scispace - formally typeset
Search or ask a question

Showing papers in "ChemInform in 2001"


Journal ArticleDOI
TL;DR: In this article, a set of powerful, highly reliable, and selective reactions for the rapid synthesis of useful new compounds and combinatorial libraries through heteroatom links (C-X-C), an approach called click chemistry is defined, enabled, and constrained by a handful of nearly perfect "springloaded" reactions.
Abstract: Examination of nature's favorite molecules reveals a striking preference for making carbon-heteroatom bonds over carbon-carbon bonds-surely no surprise given that carbon dioxide is nature's starting material and that most reactions are performed in water. Nucleic acids, proteins, and polysaccharides are condensation polymers of small subunits stitched together by carbon-heteroatom bonds. Even the 35 or so building blocks from which these crucial molecules are made each contain, at most, six contiguous C-C bonds, except for the three aromatic amino acids. Taking our cue from nature's approach, we address here the development of a set of powerful, highly reliable, and selective reactions for the rapid synthesis of useful new compounds and combinatorial libraries through heteroatom links (C-X-C), an approach we call "click chemistry". Click chemistry is at once defined, enabled, and constrained by a handful of nearly perfect "spring-loaded" reactions. The stringent criteria for a process to earn click chemistry status are described along with examples of the molecular frameworks that are easily made using this spartan, but powerful, synthetic strategy.

1,410 citations


Journal ArticleDOI

1,014 citations



Journal ArticleDOI
TL;DR: In this paper, the self-organized, oriented zinc oxide nanowires grown on sapphire substrates were synthesized with a simple vapor transport and condensation process, and they formed natural laser cavities with diameters varying from 20 to 150 nanometers and lengths up to 10 micrometers.
Abstract: Room-temperature ultraviolet lasing in semiconductor nanowire arrays has been demonstrated. The self-organized, oriented zinc oxide nanowires grown on sapphire substrates were synthesized with a simple vapor transport and condensation process. These wide band-gap semiconductor nanowires form natural laser cavities with diameters varying from 20 to 150 nanometers and lengths up to 10 micrometers. Under optical excitation, surface-emitting lasing action was observed at 385 nanometers, with an emission linewidth less than 0.3 nanometer. The chemical flexibility and the one-dimensionality of the nanowires make them ideal miniaturized laser light sources. These short-wavelength nanolasers could have myriad applications, including optical computing, information storage, and microanalysis.

632 citations


Journal ArticleDOI
TL;DR: In this article, an overview of theoretical basis, efficiency, economics, laboratory and pilot plant testing, design and modelling of different advanced oxidation processes (combinations of ozone and hydrogen peroxide with UV radiation and catalysts).
Abstract: The paper provides an overview of theoretical basis, efficiency, economics, laboratory and pilot plant testing, design and modelling of different advanced oxidation processes (combinations of ozone and hydrogen peroxide with UV radiation and catalysts).

409 citations


Journal ArticleDOI
Xiangfeng Duan1, Yu Huang1, Yi Cui1, Jianfang Wang1, Charles M. Lieber1 
TL;DR: In this paper, the assembly of functional nanoscale devices from indium phosphide nanowires, the electrical properties of which are controlled by selective doping, was reported, which can be predictably synthesized as either n- or p-type.
Abstract: Nanowires and nanotubes carry charge and excitons efficiently, and are therefore potentially ideal building blocks for nanoscale electronics and optoelectronics. Carbon nanotubes have already been exploited in devices such as field-effect and single-electron transistors, but the practical utility of nanotube components for building electronic circuits is limited, as it is not yet possible to selectively grow semiconducting or metallic nanotubes. Here we report the assembly of functional nanoscale devices from indium phosphide nanowires, the electrical properties of which are controlled by selective doping. Gate-voltage-dependent transport measurements demonstrate that the nanowires can be predictably synthesized as either n- or p-type. These doped nanowires function as nanoscale field-effect transistors, and can be assembled into crossed-wire p-n junctions that exhibit rectifying behaviour. Significantly, the p-n junctions emit light strongly and are perhaps the smallest light-emitting diodes that have yet been made. Finally, we show that electric-field-directed assembly can be used to create highly integrated device arrays from nanowire building blocks.

