scispace - formally typeset
Search or ask a question

Showing papers in "Chemistry: A European Journal in 2010"


Journal ArticleDOI
TL;DR: Aromatic substrates with oxygen- and nitrogen-containing substituents undergo oxidative coupling with alkynes and alkenes under rhodium catalysis through regioselective C-H bond cleavage, creating fused-ring systems through these reactions.
Abstract: Aromatic substrates with oxygen- and nitrogen-containing substituents undergo oxidative coupling with alkynes and alkenes under rhodium catalysis through regioselective C-H bond cleavage. Coordination of the substituents to the rhodium center is the key to activate the C-H bonds effectively. Various fused-ring systems can be constructed through these reactions.

1,538 citations


Journal ArticleDOI
TL;DR: This Minireview highlights recent work in transition-metal-catalyzed C-H activation, with a particular emphasis on synthetically useful methods for activation of non-acidic C- H bonds of alkyl groups.
Abstract: Transition-metal-catalyzed C-H activation has recently emerged as a powerful tool for the functionalization of organic molecules. While many efforts have focused on the functionalization of arenes and heteroarenes by this strategy in the past two decades, much less research has been devoted to the activation of non-acidic C-H bonds of alkyl groups. This Minireview highlights recent work in this area, with a particular emphasis on synthetically useful methods.

923 citations


Journal ArticleDOI
TL;DR: Laser-flash photolysis has allowed detecting the photochemical generation of a long lived charge separated state whose decay is not complete 300 μs after the laser flash, and the influence of the amino group producing a bathochromic shift in the optical spectrum without altering the photochemistry shows promises for the development of more efficient MOFs for water splitting.
Abstract: The Zr-containing metal-organic frameworks (MOFs) formed by terephthalate (UiO-66) and 2-aminoterephthalate ligands [UiO-66(NH(2))] are two notably water-resistant MOFs that exhibit photocatalytic activity for hydrogen generation in methanol or water/methanol upon irradiation at wavelength longer than 300 nm. The apparent quantum yield for H(2) generation using monochromatic light at 370 nm in water/methanol 3:1 was of 3.5% for UiO-66(NH(2)). Laser-flash photolysis has allowed detecting for UiO-66 and UiO-66(NH(2)) the photochemical generation of a long lived charge separated state whose decay is not complete 300 μs after the laser flash. Our finding and particularly the influence of the amino group producing a bathochromic shift in the optical spectrum without altering the photochemistry shows promises for the development of more efficient MOFs for water splitting.

675 citations


Journal ArticleDOI
TL;DR: The results clearly show that the observed “catalytic” effect of SWNTs can be attributed to their intrinsic properties rather than metal residues, and the catalytic efficiency ofSWNTs is strongly dependent on pH, temperature, and H2O2 concentration, similar to horseradish peroxidase (HRP).
Abstract: Single-walled carbon nanotubes (SWNTs) have been considered to be leading candidates for nanodevice applications and novel drug delivery. Intriguingly, recent studies have shown that SWNTs have catalytic activity even in the absence of catalytic factors. Since hydrogen peroxide is an important oxidizing agent in biological systems, the catalytic reaction of SWNTs with H2O2 has received much attention. The SWNT catalytic mechanism is much debated, but it has been suggested that it is related to trace amounts of metal catalyst in SWNTs. H2O2 is a major reactive oxygen species in living organisms, and its overproduction is implicated in the development of numerous inflammatory diseases, such as atherosclerosis, chronic obstructive pulmonary disease, and hepatitis. Furthermore, as a product of many enzyme-catalyzed reactions, H2O2 can act as an indicator to monitor the quantity of biologically important molecules, such as glucose. Therefore, studying the catalytic reaction of SWNTs with H2O2 might offer a promising application for disease diagnosis and for the design of SWNT-based sensors. In this work, we report that SWNTs possess intrinsic peroxidase-like activity. That the catalytic activity does not depend on trace amounts of metal catalyst in the SWNTs is evidenced by energy-dispersive X-ray (EDX) analysis. In the presence of H2O2, SWNTs catalyze the reaction of the peroxidase substrate 3,3,5,5-tetramethylbenzidine (TMB) thereby producing a color change (Scheme 1). Our results indicate that the catalytic efficiency of SWNTs is strongly dependent on pH, temperature, and H2O2 concentration, similar to horseradish peroxidase (HRP). More importantly, we compared the catalytic efficiency of SWNTs containing different amounts of cobalt residues. The results clearly show that the observed “catalytic” effect of SWNTs can be attributed to their intrinsic properties rather than metal residues. Peroxidase activity has a great potential for practical application and has been used in the bioremediation of waste water or as diagnostic kits. As peroxidase mimics, SWNTs were used here for label-free colorimetric detection of disease-associated single-nucleotide polymorphism (SNP) with a direct detection limit of 1 nm based on the color reaction of TMB. It is well known that SNP detection is very important, and different kinds of detection methods have been reported; however, to our knowledge, this is the first demonstration of applying intrinsic SWNT peroxidase-like activity and color change for this purpose. This work will provide new insights into the utilization of SWNT peroxidase-like activity. To increase SWNT solubility in aqueous solution, we treated SWNTs with a mixture of concentrated sulfuric and nitric acids, as described previously. Figure S1 in the Supporting Information shows the mixed solution of H2O2 and TMB in the presence or absence of SWNTs. In the absence of SWNTs, the color of the solution does not change in 12 h; however, in the presence of SWNTs, the color changes from black to blue immediately. This result suggests that SWNTs can catalyze the reaction of TMB in the presence of [a] Y. Song, X. Wang, C. Zhao, K. Qu, Dr. J. Ren, Prof. X. Qu Laboratory of Chemical Biology Division of Biological Inorganic Chemistry State Key Laboratory of Rare Earth Resource Utilization Graduate School of the Chinese Academy of Sciences Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun, Jilin 130022 (China) Fax: (+86)431-85262656 E-mail : xqu@ciac.jl.cn Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/chem.20090902643. Scheme 1. Schematic illustration of SWNTs catalyzing the reaction of peroxidase substrate TMB in the presence of H2O2 to give the blue product oxidized TMB (oxTMB).

