scispace - formally typeset
Search or ask a question

Showing papers in "ChemInform in 2010"


Journal ArticleDOI
TL;DR: An overview of the synthesis, properties, and applications of graphene and related materials from a materials science perspective can be found in this article, where the authors present a review of recent work in this area.
Abstract: There is intense interest in graphene in fields such as physics, chemistry, and materials science, among others. Interest in graphene's exceptional physical properties, chemical tunability, and potential for applications has generated thousands of publications and an accelerating pace of research, making review of such research timely. Here is an overview of the synthesis, properties, and applications of graphene and related materials (primarily, graphite oxide and its colloidal suspensions and materials made from them), from a materials science perspective.

688 citations


Journal ArticleDOI
TL;DR: Microwave sintering has emerged as a new method for sinterding a variety of materials that has shown significant advantages against conventional sinterging procedures as discussed by the authors. But microwave sinterings are not suitable for all materials.
Abstract: Microwave sintering has emerged in recent years as a new method for sintering a variety of materials that has shown significant advantages against conventional sintering procedures. This review article first provides a summary of fundamental theoretical aspects of microwave and microwave hybrid sintering, and then advantages of microwave sintering against conventional methods are described. At the end, some applications of microwave sintering are mentioned which so far have manifested the advantages of this novel method.

325 citations


Journal ArticleDOI
TL;DR: Green Chemistry is a relatively new emerging field that strives to work at the molecular level to achieve sustainability as discussed by the authors, which has received widespread interest in the past decade due to its ability to harness chemical innovation to meet environmental and economic goals simultaneously.
Abstract: Green Chemistry is a relatively new emerging field that strives to work at the molecular level to achieve sustainability. The field has received widespread interest in the past decade due to its ability to harness chemical innovation to meet environmental and economic goals simultaneously. Green Chemistry has a framework of a cohesive set of Twelve Principles, which have been systematically surveyed in this critical review. This article covers the concepts of design and the scientific philosophy of Green Chemistry with a set of illustrative examples. Future trends in Green Chemistry are discussed with the challenge of using the Principles as a cohesive design system (93 references).

319 citations


Journal ArticleDOI
TL;DR: In this paper, the authors present the latest advances in electrochemical, electrical, and optical biosensors that use carbon nanotubes and graphene, and critically compare the performance of the two carbon allotropes in this application.
Abstract: From diagnosis of life-threatening diseases to detection of biological agents in warfare or terrorist attacks, biosensors are becoming a critical part of modern life. Many recent biosensors have incorporated carbon nanotubes as sensing elements, while a growing body of work has begun to do the same with the emergent nanomaterial graphene, which is effectively an unrolled nanotube. With this widespread use of carbon nanomaterials in biosensors, it is timely to assess how this trend is contributing to the science and applications of biosensors. This Review explores these issues by presenting the latest advances in electrochemical, electrical, and optical biosensors that use carbon nanotubes and graphene, and critically compares the performance of the two carbon allotropes in this application. Ultimately, carbon nanomaterials, although still to meet key challenges in fabrication and handling, have a bright future as biosensors.

304 citations


Journal ArticleDOI

283 citations


Journal ArticleDOI
TL;DR: Gold colloids have fascinated scientists for over a century and are now heavily utilized in chemistry, biology, engineering, and medicine as mentioned in this paper, and many examples of highly sensitive and selective assays based upon gold nanoconjugates.
Abstract: Gold colloids have fascinated scientists for over a century and are now heavily utilized in chemistry, biology, engineering, and medicine. Today these materials can be synthesized reproducibly, modified with seemingly limitless chemical functional groups, and, in certain cases, characterized with atomic-level precision. This Review highlights recent advances in the synthesis, bioconjugation, and cellular uses of gold nanoconjugates. There are now many examples of highly sensitive and selective assays based upon gold nanoconjugates. In recent years, focus has turned to therapeutic possibilities for such materials. Structures which behave as gene-regulating agents, drug carriers, imaging agents, and photoresponsive therapeutics have been developed and studied in the context of cells and many debilitating diseases. These structures are not simply chosen as alternatives to molecule-based systems, but rather for their new physical and chemical properties, which confer substantive advantages in cellular and medical applications.