330 citations


Journal ArticleDOI
TL;DR: In this article, the authors used transition-metal oxides to enhance surface electrochemical reactivity of Li-ion batteries and achieved a capacity of 700 mA h g(-1) with 100% capacity retention for up to 100 cycles and high recharging rates.
Abstract: Rechargeable solid-state batteries have long been considered an attractive power source for a wide variety of applications, and in particular, lithium-ion batteries are emerging as the technology of choice for portable electronics. One of the main challenges in the design of these batteries is to ensure that the electrodes maintain their integrity over many discharge-recharge cycles. Although promising electrode systems have recently been proposed, their lifespans are limited by Li-alloying agglomeration or the growth of passivation layers, which prevent the fully reversible insertion of Li ions into the negative electrodes. Here we report that electrodes made of nanoparticles of transition-metal oxides (MO, where M is Co, Ni, Cu or Fe) demonstrate electrochemical capacities of 700 mA h g(-1), with 100% capacity retention for up to 100 cycles and high recharging rates. The mechanism of Li reactivity differs from the classical Li insertion/deinsertion or Li-alloying processes, and involves the formation and decomposition of Li2O, accompanying the reduction and oxidation of metal nanoparticles (in the range 1-5 nanometres) respectively. We expect that the use of transition-metal nanoparticles to enhance surface electrochemical reactivity will lead to further improvements in the performance of lithium-ion batteries.

328 citations


Journal ArticleDOI

328 citations


Journal ArticleDOI
TL;DR: In this paper, the authors reported the discovery of bulk superconductivity in magnesium diboride, MgB2, with a transition temperature of 39'K, which they believe to be the highest yet determined for a non-copper-oxide bulk superconductor.
Abstract: In the light of the tremendous progress that has been made in raising the transition temperature of the copper oxide superconductors (for a review, see ref. 1), it is natural to wonder how high the transition temperature, Tc, can be pushed in other classes of materials. At present, the highest reported values of Tc for non-copper-oxide bulk superconductivity are 33 K in electron-doped CsxRbyC60 (ref. 2), and 30 K in Ba1-xKxBiO3 (ref. 3). (Hole-doped C60 was recently found4 to be superconducting with a Tc as high as 52 K, although the nature of the experiment meant that the supercurrents were confined to the surface of the C60 crystal, rather than probing the bulk.) Here we report the discovery of bulk superconductivity in magnesium diboride, MgB2. Magnetization and resistivity measurements establish a transition temperature of 39 K, which we believe to be the highest yet determined for a non-copper-oxide bulk superconductor.

318 citations



Journal ArticleDOI
TL;DR: In this article, it was shown that enzymes can catalyse reactions impossible in water, become more stable, and exhibit new behavior such as "molecular memory" in the presence of solvent.
Abstract: The technological utility of enzymes can be enhanced greatly by using them in organic solvents rather than their natural aqueous reaction media. Studies over the past 15 years have revealed not only that this change in solvent is feasible, but also that in such seemingly hostile environments enzymes can catalyse reactions impossible in water, become more stable, and exhibit new behaviour such as 'molecular memory'. Of particular importance has been the discovery that enzymatic selectivity, including substrate, stereo-, regio- and chemoselectivity, can be markedly affected, and sometimes even inverted, by the solvent. Enzyme-catalysed reactions in organic solvents, and even in supercritical fluids and the gas phase, have found numerous potential applications, some of which are already commercialized.


Journal ArticleDOI
TL;DR: In this paper, a simple method was used to assemble single-walled carbon nanotubes into indefinitely long ribbons and fibers, which can be strongly bent without breaking, and their obtained elastic modulus is 10 times higher than the modulus of high-quality bucky paper.
Abstract: A simple method was used to assemble single-walled carbon nanotubes into indefinitely long ribbons and fibers. The processing consists of dispersing the nanotubes in surfactant solutions, recondensing the nanotubes in the flow of a polymer solution to form a nanotube mesh, and then collating this mesh to a nanotube fiber. Flow-induced alignment may lead to a preferential orientation of the nanotubes in the mesh that has the form of a ribbon. Unlike classical carbon fibers, the nanotube fibers can be strongly bent without breaking. Their obtained elastic modulus is 10 times higher than the modulus of high-quality bucky paper.

Journal ArticleDOI
TL;DR: In this paper, a novel allosteric enhancers were synthesized and characterized for the adenosine A 1 receptor, which proved superior to PD 81,723 in terms of performance.
Abstract: Allosteric modulation of G protein-coupled receptors is a relatively novel and unexplored pharmacological concept that may lead to more selective and more ‘natural’ drugs for these receptors. In particular, allosteric enhancers may serve as tools to intensify selectively a weakened hormone or neurotransmitter signal caused by a localized deficit, such as in Alzheimer's or Parkinson's disease. In this paper, attention is paid to the adenosine A 1 receptor, for which novel allosteric enhancers were synthesized and characterized that proved superior to the prototypic allosteric enhancer PD 81,723.