471 citations


Journal ArticleDOI
TL;DR: It was found that for a rapid and unambiguous determination of the self-assembly mechanism and its thermodynamic parameters, temperature-dependent measurements are more appropriate.
Abstract: To study the supramolecular polymerisation mechanisms of a self-assembling system, concentration- and temperature-dependent measurements can both be used to probe the transition from the molecular dissolved state to the aggregated state. In this report, both methods are evaluated to determine their effectiveness in identifying and quantifying the self-assembly mechanism for isodesmic and cooperative self-assembling systems. It was found that for a rapid and unambiguous determination of the self-assembly mechanism and its thermodynamic parameters, temperature-dependent measurements are more appropriate. These studies allow the acquisition of a large data set leading to an accurate determination of the self-assembly mechanism and quantification of the different thermodynamic parameters that describe the supramolecular polymerisation. For a comprehensive characterisation, additional concentration-dependent measurements can be performed.

418 citations


Journal ArticleDOI
TL;DR: Modification of traditional condensation strategies continues to be a recurrent theme in contemporary literature and advancements in transition-metal-catalyzed cyclization and cross-coupling procedures offer new routes to functionalized pyridine derivatives.
Abstract: Recent advances in pyridine synthesis are described. Modification of traditional condensation strategies continues to be a recurrent theme in contemporary literature. Advancements in transition-metal-catalyzed cyclization and cross-coupling procedures offer new routes to functionalized pyridine derivatives. These recently developed methodologies are a valuable addition to azaheterocycle synthesis.

397 citations


Journal ArticleDOI
TL;DR: The obtained Ag@AgCl samples exhibit enhanced photocatalytic activity for the degradation of organic contaminants under visible-light irradiation and the stability of the plasmonic photocatrysts was investigated in detail.
Abstract: By means of a simple ion-exchange process (using different precursors) and a light-induced chemical reduction reaction, highly efficient Ag@AgCl plasmonic photocatalysts with various self-assembled structures—including microrods, irregular balls, and hollow spheres—have been fabricated. All the obtained Ag@AgCl catalysts were characterized by means of X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, and UV-visible diffuse reflectance spectroscopy. The effect of the different morphologies on the properties of the photocatalysts was studied. The average content of elemental Ag in Ag@AgCl was found to be about 3.2 mol %. All the catalysts show strong absorption in the visible-light region. The obtained Ag@AgCl samples exhibit enhanced photocatalytic activity for the degradation of organic contaminants under visible-light irradiation. The stability of the plasmonic photocatalysts was also investigated in detail.

393 citations


Journal ArticleDOI
TL;DR: GO, an oxygenated graphene molecule, is an inexpensive precursor currently used for large-scale production of chemically converted graphene, and is illustrated that the chemical and electrical synergies between two graphene derivatives, graphene oxide (GO) and CNTs, can indeed offer an amazingly simple strategy for processing graphene/CNT nanohybrids.
Abstract: (Figure Presented) Synergistic graphenes: The chemical and electrical synergies between graphene derivatives enable a simple, cost-effective and environmentally friendly strategy for solution-phase processing of graphene oxide (GO) and carbon nanotubes (CNTs). The new nanohybrid exhibits high performance when used as electrodes for supercapacitors (see figure; ER=electrochemically reduced, CCG = chemically converted graphene). © 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

371 citations


Journal ArticleDOI
TL;DR: The latest contributions in the field of combined chiral Brønsted acid and metal catalyzed reactions are presented, highlighting the advantages of these catalytic systems as well as describing the uncertainties regarding the molecular structure of the catalytically active species and the reaction mechanisms.
Abstract: Asymmetric catalysis is a key feature of modern synthetic organic chemistry. Traditionally, different combinations of ligands and metals are used to perform highly enantioselective reactions. Since the renaissance of organocatalysis in the early 2000s, tremendous improvement in the field of metal-free catalysis has been achieved. Recently, the combination of transition metals and organocatalysts has allowed the development of new protocols enabling transformations that could not previously be realized. This article aims to present the latest contributions in the field of combined chiral Bronsted acid and metal catalyzed reactions, highlighting the advantages of these catalytic systems as well as describing the uncertainties regarding the molecular structure of the catalytically active species and the reaction mechanisms.