278 citations


Journal ArticleDOI
TL;DR: In this paper, the authors summarize the fundamental principles of both synthetic methods and recent development in the applications of ultrasound in nanostructured materials synthesis, including the role of phase-separated attoliter microreactors.
Abstract: Recent advances in nanostructured materials have been led by the development of new synthetic methods that provide control over size, morphology, and nano/microstructure. The utilization of high intensity ultrasound offers a facile, versatile synthetic tool for nanostructured materials that are often unavailable by conventional methods. The primary physical phenomena associated with ultrasound that are relevant to materials synthesis are cavitation and nebulization. Acoustic cavitation (the formation, growth, and implosive collapse of bubbles in a liquid) creates extreme conditions inside the collapsing bubble and serves as the origin of most sonochemical phenomena in liquids or liquid-solid slurries. Nebulization (the creation of mist from ultrasound passing through a liquid and impinging on a liquid-gas interface) is the basis for ultrasonic spray pyrolysis (USP) with subsequent reactions occurring in the heated droplets of the mist. In both cases, we have examples of phase-separated attoliter microreactors: for sonochemistry, it is a hot gas inside bubbles isolated from one another in a liquid, while for USP it is hot droplets isolated from one another in a gas. Cavitation-induced sonochemistry provides a unique interaction between energy and matter, with hot spots inside the bubbles of approximately 5000 K, pressures of approximately 1000 bar, heating and cooling rates of >10(10) K s(-1); these extraordinary conditions permit access to a range of chemical reaction space normally not accessible, which allows for the synthesis of a wide variety of unusual nanostructured materials. Complementary to cavitational chemistry, the microdroplet reactors created by USP facilitate the formation of a wide range of nanocomposites. In this review, we summarize the fundamental principles of both synthetic methods and recent development in the applications of ultrasound in nanostructured materials synthesis.

275 citations


Journal ArticleDOI
TL;DR: The microenvironment of solid tumors is characterized by a reactive stroma with an abundance of inflammatory mediators and leukocytes, dysregulated vessels and proteolytic enzymes as mentioned in this paper.
Abstract: The microenvironment of solid tumors is characterized by a reactive stroma with an abundance of inflammatory mediators and leukocytes, dysregulated vessels and proteolytic enzymes. TAM, major players in the connection between inflammation and cancer, summarize a number of functions (e.g., promotion of tumor cell proliferation and angiogenesis, incessant matrix turnover, repression of adaptive immunity), which ultimately have an important impact on disease progression. Thus, together with other myeloid-related cells present at the tumor site (Tie2 macrophages and MDSCs), TAM represent an attractive target of novel biological therapies of tumors.

254 citations


Journal ArticleDOI
TL;DR: In this article, the authors highlight the challenges for capture technologies which have the greatest likelihood of reducing CO(2) emissions to the atmosphere, namely postcombustion (predominantly CO 2)/N 2 separation), precombustions (CO 2)/H 2 capture, and natural gas sweetening (CO(2)/CH 4).
Abstract: The escalating level of atmospheric carbon dioxide is one of the most pressing environmental concerns of our age. Carbon capture and storage (CCS) from large point sources such as power plants is one option for reducing anthropogenic CO(2) emissions; however, currently the capture alone will increase the energy requirements of a plant by 25-40%. This Review highlights the challenges for capture technologies which have the greatest likelihood of reducing CO(2) emissions to the atmosphere, namely postcombustion (predominantly CO(2)/N(2) separation), precombustion (CO(2)/H(2)) capture, and natural gas sweetening (CO(2)/CH(4)). The key factor which underlies significant advancements lies in improved materials that perform the separations. In this regard, the most recent developments and emerging concepts in CO(2) separations by solvent absorption, chemical and physical adsorption, and membranes, amongst others, will be discussed, with particular attention on progress in the burgeoning field of metal-organic frameworks.