Journal ArticleDOI
TL;DR: The generalized Born model as discussed by the authors is an approximation of the Poisson equation that can be used for molecular dynamics simulations of proteins and nucleic acids, and it has been shown to be a good choice for macromolecular simulations.
Abstract: It would often be useful in computer simulations to use a simple description of solvation effects, instead of explicitly representing the individual solvent molecules. Continuum dielectric models often work well in describing the thermodynamic aspects of aqueous solvation, and approximations to such models that avoid the need to solve the Poisson equation are attractive because of their computational efficiency. Here we give an overview of one such approximation, the generalized Born model, which is simple and fast enough to be used for molecular dynamics simulations of proteins and nucleic acids. We discuss its strengths and weaknesses, both for its fidelity to the underlying continuum model and for its ability to replace explicit consideration of solvent molecules in macromolecular simulations. We focus particularly on versions of the generalized Born model that have a pair-wise analytical form, and therefore fit most naturally into conventional molecular mechanics calculations.


Journal ArticleDOI
Frank Caruso1
TL;DR: In this article, the authors present the state-of-the-art in strategies for engineering particle surfaces, such as the layer-by-layer deposition process, which allows fine control over shell thickness and composition.
Abstract: The creation of core–shell particles is attracting a great deal of interest because of the diverse applicability of these colloidal particles; e.g., as building blocks for photonic crystals, in multi-enzyme biocatalysis, and in drug delivery. This review presents the state-of-the-art in strategies for engineering particle surfaces, such as the layer-by-layer deposition process (see Figure), which allows fine control over shell thickness and composition.

Journal ArticleDOI
TL;DR: In this article, room-temperature single-electron transistors are realized within individual metallic single-wall carbon nanotube molecules by inducing local barriers into the tube with an atomic force microscope.
Abstract: Room-temperature single-electron transistors are realized within individual metallic single-wall carbon nanotube molecules. The devices feature a short (down to ∼20 nanometers) nanotube section that is created by inducing local barriers into the tube with an atomic force microscope. Coulomb charging is observed at room temperature, with an addition energy of 120 millielectron volts, which substantially exceeds the thermal energy. At low temperatures, we resolve the quantum energy levels corresponding to the small island. We observe unconventional power-law dependencies in the measured transport properties for which we suggest a resonant tunneling Luttinger-liquid mechanism.




Journal ArticleDOI
TL;DR: For thermophilic and hyperthermophilic organisms, the standard Gibbs free energies (DeltaGr(0)) as a function of temperature to 200 degrees C are tabulated for 370 organic and inorganic redox reactions directly or indirectly involved in microbial metabolism as mentioned in this paper.
Abstract: Thermophilic and hyperthermophilic Archaea and Bacteria have been isolated from marine hydrothermal systems, heated sediments, continental solfataras, hot springs, water heaters, and industrial waste. They catalyze a tremendous array of widely varying metabolic processes. As determined in the laboratory, electron donors in thermophilic and hyperthermophilic microbial redox reactions include H2, Fe(2+), H2S, S, S2O3(2-), S4O6(2-), sulfide minerals, CH4, various mono-, di-, and hydroxy-carboxylic acids, alcohols, amino acids, and complex organic substrates; electron acceptors include O2, Fe(3+), CO2, CO, NO3(-), NO2(-), NO, N2O, SO4(2-), SO3(2-), S2O3(2-), and S. Although many assimilatory and dissimilatory metabolic reactions have been identified for these groups of microorganisms, little attention has been paid to the energetics of these reactions. In this review, standard molal Gibbs free energies (DeltaGr(0)) as a function of temperature to 200 degrees C are tabulated for 370 organic and inorganic redox, disproportionation, dissociation, hydrolysis, and solubility reactions directly or indirectly involved in microbial metabolism. To calculate values of DeltaGr(0) for these and countless other reactions, the apparent standard molal Gibbs free energies of formation (DeltaG(0)) at temperatures to 200 degrees C are given for 307 solids, liquids, gases, and aqueous solutes. It is shown that values of DeltaGr(0) for many microbially mediated reactions are highly temperature dependent, and that adopting values determined at 25 degrees C for systems at elevated temperatures introduces significant and unnecessary errors. The metabolic processes considered here involve compounds that belong to the following chemical systems: H-O, H-O-N, H-O-S, H-O-N-S, H-O-C(inorganic), H-O-C, H-O-N-C, H-O-S-C, H-O-N-S-C(amino acids), H-O-S-C-metals/minerals, and H-O-P. For four metabolic reactions of particular interest in thermophily and hyperthermophily (knallgas reaction, anaerobic sulfur and nitrate reduction, and autotrophic methanogenesis), values of the overall Gibbs free energy (DeltaGr) as a function of temperature are calculated for a wide range of chemical compositions likely to be present in near-surface and deep hydrothermal and geothermal systems.