354 citations


Journal ArticleDOI
TL;DR: A catalytic cycle that explains why the bimetallic complexes display such high catalytic activity has been developed and it was shown that if enantiomericallypure styrene oxide was used as substrate, then enantiomersically pure styrene carbonate was formed.
Abstract: The development of bimetallic aluminium-salen complexes [{A1-(salen)} 2 O] as catalysts for the synthesis of cyclic carbonates (including the commercially important ethylene and propylene carbonates) from a wide range of terminal epoxides in the presence of tetrabutylammonium bromide as a cocatalyst is reported. The bimetallic structure of one complex was confirmed by X-ray crystallography. The bimetallic complexes displayed exceptionally high catalytic activity and in the presence of tetrabutylammonium bromide could catalyse cyclic carbonate synthesis at atmospheric pressure and room temperature. Catalyst-reuse experiments demonstrated that one bimetallic complex was stable for over 60 reactions, though the tetrabutylammonium bromide decomposed in situ by a retro-Menschutkin reaction to form tributylamine and had to be regularly replaced. The mild reaction conditions allowed a full analysis of the reaction kinetics to be carried out and this showed that the reaction was first order in aluminium complex concentration, first order in epoxide concentration, first order in carbon dioxide concentration (except when used in excess) and unexpectedly second order in tetrabutylammonium bromide concentration. Further kinetic experiments demonstrated that the tributylamine formed in situ was involved in the catalysis and that addition of butyl bromide to reconvert the tributylamine into tetrabutylammonium bromide resulted in inhibition of the reaction. The reaction kinetics also indicated that no kinetic resolution of racemic epoxides was possible with this class of catalysts, even when the catalyst was derived from a chiral salen ligand. However, it was shown that if enantiomerically pure styrene oxide was used as substrate, then enantiomerically pure styrene carbonate was formed. On the basis of the kinetic and other experimental data, a catalytic cycle that explains why the bimetallic complexes display such high catalytic activity has been developed.

350 citations


Journal ArticleDOI
TL;DR: The preparation and characterization of a series of magnesium(II) iodide complexes incorporating beta-diketiminate ligands of varying steric bulk and denticity, namely, [(ArNCMe)(2)CH](-) (Ar=phenyl), mesityl ((Mes)Nacnac), or 2,6-diisopropylphenyl (Dipp, ( Dipp)NACnac) are reported.
Abstract: The preparation and characterization of a series of magnesium(II) iodide complexes incorporating beta-diketiminate ligands of varying steric bulk and denticity, namely, [(ArNCMe)(2)CH](-) (Ar=phenyl, ((Ph)Nacnac), mesityl ((Mes)Nacnac), or 2,6-diisopropylphenyl (Dipp, (Dipp)Nacnac)), [(DippNCtBu)(2)CH](-) ((tBu)Nacnac), and [(DippNCMe)(Me(2)NCH(2)CH(2)NCMe)CH](-) ((Dmeda)Nacnac) are reported The complexes [((Ph)Nacnac)MgI(OEt(2))], [((Mes)Nacnac)MgI(OEt(2))], [((Dmeda)Nacnac)MgI(OEt(2))], [((Mes)Nacnac)MgI(thf)], [((Dipp)Nacnac)MgI(thf)], [((tBu)Nacnac)MgI], and [((tBu)Nacnac)MgI(DMAP)] (DMAP=4-dimethylaminopyridine) were shown to be monomeric by X-ray crystallography In addition, the related beta-diketiminato beryllium and calcium iodide complexes, [((Mes)Nacnac)BeI] and [{((Dipp)Nacnac)CaI(OEt(2))}(2)] were prepared and crystallographically characterized The reductions of all metal(II) iodide complexes by using various reagents were attempted In two cases these reactions led to the magnesium(I) dimers, [((Mes)Nacnac)MgMg((Mes)Nacnac)] and [((tBu)Nacnac)MgMg((tBu)Nacnac)] The reduction of a 1:1 mixture of [((Dipp)Nacnac)MgI(OEt(2))] and [((Mes)Nacnac)MgI(OEt(2))] with potassium gave a low yield of the crystallographically characterized complex [((Dipp)Nacnac)Mg(mu-H)(mu-I)Mg((Mes)Nacnac)] All attempts to form beryllium(I) or calcium(I) dimers by reductions of [((Mes)Nacnac)BeI], [{((Dipp)Nacnac)CaI(OEt(2))}(2)], or [{((tBu)Nacnac)CaI(thf)}(2)] have so far been unsuccessful The further reactivity of the magnesium(I) complexes [((Mes)Nacnac)MgMg((Mes)Nacnac)] and [((tBu)Nacnac)MgMg((tBu)Nacnac)] towards a variety of Lewis bases and unsaturated organic substrates was explored These studies led to the complexes [((Mes)Nacnac)Mg(L)Mg(L)((Mes)Nacnac)] (L=THF or DMAP), [((Mes)Nacnac)Mg(mu-AdN(6)Ad)Mg((Mes)Nacnac)] (Ad=1-adamantyl), [((tBu)Nacnac)Mg(mu-AdN(6)Ad)Mg((tBu)Nacnac)], and [((Mes)Nacnac)Mg(mu-tBu(2)N(2)C(2)O(2))Mg((Mes)Nacnac)] and revealed that, in general, the reactivity of the magnesium(I) dimers is inversely proportional to their steric bulk The preparation and characterization of [((tBu)Nacnac)Mg(mu-H)(2)Mg((tBu)Nacnac)] has shown the compound to have different structural and physical properties to [((tBu)Nacnac)MgMg((tBu)Nacnac)] Treatment of the former with DMAP has given [((tBu)Nacnac)Mg(H)(DMAP)], the X-ray crystal structure of which disclosed it to be the first structurally authenticated terminal magnesium hydride complex Although attempts to prepare [((Mes)Nacnac)Mg(mu-H)(2)Mg((Mes)Nacnac)] were not successful, a neutron diffraction study of the corresponding magnesium(I) complex, [((Mes)Nacnac)MgMg((Mes)Nacnac)] confirmed that the compound is devoid of hydride ligands