229 citations


Journal ArticleDOI
TL;DR: In this article, the radical-mediated thiol-ene reaction is reviewed as one such click reaction, being highly efficient, simple to execute with no side products and proceeding rapidly to high yield.
Abstract: Following Sharpless' visionary characterization of several idealized reactions as click reactions, the materials science and synthetic chemistry communities have pursued numerous routes toward the identification and implementation of these click reactions. Herein, we review the radical-mediated thiol-ene reaction as one such click reaction. This reaction has all the desirable features of a click reaction, being highly efficient, simple to execute with no side products and proceeding rapidly to high yield. Further, the thiol-ene reaction is most frequently photoinitiated, particularly for photopolymerizations resulting in highly uniform polymer networks, promoting unique capabilities related to spatial and temporal control of the click reaction. The reaction mechanism and its implementation in various synthetic methodologies, biofunctionalization, surface and polymer modification, and polymerization are all reviewed.

216 citations


Book ChapterDOI
TL;DR: In this paper, the impact of spin-orbit coupling (SOC) on the triplet state and the dominant SOC and state-mixing paths are investigated and the combined experimental and theoretical results lead to structure-efficiency rules and guidelines for the design of new organic light emitting diode (OLED) emitter materials.
Abstract: High-resolution optical spectroscopy of organometallic triplet emitters reveals detailed insights into the lowest triplet states and the corresponding electronic and vibronic transitions to the singlet ground state. As case studies, the blue-light emitting materials Pt(4,6-dFppy)(acac) and Ir(4,6-dFppy)2(acac) are investigated and characterized in detail. The compounds’ photophysical properties, being markedly different, are largely controlled by spin–orbit coupling (SOC). Therefore, we study the impact of SOC on the triplet state and elucidate the dominant SOC and state-mixing paths. These depend distinctly on the compounds’ coordination geometry. Relatively simple rules and relations are pointed out. The combined experimental and theoretical results lead us towards structure-efficiency rules and guidelines for the design of new organic light emitting diode (OLED) emitter materials.

Journal ArticleDOI
TL;DR: In this paper, the authors describe the adsorption behavior of several different classes of solid carbon dioxide adsorbents, including zeolites, activated carbons, calcium oxides, hydrotalcites, organic-inorganic hybrids, and metal-organic frameworks.
Abstract: Since the time of the industrial revolution, the atmospheric CO(2) concentration has risen by nearly 35 % to its current level of 383 ppm. The increased carbon dioxide concentration in the atmosphere has been suggested to be a leading contributor to global climate change. To slow the increase, reductions in anthropogenic CO(2) emissions are necessary. Large emission point sources, such as fossil-fuel-based power generation facilities, are the first targets for these reductions. A benchmark, mature technology for the separation of dilute CO(2) from gas streams is via absorption with aqueous amines. However, the use of solid adsorbents is now being widely considered as an alternative, potentially less-energy-intensive separation technology. This Review describes the CO(2) adsorption behavior of several different classes of solid carbon dioxide adsorbents, including zeolites, activated carbons, calcium oxides, hydrotalcites, organic-inorganic hybrids, and metal-organic frameworks. These adsorbents are evaluated in terms of their equilibrium CO(2) capacities as well as other important parameters such as adsorption-desorption kinetics, operating windows, stability, and regenerability. The scope of currently available CO(2) adsorbents and their critical properties that will ultimately affect their incorporation into large-scale separation processes is presented.


Journal ArticleDOI
TL;DR: In this article, a review of 145 compounds from 13 structural classes with potential to lead to more effective and less toxic antimicrobial drugs is presented, and over 100 references are cited.
Abstract: Over the last decade, it has become clear that antimicrobial drugs are losing their effectiveness due to the evolution of pathogen resistance. There is therefore a continuing need to search for new antibiotics, especially as new drugs only rarely reach the market. Natural products are both fundamental sources of new chemical diversity and integral components of today's pharmaceutical compendium, and the aim of this review is to explore and highlight the diverse natural products that have potential to lead to more effective and less toxic antimicrobial drugs. Although more than 300 natural metabolites with antimicrobial activity have been reported in the period 2000-2008, this review will describe only those with potentially useful antimicrobial activity, viz. with MICs in the range 0.02-10 microg mL(-1). A total of 145 compounds from 13 structural classes are discussed, and over 100 references are cited.