Book ChapterDOI
TL;DR: Glycals (or usually their O-substituted derivatives) are readily converted into 2,3-unsaturated glycosyl compounds with O-, C-, N-, S- or otherwise linked substituents at the anomeric position as discussed by the authors.
Abstract: Glycals (or usually their O-substituted derivatives) are readily converted into 2,3-unsaturated glycosyl compounds with O-, C-, N-, S- or otherwise linked substituents at the anomeric position. These products have been found to be useful for a range of synthetic purposes. In particular, the C-glycosidic compounds have served as readily available starting materials for the preparation of useful non-carbohydrate compounds. While these allylic rearrangement processes are usually conducted under the influence of Lewis acid catalysts, adaptations that involve activation of the allylic substituents of the starting glycals as leaving groups under neutral conditions have been developed. General features of the reactions are described as well as applications in synthesis and extensions of the basic processes.

Journal ArticleDOI
TL;DR: The first systematic study of the effect of impurities and additives (e.g., water, chloride, and cosolvents) on the physical properties of room-temperature ionic liquids was performed in this paper.
Abstract: We report here the first systematic study of the effect of impurities and additives (e.g., water, chloride, and cosolvents) on the physical properties of room-temperature ionic liquids. Remarkably, it was discovered that the viscosity of mixtures was dependent mainly on the mole fraction of added molecular solvents and only to a lesser extent upon their iden- tity, allowing viscosity changes during the course of a reaction to be entirely predictable. While the addition of such molecular solvents decreases the viscosity and density, chloride impurities, arising from the preparation of the ionic liquids, increase viscosity dramatically. The commonly used methods of preparation were validated with respect to chloride impurity.

Journal ArticleDOI
TL;DR: Anion recognition chemistry has grown from its beginnings in the late 1960s with positively charged ammonium cryptand receptors for halide binding to, at the end of the millennium, a plethora of charged and neutral, cyclic and acyclic, inorganic and organic supramolecular host systems for the selective complexation, detection, and separation of anionic guest species as discussed by the authors.
Abstract: Anion recognition chemistry has grown from its beginnings in the late 1960s with positively charged ammonium cryptand receptors for halide binding to, at the end of the millennium, a plethora of charged and neutral, cyclic and acyclic, inorganic and organic supramolecular host systems for the selective complexation, detection, and separation of anionic guest species. Solvation effects and pH values have been shown to play crucial roles in the overall anion recognition process. More recent developments include exciting advances in anion-templated syntheses and directed self-assembly, ion-pair recognition, and the function of anions in supramolecular catalysis.


Journal ArticleDOI
TL;DR: In this paper, a line patterning method is proposed to prepare patterns of conducting polymers by a process which is termed as "Line Patterning" and can be used to obtain inexpensive conductive polymer shapes/patterns.
Abstract: Since the initial discovery in 1977, that polyacetylene (CH)(x), now commonly known as the prototype conducting polymer, could be p- or n-doped either chemically or electrochemically to the metallic state, the development of the field of conducting polymers has continued to accelerate at an unexpectedly rapid rate and a variety of other conducting polymers and their derivatives have been discovered. Other types of doping are also possible, such as "photo-doping" and "charge-injection doping" in which no counter dopant ion is involved. One exciting challenge is the development of low-cost disposable plastic/paper electronic devices. Conventional inorganic conductors, such as metals, and semiconductors, such as silicon, commonly require multiple etching and lithographic steps in fabricating them for use in electronic devices. The number of processing and etching steps involved limits the minimum price. On the other hand, conducting polymers combine many advantages of plastics, for example, flexibility and processing from solution, with the additional advantage of conductivity in the metallic or semiconducting regimes; however, the lack of simple methods to obtain inexpensive conductive polymer shapes/patterns limit many applications. Herein is described a novel, simple, and cheap method to prepare patterns of conducting polymers by a process which we term, "Line Patterning".


Book ChapterDOI
TL;DR: In this article, a review of aziridine chemistry is presented, with the focus on the utility of the azirine carboxylic esters and the synthesis and chemistry of highly strained azirines.
Abstract: Functionalized aziridines, especially aziridine-2-carboxylic esters, are highly valuable small-ring heterocycles for the synthesis of a large variety of anomalous amino acids, new types of ligands for catalytic purposes, new synthons, and four- and five-membered ring heterocycles through ring expansion reactions. This review highlights the aziridine chemistry with the focus on the utility of aziridine esters. The synthesis and chemistry of the highly strained azirine carboxylic esters is also briefly reviewed.

Journal ArticleDOI
Frank W. Wise1
TL;DR: In this article, a review of recent research on lead-salt quantum dots is presented, with a focus on the effects of strong quantum confinement on electrons and phonons in the semiconductors PbS, PbSe, and PbTe.
Abstract: Nanocrystals or quantum dots of the IV−VI semiconductors PbS, PbSe, and PbTe provide unique properties for investigating the effects of strong confinement on electrons and phonons. The degree of confinement of charge carriers can be many times stronger than in most II−VI and III−V semiconductors, and lead salt nanostructures may be the only materials in which the electronic energies are determined primarily by quantum confinement. This Account briefly reviews recent research on lead salt quantum dots.