Journal ArticleDOI
TL;DR: The role played by the topology of the solid and the organic linkers, instead of the metal sites, upon gas adsorption on zeolite-like metal-organic frameworks is discussed.
Abstract: Experimental measurements and molecular simulations were conducted for two zeolitic imidazolate frameworks, ZIF-8 and ZIF-76. The transferability of the force field was tested by comparing molecular simulation results of gas adsorption with experimental data available in the literature for other ZIF materials (ZIF-69). Owing to the good agreement observed between simulation and experimental data, the simulation results can be used to identify preferential adsorption sites, which are located close to the organic linkers. Topological mapping of the potential-energy surfaces makes it possible to relate the preferential adsorption sites, Henry constant, and isosteric heats of adsorption at zero coverage to the nature of the host-guest interactions and the chemical nature of the organic linker. The role played by the topology of the solid and the organic linkers, instead of the metal sites, upon gas adsorption on zeolite-like metal-organic frameworks is discussed.

Journal ArticleDOI
TL;DR: This account places emphasis on recent developments in this emerging area of reversible agglomeration through solvent changes and magnetic separation in nanoparticles.
Abstract: Nanoparticles can serve as semi-heterogeneous supports since they readily disperse in common solvents and combine high surface area with excellent accessibility. Reversible agglomeration through solvent changes and magnetic separation provide technically attractive alternatives to classical catalyst filtration. This account places emphasis on recent developments in this emerging area.

Journal ArticleDOI
TL;DR: It is demonstrated that this photocatalyst can be easily recycled by applying an external magnetic field while maintaining their photocatalytic activity during at least eighteen cycles of use.
Abstract: Core-shell structured Fe(3)O(4)/SiO(2)/TiO(2) nanocomposites with enhanced photocatalytic activity that are capable of fast magnetic separation have been successfully synthesized by combining two steps of a sol-gel process with calcination The as-obtained core-shell structure is composed of a central magnetite core with a strong response to external fields, an interlayer of SiO(2), and an outer layer of TiO(2) nanocrystals with a tunable average size The convenient control over the size and crystallinity of the TiO(2) nanocatalysts makes it possible to achieve higher photocatalytic efficiency than that of commercial photocatalyst Degussa P25 The photocatalytic activity increases as the thickness of the TiO(2) nanocrystal shell decreases The presence of SiO(2) interlayer helps to enhance the photocatalytic efficiency of the TiO(2) nanocrystal shell as well as the chemical and thermal stability of Fe(3)O(4) core In addition, the TiO(2) nanocrystals strongly adhere to the magnetic supports through covalent bonds We demonstrate that this photocatalyst can be easily recycled by applying an external magnetic field while maintaining their photocatalytic activity during at least eighteen cycles of use