Journal ArticleDOI
TL;DR: Marsh et al. as discussed by the authors presented a review of the state-of-the-art on the structural features of wood in terms of solvents for cellulose degradation.
Abstract: Sustainability, industrial ecology, eco-efficiency, and green chemistry are directing the development of the next generation of materials, products, and processes. Biodegradable plastics and biocompatible composites generated from renewable biomass feedstock are regarded as promising materials that could replace synthetic polymers and reduce global dependence on fossil fuel sources.1 It is estimated that the world is currently consuming petroleum at a rate 100 000 times faster than nature can replace it.2 The growing global environmental awareness and societal concern, high rate of depletion of petroleum resources, concepts of sustainability, and new environmental regulations have triggered the search for new products and processes that are more compatible with the environment. The most abundant natural polymer in our environment is cellulose. It has an estimated annual biosphere production of 90 × 109 metric tons and, consequently, represents the most obvious renewable resource for producing biocomposites.3 Its highly ordered structure is responsible for its desirable mechanical properties but makes it a challenge to find suitable solvents for its dissolution.4 The first attempts to dissolve cellulose date back to the early 1920s.5 Several aqueous and nonaqueous cellulose solvents have been discovered since then, but all of these solvents suffer either from high environmental toxicity or from insufficient solvation power.6 In general, the traditional cellulose dissolution processes require relatively harsh conditions and the use of expensive and uncommon solvents, which usually cannot be recovered after the process.6-10 However, a new class of solvents was opened to the cellulose research community, when in 2002 Swatloski et al. reported the use of an ionic liquid as solvent for cellulose both for the regeneration of cellulose and for the chemical modification of the polysaccharide.7 In 1934, Graenacher had discovered a solvent system with the ability to dissolve cellulose, but this was thought to be of little practical value at the time.11,12 Ionic liquids are a group of salts that exist as liquids at relatively low temperatures (<100 °C). They have many attractive properties, including chemical and thermal stability, nonflammability, and immeasurably low vapor pressure.12 First discovered in 1914 by Walden, their huge potential in industry and research was only realized within the last few decades.13,14 This review aims to provide a summary of our current state of knowledge on the structural features of wood * To whom correspondence should be addressed. E-mail: ken.marsh@ canterbury.ac.nz. Tel.: +64 3364 2140. Fax: +64 3364 2063. † Department of Chemical and Process Engineering. ‡ Department of Mechanical Engineering. Andre Pinkert was born in Schwabach, Germany, in 1981. He studied Chemistry at the University of Erlangen-Nurnberg, Germany, and received his prediploma and diploma degrees in 2004 and 2008, respectively. During 2005, he joined the Marine Natural Products Group, lead by Murray H. Munro and John W. Blunt, at the University of Canterbury (UoC), New Zealand, working on the isolation and characterization of bioactive metabolites. In early 2006, he returned to Germany and resumed his studies at the University of Erlangen-Nurnberg, finishing his degree under the supervision of Rudi van Eldik. Associated with his studies, during 2007, he worked for AREVA NP on radio-nuclear chemistry and computer modeling. Since 2008, he is studying towards a Ph.D. degree at UoC under the supervision of Shusheng Pang, Ken Marsh, and Mark Staiger. His research focuses on biocomposites from natural fibers, processed via ionic liquids. Chem. Rev. 2009, 109, 6712–6728 6712

Journal ArticleDOI
Hagen Klauk1
TL;DR: In this article, a short summary of several important aspects of organic transistors, including materials, microstructure, carrier transport, manufacturing, electrical properties, and performance limitations are presented.
Abstract: Over the past 20 years, organic transistors have developed from a laboratory curiosity to a commercially viable technology. This critical review provides a short summary of several important aspects of organic transistors, including materials, microstructure, carrier transport, manufacturing, electrical properties, and performance limitations (200 references).

Journal ArticleDOI
TL;DR: The field of magnetoelectric materials has recently received renewed interest, in large part stimulated by breakthroughs in the controlled growth of complex materials and by the search for novel materials with functionalities suitable for next generation electronic devices.
Abstract: The study of magnetoelectric materials has recently received renewed interest, in large part stimulated by breakthroughs in the controlled growth of complex materials and by the search for novel materials with functionalities suitable for next generation electronic devices. In this Progress Report, we present an overview of recent developments in the field, with emphasis on magnetoelectric coupling effects in complex oxide multiferroic composite materials.

