 mM), alpha-tocopherol (51 mM) and trolox (90 mM) as standard antioxidants indicated inhibition of 95.4, 99.7, 84.6 and 95.6% on peroxidation of linoleic acid emulsion at 45 microg/mL concentration, respectively. In addition, curcumin had an effective DPPH* scavenging, ABTS*(+) scavenging, DMPD*(+) scavenging, superoxide anion radical scavenging, hydrogen peroxide scavenging, ferric ions (Fe(3+)) reducing power and ferrous ions (Fe(2+)) chelating activities. Also, BHA, BHT, alpha-tocopherol and trolox, were used as the reference antioxidant and radical scavenger compounds. According to the present study, curcumin can be used in the pharmacological and food industry because of these properties.

1,222 citations


Journal ArticleDOI
Peter J. O'Brien1Institutions (1)
TL;DR: The higher redox potential benzoquinones and naphthoquinones are the most cytotoxic presumably because of their higher electrophilicty and thiol reactivity and/or because the quinones or GSH conjugates are more readily reduced to semiquinones which activate oxygen.
Abstract: Quinones are probably found in all respiring animal and plant cells. They are widely used as anticancer, antibacterial or antimalarial drugs and as fungicides. Toxicity can arise as a result of their use as well as by the metabolism of other drugs and various environmental toxins or dietary constituents. In rapidly dividing cells such as tumor cells, cytotoxicity has been attributed to DNA modification. However the molecular basis for the initiation of quinone cytotoxicity in resting or non-dividing cells has been attributed to the alkylation of essential protein thiol or amine groups and/or the oxidation of essential protein thiols by activated oxygen species and/or GSSG. Oxidative stress arises when the quinone is reduced by reductases to a semiquinone radical which reduces oxygen to superoxide radicals and reforms the quinone. This futile redox cycling and oxygen activation forms cytotoxic levels of hydrogen peroxide and GSSG is retained by the cell and causes cytotoxic mixed protein disulfide formation. Most quinones form GSH conjugates which also undergo futile redox cycling and oxygen activation. Prior depletion of cell GSH markedly increases the cell's susceptibility to alkylating quinones but can protect the cell against certain redox cycling quinones. Cytotoxicity induced by hydroquinones in isolated hepatocytes can be attributed to quinones formed by autoxidation. The higher redox potential benzoquinones and naphthoquinones are the most cytotoxic presumably because of their higher electrophilicty and thiol reactivity and/or because the quinones or GSH conjugates are more readily reduced to semiquinones which activate oxygen.

949 citations


Journal ArticleDOI
Mary E. Anderson1Institutions (1)
TL;DR: Treatment with an inhibitor, buthionine sulfoximine (BSO), of gamma-glutamylcysteine synthetase leads to decreased cellular GSH levels, and its application can provide a useful experimental model of GSH deficiency.
Abstract: Glutathione (GSH; gamma-glutamylcysteinylglycine) is ubiquitous in mammalian and other living cells. It has several important functions, including protection against oxidative stress. It is synthesized from its constituent amino acids by the consecutive actions of gamma-glutamylcysteine synthetase and GSH synthetase. gamma-Glutamylcysteine synthetase activity is modulated by its light subunit and by feedback inhibition of the end product, GSH. Treatment with an inhibitor, buthionine sulfoximine (BSO), of gamma-glutamylcysteine synthetase leads to decreased cellular GSH levels, and its application can provide a useful experimental model of GSH deficiency. Cellular levels of GSH may be increased by supplying substrates and GSH delivery compounds. Increasing cellular GSH may be therapeutically useful.

826 citations


Journal ArticleDOI
TL;DR: ROS homeostasis is described, principles of their investigation and technical approaches to investigate ROS-related processes are described, and a classification of oxidative stress based on its intensity is proposed.
Abstract: Reactive oxygen species (ROS) initially considered as only damaging agents in living organisms further were found to play positive roles also. This paper describes ROS homeostasis, principles of their investigation and technical approaches to investigate ROS-related processes. Especial attention is paid to complications related to experimental documentation of these processes, their diversity, spatiotemporal distribution, relationships with physiological state of the organisms. Imbalance between ROS generation and elimination in favor of the first with certain consequences for cell physiology has been called "oxidative stress". Although almost 30years passed since the first definition of oxidative stress was introduced by Helmut Sies, to date we have no accepted classification of oxidative stress. In order to fill up this gape here classification of oxidative stress based on its intensity is proposed. Due to that oxidative stress may be classified as basal oxidative stress (BOS), low intensity oxidative stress (LOS), intermediate intensity oxidative stress (IOS), and high intensity oxidative stress (HOS). Another classification of potential interest may differentiate three categories such as mild oxidative stress (MOS), temperate oxidative stress (TOS), and finally severe (strong) oxidative stress (SOS). Perspective directions of investigations in the field include development of sophisticated classification of oxidative stresses, accurate identification of cellular ROS targets and their arranged responses to ROS influence, real in situ functions and operation of so-called "antioxidants", intracellular spatiotemporal distribution and effects of ROS, deciphering of molecular mechanisms responsible for cellular response to ROS attacks, and ROS involvement in realization of normal cellular functions in cellular homeostasis.

765 citations


Network Information
Related Journals (5)
Biochemical Pharmacology

28.6K papers, 1M citations

89% related
Toxicology and Applied Pharmacology

14.7K papers, 583.5K citations

89% related
Carcinogenesis

12.4K papers, 650.4K citations

88% related
Food and Chemical Toxicology

12.1K papers, 437K citations

87% related
Mutation Research

11.4K papers, 475.4K citations

84% related
Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
202250
2021253
2020281
2019383
2018293
2017287