Journal ArticleDOI
TL;DR: A new protocol to synthesize Ag nanocubes of 30 to 70 nm in edge length with the use of CF(3)COOAg as a precursor to elemental silver by adding a trace amount of NaSH and HCl to the polyol synthesis is described.
Abstract: This paper describes a new protocol to synthesize Ag nanocubes of 30 to 70 nm in edge length with the use of CF(3)COOAg as a precursor to elemental silver. By adding a trace amount of NaSH and HCl to the polyol synthesis, Ag nanocubes were obtained with good quality, high reproducibility, and on a scale up to 0.19 g per batch for the 70 nm Ag nanocubes. The Ag nanocubes were found to grow in size at a controllable pace over the course of synthesis. The linear relationship between the edge length of the Ag nanocubes and the position of localized surface plasmon resonance (LSPR) peak provides a simple method for finely tuning and controlling the size of the Ag nanocubes by monitoring the UV/Vis spectra of the reaction at different times.

Journal ArticleDOI
TL;DR: It was confirmed that the rate of crystallization decreases in the order US>MW>>CE, and that the accelerated syntheses under US and MW conditions are due to increased pre-exponential factors rather than decreased activation energies.
Abstract: A metal-organic framework material named MIL-53(Fe), iron terephthalate, has been synthesized sovothermally at a relatively low temperature by not only conventional electric (CE) heating, but also by irradiation under ultrasound (US) and microwave (MW) conditions to gain an understanding of the accelerated syntheses induced by US and MW. The kinetics for nucleation and crystal growth were analyzed by measuring the crystallinity of MIL-53(Fe) under various conditions. The nucleation and crystal growth rates were estimated from crystallization curves of the change in crystallinity with reaction time. The activation energies and pre-exponential factors were calculated from Arrhenius plots. It was confirmed that the rate of crystallization (both nucleation and crystal growth) decreases in the order US>MW>>CE, and that the accelerated syntheses under US and MW conditions are due to increased pre-exponential factors rather than decreased activation energies. It is suggested that physical effects such as hot spots are more important than chemical effects in the accelerated syntheses induced by US and MW irradiation. The syntheses were also conducted in two steps to understand quantitatively the acceleration induced by MW and it was found that the acceleration in crystal growth is more important than the acceleration in nucleation, even though both processes are accelerated by MW irradiation.

Journal ArticleDOI
TL;DR: High-performance yellow to red organic light-emitting devices (OLEDs) using these platinum(II) Schiff base complexes have been fabricated with the best efficiency up to 31 cd A(-1) and a device lifetime up to 77 000 h at 500 cd m(-2).
Abstract: The syntheses, crystal structures, and detailed investigations of the photophysical properties of phosphorescent platinum(II) Schiff base complexes are presented. All of these complexes exhibit intense absorption bands with lambda(max) in the range 417-546 nm, which are assigned to states of metal-to-ligand charge-transfer ((1)MLCT) (1)[Pt(5d)-->pi*(Schiff base)] character mixed with (1)[lone pair(phenoxide)-->pi*(imine)] charge-transfer character. The platinum(II) Schiff base complexes are thermally stable, with decomposition temperatures up to 495 degrees C, and show emission lambda(max) at 541-649 nm in acetonitrile, with emission quantum yields up to 0.27. Measurements of the emission decay times in the temperature range from 130 to 1.5 K give total zero-field splitting parameters of the emitting triplet state of 14-28 cm(-1). High-performance yellow to red organic light-emitting devices (OLEDs) using these platinum(II) Schiff base complexes have been fabricated with the best efficiency up to 31 cd A(-1) and a device lifetime up to 77 000 h at 500 cd m(-2).

Journal ArticleDOI
TL;DR: The different approaches used to construct super-hydrophobic surfaces are explored and the key properties of each surface that contribute to its hydrophobicity are identified.
Abstract: The interest in highly water-repellent surfaces has grown in recent years due to the desire for self-cleaning surfaces. A super-hydrophobic surface is one that achieves a water contact angle of 150° or greater. This article explores the different approaches used to construct super-hydrophobic surfaces and identifies the key properties of each surface that contribute to its hydrophobicity. The models used to describe surface interaction with water are considered, with attention directed to the methods of contact angle analysis. A summary describing the different routes to hydrophobicity is also given.