Journal ArticleDOI
TL;DR: In this article, the authors discuss examples from in vivo studies that demonstrate how polymer architectural features impact the renal filtration of a polymer as well as tumor penetration and tumor accumulation.
Abstract: Chemotherapy can destroy tumors and arrest cancer progress. Unfortunately, severe side effects (treatment is usually a series of injections of highly toxic drugs) often restrict the frequency and size of dosages, much to the detriment of tumor inhibition. Most chemotherapeutic drugs have pharmacokinetic profiles with tremendous potential for improvement. Water-soluble polymers offer the potential to increase drug circulation time, improve drug solubility, prolong drug residence time in a tumor, and reduce toxicity. Cytotoxic drugs that are covalently attached to water-soluble polymers via reversible linkages more effectively target tumor tissue than the drugs alone. Macromolecules passively target solid tumor tissue through a combination of reduced renal clearance and exploitation of the enhanced permeation and retention (EPR) effect, which prevails for fast-growing tumors. Effective drug delivery involves a balance between (i) elimination of the polymeric drug conjugate from the bloodstream by the kidneys, liver, and other organs and (ii) movement of the drug out of the blood vasculature and into the tumor (that is, extravasation). Polymers are eliminated in the kidney by filtration through pores with a size comparable to the hydrodynamic diameter of the polymer; in contrast, the openings in the blood vessel structures that traverse tumors are an order of magnitude greater than the diameter of the polymer. Thus, features that may broadly be grouped as the "molecular architecture" of the polymer, such as its hydrodynamic volume (or molecular weight), molecular conformation, chain flexibility, branching, and location of the attached drug, can greatly impact elimination of the polymer from the body through the kidney but have a much smaller effect on the extravasation of the polymer into the tumor. Molecular architecture can in theory be adjusted to assert essentially independent control over elimination and extravasation. Understanding how molecular architecture affects passage of a polymer through a pore is therefore essential for designing polymer drug carriers that are effective in passively delivering a drug payload while conforming to the requirement that the polymers must eventually be eliminated from the body. In this Account, we discuss examples from in vivo studies that demonstrate how polymer architectural features impact the renal filtration of a polymer as well as tumor penetration and tumor accumulation. In brief, features that inhibit passage of a polymer through a pore, such as higher molecular weight, decreased flexibility, and an increased number of polymer chain ends, help prevent elimination of the polymer by the kidneys and can improve blood circulation times and tumor accumulation, thus improving therapeutic effectiveness.

Journal ArticleDOI
TL;DR: In this paper, the secondary metabolomes of natural product-rich actinomycetes are highlighted in a review article, which contains 199 references, highlighting the secondary metabolic proficiency of these microbes and setting the foundation for a new natural product discovery paradigm based on genome mining.
Abstract: The phylum Actinobacteria hosts diverse high G + C, Gram-positive bacteria that have evolved a complex chemical language of natural product chemistry to help navigate their fascinatingly varied lifestyles. To date, 71 Actinobacteria genomes have been completed and annotated, with the vast majority representing the Actinomycetales, which are the source of numerous antibiotics and other drugs from genera such as Streptomyces, Saccharopolyspora and Salinispora. These genomic analyses have illuminated the secondary metabolic proficiency of these microbes – underappreciated for years based on conventional isolation programs – and have helped set the foundation for a new natural product discovery paradigm based on genome mining. Trends in the secondary metabolomes of natural product-rich actinomycetes are highlighted in this review article, which contains 199 references.