Journal ArticleDOI
TL;DR: XPS study provides first direct experimental evidence for cation-anion charge-transfer phenomena in ionic liquids as a function of the ionic liquid's anion, which is greatly reduced in the case of large and weakly coordinating anions.
Abstract: Ten [C(8)C(1)Im](+) (1-methyl-3-octylimidazolium)-based ionic liquids with anions Cl(-), Br(-), I(-), [NO(3)](-), [BF(4)](-), [TfO](-), [PF(6)](-), [Tf(2)N](-), [Pf(2)N](-), and [FAP](-) (TfO=trifluoromethylsulfonate, Tf(2)N=bis(trifluoromethylsulfonyl)imide, Pf(2)N=bis(pentafluoroethylsulfonyl)imide, FAP=tris(pentafluoroethyl)trifluorophosphate) and two [C(8)C(1)C(1)Im](+) (1,2-dimethyl-3-octylimidazolium)-based ionic liquids with anions Br(-) and [Tf(2)N](-) were investigated by using X-ray photoelectron spectroscopy (XPS), NMR spectroscopy and theoretical calculations. While (1)H NMR spectroscopy is found to probe very specifically the strongest hydrogen-bond interaction between the hydrogen attached to the C(2) position and the anion, a comparative XPS study provides first direct experimental evidence for cation-anion charge-transfer phenomena in ionic liquids as a function of the ionic liquid's anion. These charge-transfer effects are found to be surprisingly similar for [C(8)C(1)Im](+) and [C(8)C(1)C(1)Im](+) salts of the same anion, which in combination with theoretical calculations leads to the conclusion that hydrogen bonding and charge transfer occur independently from each other, but are both more pronounced for small and more strongly coordinating anions, and are greatly reduced in the case of large and weakly coordinating anions.

Journal ArticleDOI
TL;DR: The structural transition of an organogel self-assembled from a single dipeptide building block, diphenylalanine in toluene into a flower-like microcrystal is reported merely by introducing ethanol as a co-solvent; this provides deeper insights into the phase transition between mesostable gels and thermodynamically stable microcrystals.
Abstract: Organogels that are self-assembled from simple peptide molecules are an interesting class of nano- and mesoscale soft matter with simplicity and functionality. Investigating the precise roles of the organic solvents and their effects on stabilization of the formed organogel is an important topic for the development of low-molecular-weight gelators. We report the structural transition of an organogel self-assembled from a single dipeptide building block, diphenylalanine (L-Phe-L-Phe, FF), in toluene into a flower-like microcrystal merely by introducing ethanol as a co-solvent; this provides deeper insights into the phase transition between mesostable gels and thermodynamically stable microcrystals. Multiple characterization techniques were used to reveal the transitions. The results indicate that there are different molecular-packing modes formed in the gels and in the microcrystals. Further studies show that the co-solvent, ethanol, which has a higher polarity than toluene, might be involved in the formation of hydrogen bonds during molecular self-assembly of the dipeptide in mixed solvents, thus leading to the transition of organogels into microcrystals. The structural transformation modulated by the co-solvent might have a potential implication in controllable molecular self-assembly.

Journal ArticleDOI
TL;DR: Recent advances in the field of platinum chemotherapeutics are highlighted, with a focus on the technologies that attempt to utilise the cytotoxic nature of cisplatin, whilst improving drug targeting to reduce side-effects.
Abstract: The approved platinum(II)-based anticancer agents cisplatin, carboplatin and oxaliplatin are widely utilised in the clinic, although with numerous disadvantages. With the aim of circumventing unwanted side-effects, a great deal of research is being conducted in the areas of cancer-specific targeting, drug administration and drug delivery. The targeting of platinum complexes to cancerous tissues can be achieved by the attachment of small molecules with biological significance. In addition, the administration of platinum complexes in the form of platinum(IV) allows for intracellular reduction to release the active form of the drug, cisplatin. Drug delivery includes such technologies as liposomes, dendrimers, polymers and nanotubes, with all showing promise for the delivery of platinum compounds. In this paper we highlight some of the recent advances in the field of platinum chemotherapeutics, with a focus on the technologies that attempt to utilise the cytotoxic nature of cisplatin, whilst improving drug targeting to reduce side-effects.

Journal ArticleDOI
TL;DR: Of particular note is the O(2) adsorption capacity of SNU-50' (118 wt% at 77 K and 0.2 atm), which is the highest reported so far for any MOF, which could not be synthesized by a direct solvothermal reaction.
Abstract: Metal-organic frameworks (MOFs), {[Cu(2)(bdcppi)(dmf)(2)]·10DMF·2H(2)O}(n) (SNU-50) and {[Zn(2)(bdcppi)(dmf)(3)]·6DMF·4H(2)O}(n) (SNU-51), have been prepared by the solvothermal reactions of N,N'-bis(3,5-dicarboxyphenyl)pyromellitic diimide (H(4)BDCPPI) with Cu(NO(3))(2) and Zn(NO(3))(2), respectively. Framework SNU-50 has an NbO-type net structure, whereas SNU-51 has a PtS-type net structure. Desolvated solid [Cu(2)(bdcppi)](n) (SNU-50'), which was prepared by guest exchange of SNU-50 with acetone followed by evacuation at 170 °C, adsorbs high amounts of N(2), H(2), O(2), CO(2), and CH(4) gases due to the presence of a vacant coordination site at every metal ion, and to the presence of imide groups in the ligand. The Langmuir surface area is 2450 m(2) g(-1). It adsorbs H(2) gas up to 2.10 wt% at 1 atm and 77 K, with zero coverage isosteric heat of 7.1 kJ mol(-1), up to a total of 7.85 wt% at 77 K and 60 bar. Its CO(2) and CH(4) adsorption capacities at 298 K are 77 wt% at 55 bar and 17 wt% at 60 bar, respectively. Of particular note is the O(2) adsorption capacity of SNU-50' (118 wt% at 77 K and 0.2 atm), which is the highest reported so far for any MOF. By metal-ion exchange of SNU-51 with Cu(II), {[Cu(2)(bdcppi)(dmf)(3)]·7DMF·5H(2)O}(n) (SNU-51-Cu(DMF)) with a PtS-type net was prepared, which could not be synthesized by a direct solvothermal reaction.

Journal ArticleDOI
TL;DR: Metal-enhanced luminescence (MEL) of this QC in the presence of silver nanoparticles is demonstrated and a ninefold maximum enhancement is seen, the first report of the observation of MEL from QCs.
Abstract: The synthesis of a luminescent quantum cluster (QC) of gold with a quantum yield of approximately 4 % is reported. It was synthesized in gram quantities by the core etching of mercaptosuccinic acid protected gold nanoparticles by bovine serum albumin (BSA), abbreviated as Au(QC)@BSA. The cluster was characterized and a core of Au(38) was assigned tentatively from mass spectrometric analysis. Luminescence of the QC is exploited as a "turn-off" sensor for Cu(2+) ions and a "turn-on" sensor for glutathione detection. Metal-enhanced luminescence (MEL) of this QC in the presence of silver nanoparticles is demonstrated and a ninefold maximum enhancement is seen. This is the first report of the observation of MEL from QCs. Folic acid conjugated Au(QC)@BSA was found to be internalized to a significant extent by oral carcinoma KB cells through folic acid mediated endocytosis. The inherent luminescence of the internalized Au(QC)@BSA was used in cell imaging.

Journal ArticleDOI
TL;DR: It is found that methane uptake takes place primarily at two types of strong adsorption site: the open Cu coordination sites, which exhibit enhanced Coulomb attraction toward methane, and the van der Waals potential pocket sites, in which the total dispersive interactions are enhanced due to the molecule being in contact with multiple "surfaces".
Abstract: Metal-organic frameworks (MOFs) are a novel family of physi- sorptive materials that have exhibited great promise for methane storage. So far, a detailed understanding of their methane adsorption mechanism is still scarce. Herein, we report a comprehen- sive mechanistic study of methane stor- age in three milestone MOF com- pounds (HKUST-1, PCN-11, and PCN- 14) the CH4 storage capacities of which are among the highest reported so far among all porous materials. The three MOFs consist of the same dicopper paddlewheel secondary building units, but contain different organic linkers, leading to cagelike pores with various sizes and geometries. From neutron powder diffraction experiments and ac- curate data analysis, assisted by grand canonical Monte Carlo (GCMC) simu- lations and DFT calculations, we un- ambiguously revealed the exact loca- tions of the stored methane molecules in these MOF materials. We found that methane uptake takes place primarily at two types of strong adsorption site: 1) the open Cu coordination sites, which exhibit enhanced Coulomb at- traction toward methane, and 2) the van der Waals potential pocket sites, in which the total dispersive interactions are enhanced due to the molecule being in contact with multiple "surfa- ces". Interestingly, the enhanced van der Waals sites are present exclusively in small cages and at the windows to these cages, whereas large cages with relatively flat pore surfaces bind very little methane. Our results suggest that further, rational development of new MOF compounds for methane storage applications should focus on enriching open metal sites, increasing the volume percentage of accessible small cages and channels, and minimizing the frac- tion of large pores.


Journal ArticleDOI
TL;DR: Novel rhodamine dyes excitable with 630 nm laser light and emitting at around 660 nm have been developed and Syntheses of lipophilic and hydrophilic derivatives starting from the same chromophore-containing scaffold are described.
Abstract: Fluorescent markers emitting in the red are extremely valuable in biological microscopy since they minimize cellular autofluorescence and increase flexibility in multicolor experiments. Novel rhodamine dyes excitable with 630 nm laser light and emitting at around 660 nm have been developed. The new rhodamines are very photostable and have high fluorescence quantum yields of up to 80 %, long excited state lifetimes of 3.4 ns, and comparatively low intersystem-crossing rates. They perform very well both in conventional and in subdiffraction-resolution microscopy such as STED (stimulated emission depletion) and GSDIM (ground-state depletion with individual molecular return), as well as in single-molecule-based experiments such as fluorescence correlation spectroscopy (FCS). Syntheses of lipophilic and hydrophilic derivatives starting from the same chromophore-containing scaffold are described. Introduction of two sulfo groups provides high solubility in water and a considerable rise in fluorescence quantum yield. The attachment of amino or thiol reactive groups allows the dyes to be used as fluorescent markers in biology. Dyes deuterated at certain positions have narrow and symmetrical molecular mass distribution patterns, and are proposed as new tags in MS or LC-MS for identification and quantification of various substance classes (e.g., amines and thiols) in complex mixtures. High-resolution GSDIM images and live-cell STED-FCS experiments on labeled microtubules and lipids prove the versatility of the novel probes for modern fluorescence microscopy and nanoscopy.