Journal ArticleDOI
TL;DR: In this article, a review of siderophore-mediated iron uptake in marine organisms is presented, focusing on the structural characteristics of marine sidersophores and the reactivity that these characteristics confer.
Abstract: The vast majority of bacteria require iron for growth.1,2 Iron is an essential element required for key biological processes including amino acid synthesis, oxygen transport, respiration, nitrogen fixation, methanogenesis, the citric acid cycle, photosynthesis and DNA biosynthesis. However, obtaining iron presents challenges for the majority of microorganisms. While iron is the fourth most abundant transition metal in the Earth's crust, the insolubility of iron(III) [Ksp of Fe(OH)3 = 10-39] at physiological pH in aerobic environments severely limits the availability of this essential nutrient. Pathogenic and marine bacteria face similar challenges for obtaining iron because both live in very low iron environments. Bacteria typically require micromolar levels of total iron for growth, yet the iron concentration in the surface waters of the oceans is only 0.01-2 nM.3-7 In humans cellular iron is also very low and is sequestered by lactoferrin, transferrin, and ferritin as a primary defense mechanism at the onset of infection.8 Given its cellular importance, it is not surprising that microbes have evolved multiple pathways designed to extract iron from their surrounding environments, tailored to the molecular constraints of the iron pool (Figure 1). Figure 1 Microbial (Gram negative) iron uptake pathways. In this review the general pathways by which bacteria acquire iron are considered first as an overview to illustrate the singular importance of iron for microbial growth. The focus of this review is on siderophore-mediated iron uptake, particularly structural characteristics of marine siderophores and the reactivity that these characteristics confer. Relatively little is known about marine microbial iron transport compared to that for terrestrial and pathogenic microbes, yet comparison of the structures and reactivity may hint at the biological advantage that these structural traits confer to marine microbes and very possibly provide insights to siderophore-mediated iron uptake in some pathogens.


Journal ArticleDOI
TL;DR: In this paper, Raman spectroscopy and imaging can be used as a quick and unambiguous method to determine the number of layers of a single-layer graphite compared to graphite.
Abstract: Graphene has many unique properties that make it an ideal material for fundamental studies as well as for potential applications. Here we review recent results on the Raman spectroscopy and imaging of graphene. We show that Raman spectroscopy and imaging can be used as a quick and unambiguous method to determine the number of graphene layers. The strong Raman signal of single layer graphene compared to graphite is explained by an interference enhancement model. We have also studied the effect of substrates, the top layer deposition, the annealing process, as well as folding (stacking order) on the physical and electronic properties of graphene. Finally, Raman spectroscopy of epitaxial graphene grown on a SiC substrate is presented and strong compressive strain on epitaxial graphene is observed. The results presented here are highly relevant to the application of graphene in nano-electronic devices and help in developing a better understanding of the physical and electronic properties of graphene.

Journal ArticleDOI
TL;DR: Siderophores are compounds produced by bacteria, fungi and graminaceous plants for scavenging iron from the environment as discussed by the authors, which are low-molecular-weight compounds (500-1500 daltons) possessing a high affinity for iron(III) (Kf > 1030).
Abstract: Siderophores are compounds produced by bacteria, fungi and graminaceous plants for scavenging iron from the environment. They are low-molecular-weight compounds (500-1500 daltons) possessing a high affinity for iron(III) (Kf > 1030), the biosynthesis of which is regulated by iron levels and the function of which is to supply iron to the cell. This article briefly describes the classification and chemical properties of siderophores, before outlining research on siderophore biosynthesis and transport. Clinically important siderophores and the therapeutic potential of siderophore design are described. Appendix 1 provides a comprehensive list of siderophore structures.

Journal ArticleDOI
TL;DR: Ionic liquids (ILs) including ambient-temperature molten salts, which exist in the liquid state even at room temperature, have a long research history, and their applications were once limited because ILs were considered as highly moisture-sensitive solvents that should be handled in a glove box as mentioned in this paper.
Abstract: Ionic liquids (ILs) including ambient-temperature molten salts, which exist in the liquid state even at room temperature, have a long research history. However, their applications were once limited because ILs were considered as highly moisture-sensitive solvents that should be handled in a glove box. After the first synthesis of moisture-stable ILs in 1992, their unique physicochemical properties became known in all scientific fields. ILs are composed solely of ions and exhibit several specific liquid-like properties, e.g., some ILs enable dissolution of insoluble bio-related materials and the use as tailor-made lubricants in industrial applications under extreme physicochemical conditions. Hybridization of ILs and other materials provides quasi-solid materials, which can be used to fabricate highly functional devices. ILs are also used as reaction media for electrochemical and chemical synthesis of nanomaterials. In addition, the negligible vapor pressure of ILs allows the fabrication of electrochemical devices that are operated under ambient conditions, and many liquid-vacuum technologies, such as X-ray photoelectron spectroscopy (XPS) analysis of liquids, electron microscopy of liquids, and sputtering and physical vapor deposition onto liquids. In this article, we review recent studies on ILs that are employed as functional advanced materials, advanced mediums for materials production, and components for preparing highly functional materials.