Journal ArticleDOI
TL;DR: The results show that the interplay between activity, selectivity, and stability in modified zeolites can be optimized by relatively simple post-synthesis treatments, such as base leaching (introduction of mesoporosity) and acid washing (surface acidity modification).
Abstract: The isomerization of o-xylene, a prototypical example of shape-selective catalysis by zeolites, was investigated on hierarchical porous ZSM-5. Extensive intracrystalline mesoporosity in ZSM-5 was introduced by controlled silicon leaching with NaOH. In addition to the development of secondary porosity, the treatment also induced substantial aluminum redistribution, increasing the density of Lewis acid sites located at the external surface of the crystals. However, the strength of the remaining Bronsted sites was not changed. The mesoporous zeolite displayed a higher o-xylene conversion than its parent, owing to the reduced diffusion limitations. However, the selectivity to p-xylene decreased, and fast deactivation due to coking occurred. This is mainly due to the deleterious effect of acidity at the substantially increased external surface and near the pore mouths. A consecutive mild HCl washing of the hierarchical zeolite proved effective to increase the p-xylene selectivity and reduce the deactivation rate. The HCl-washed hierarchical ZSM-5 displayed an approximately twofold increase in p-xylene yield compared to the purely microporous zeolite. The reaction was followed by operando infrared spectroscopy to simultaneously monitor the catalytic performance and the buildup of carbonaceous deposits on the surface. Our results show that the interplay between activity, selectivity, and stability in modified zeolites can be optimized by relatively simple post-synthesis treatments, such as base leaching (introduction of mesoporosity) and acid washing (surface acidity modification).

Journal ArticleDOI
TL;DR: An efficient methodology to make stable aqueous solutions of single-layer graphene has been demonstrated by exploiting charge-transfer interactions with a coronene tetracarboxylate acceptor molecule.
Abstract: Single-layer graphene stabilization: An efficient methodology to make stable aqueous solutions of single-layer graphene has been demonstrated by exploiting charge-transfer interactions with a coronene tetracarboxylate acceptor molecule (see figure). Microscopic studies reveal exfoliation of few-layer graphene and selective stabilization of single-layer graphene in large quantities.

Journal ArticleDOI
TL;DR: The use of Barluenga's reagent offers a new and mild access to the synthetically valuable iodoalkylideneoxazoles from propargylic amides, this reagent being superior to other sources of halogens.
Abstract: The substrate scope, the mechanistic aspects of the gold-catalyzed oxazole synthesis, and substrates with different aliphatic, aromatic, and functional groups in the side chain were investigated. Even molecules with several propargyl amide groups could easily be converted, delivering di- and trioxazoles with interesting optical properties. Furthermore, the scope of the gold(I)-catalyzed alkylidene synthesis was investigated. Further functionalizations of these isolable intermediates of the oxazole synthesis were developed and chelate ligands can be obtained. The use of Barluenga's reagent offers a new and mild access to the synthetically valuable iodoalkylideneoxazoles from propargylic amides, this reagent being superior to other sources of halogens.

Journal ArticleDOI
TL;DR: Topological analyses of the theoretically calculated electron densities for a large set of 163 hydrogen-bonded complexes show that HX interactions can be classified in families according to X (X=atom or pi orbital), and theoretical dependencies can be applied to the analysis of the experimental electron density for detecting either unconventional hydrogen bonds or problems in the modelling of the Experimental electron density.
Abstract: Topological analyses of the theoretically calculated electron densities for a large set of 163 hydrogen-bonded complexes show that H···X interactions can be classified in families according to X (X = atom or π orbital). Each family is characterised by a set of intrinsic dependencies between the topological and energetic properties of the electron density at the hydrogen-bond critical point, as well as between each of them and the bonding distance. Comparing different atom-acceptor families, these dependencies are classified as a function of the van der Waals radius r X or the electronegativity χ X , which can be explained in terms of the molecular orbitals involved in the interaction. According to this ordering, the increase of χ X leads to a larger range of H···X distances for which the interaction is of pure closed-shell type. Same dependencies observed for H···O interactions experimentally characterised by means of high-resolution X-ray diffraction data show a good agreement with those obtained from theoretical calculations, in spite of a larger dispersion of values around the expected fitting functions in the experimental case. Theoretical dependencies can thus be applied to the analysis of the experimental electron density for detecting either unconventional hydrogen bonds or problems in the modelling of the experimental electron density.