Journal ArticleDOI
TL;DR: In this article, a review focusing on the synthesis, protection, functionalization, characterization and with some applications of magnetic nanoparticles (MNPs) is presented, with an overview on magnetic properties and single domain particles.
Abstract: This review focuses on the synthesis, protection, functionalization, characterization and with some applications of magnetic nanoparticles (MNPs). The review begins with an overview on magnetic property and single domain particles. The synthetic strategies developed for the generation of MNPs, with a focus on particle formation mechanism and recent modifications made on the synthesis of monodisperse samples of relatively large quantities are also discussed. Then, different methodologies for the protection and functionalization of the synthesized MNPs, together with the characterization techniques are explained. Finally, some of the recent industrial, biological, environmental and analyticals application of MNPs are briefly reviewed, and some future trends and perspectives in these research areas will be outlined.

Journal ArticleDOI
TL;DR: In this article, a review of the literature on Fe transport and homeostasis in plants, focusing on the research published in the past five years, is presented, where the authors examine the relationship between Fe and the toxic metals that often accompany Fe uptake, namely Cd, Co and Ni.
Abstract: Fe is essential for plant growth. At the same time, Fe is highly reactive and toxic via the Fenton reaction. Consequently, plants tightly control Fe homeostasis and react to Fe deficiency as well as Fe overload. The ability of plants to respond to Fe availability ultimately affects human nutrition, both in terms of crop yield and the Fe concentration of edible tissues. Thus, elucidating the mechanisms of Fe uptake and transport is essential for the breeding of crops that are more nutrient rich and more tolerant of Fe-limited soils.This review covers Fe transport and homeostasis in plants, focusing on the research published in the past five years. Because Fe transporters often have a broad range of substrates, we also examine the relationship between Fe and the toxic metals that often accompany Fe uptake, namely Cd, Co, and Ni. We begin by discussing Fe uptake into the root, then long-distance transport to the shoot, and finally, the loading of Fe into seeds. And, as Fe is essential to the metabolism of the mitochondria and chloroplast, we also look at the recent discoveries in Fe transport and homeostasis at the intracellular level. We do not cover the regulation of these transporters asmore » this topic has been recently reviewed.« less



Journal ArticleDOI
TL;DR: In this paper, the properties, applications, and syntheses of three magnetic iron oxides (hematite, magnetite, and maghemite) are discussed and methods of preparation that allow control over the size, morphology, surface treatment and magnetic properties of their nanoparticles.
Abstract: Magnetic nanoparticles exhibit many interesting properties that can be exploited in a variety of applications such as catalysis and in biomedicine. This review discusses the properties, applications, and syntheses of three magnetic iron oxides – hematite, magnetite, and maghemite – and outlines methods of preparation that allow control over the size, morphology, surface treatment and magnetic properties of their nanoparticles. Some challenges to further development of these materials and methods are also presented.

Journal ArticleDOI
TL;DR: In this paper, a review of the state-of-the-art in the area of planar materials science and engineering can be found, along with an outlook on the challenges and opportunities for this emerging area of materials science.
Abstract: All commercial forms of electronic/optoelectronic technologies use planar, rigid substrates. Device possibilities that exploit bio-inspired designs or require intimate integration with the human body demand curvilinear shapes and/or elastic responses to large strain deformations. This article reviews progress in research designed to accomplish these outcomes with established, high-performance inorganic electronic materials and modest modifications to conventional, planar processing techniques. We outline the most well developed strategies and illustrate their use in demonstrator devices that exploit unique combinations of shape, mechanical properties and electronic performance. We conclude with an outlook on the challenges and opportunities for this emerging area of materials science and engineering.