scispace - formally typeset
Search or ask a question
JournalISSN: 0256-307X

Chinese Physics Letters 

Institute of Physics
About: Chinese Physics Letters is an academic journal published by Institute of Physics. The journal publishes majorly in the area(s): Laser & Thin film. It has an ISSN identifier of 0256-307X. Over the lifetime, 17696 publications have been published receiving 111921 citations. The journal is also known as: Zhongguo wuli kuaibao.
Topics: Laser, Thin film, Electron, Magnetic field, Ion


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the superconductivity of iron-based oxyarsenide Sm[O1-xFx]FeAs was reported, with the onset resistivity transition temperature at 55.0K and Meissner transition at 54.6 K. This compound has the same crystal structure as LaOFeAs with shrunk crystal lattices.
Abstract: We report the superconductivity in iron-based oxyarsenide Sm[O1-xFx]FeAs, with the onset resistivity transition temperature at 55.0K and Meissner transition at 54.6 K. This compound has the same crystal structure as LaOFeAs with shrunk crystal lattices, and becomes the superconductor with the highest critical temperature among all materials besides copper oxides up to now.

1,456 citations

Journal ArticleDOI
TL;DR: In this paper, the authors reported high transition temperature superconductivity in one unitcell (UC) thick FeSe films grown on a Se-etched SrTiO3 (001) substrate by molecular beam epitaxy (MBE).
Abstract: We report high transition temperature superconductivity in one unit-cell (UC) thick FeSe films grown on a Se-etched SrTiO3 (001) substrate by molecular beam epitaxy (MBE). A superconducting gap as large as 20 meV and the magnetic field induced vortex state revealed by in situ scanning tunneling microscopy (STM) suggest that the superconductivity of the 1 UC FeSe films could occur around 77 K. The control transport measurement shows that the onset superconductivity temperature is well above 50 K. Our work not only demonstrates a powerful way for finding new superconductors and for raising TC, but also provides a well-defined platform for systematic studies of the mechanism of unconventional superconductivity by using different superconducting materials and substrates.

1,102 citations

Journal ArticleDOI
TL;DR: In this paper, the experimental realization of thin films of an intrinsic magnetic topological insulator, MnBi 2 Te 4, by alternate growth of a Bi 2 Te 3 quintuple layer and a MnTe bilayer with molecular beam epitaxy was reported.
Abstract: An intrinsic magnetic topological insulator (TI) is a stoichiometric magnetic compound possessing both inherent magnetic order and topological electronic states. Such a material can provide a shortcut to various novel topological quantum effects but remained elusive experimentally for a long time. Here we report the experimental realization of thin films of an intrinsic magnetic TI, MnBi 2 Te 4 , by alternate growth of a Bi 2 Te 3 quintuple layer and a MnTe bilayer with molecular beam epitaxy. The material shows the archetypical Dirac surface states in angle-resolved photoemission spectroscopy and is demonstrated to be an antiferromagnetic topological insulator with ferromagnetic surfaces by magnetic and transport measurements as well as first-principles calculations. The unique magnetic and topological electronic structures and their interplays enable the material to embody rich quantum phases such as quantum anomalous Hall insulators and axion insulators at higher temperature and in a well-controlled way.

381 citations

Journal ArticleDOI
TL;DR: In this article, a simple geometry model for tortuosity of flow path in porous media is proposed based on the assumption that some particles in a porous medium are unrestrictedly overlapped and the others are not.
Abstract: A simple geometry model for tortuosity of flow path in porous media is proposed based on the assumption that some particles in a porous medium are unrestrictedly overlapped and the others are not. The proposed model is expressed as a function of porosity and there is no empirical constant in this model. The model predictions are compared with those from available correlations obtained numerically and experimentally, both of which are in agreement with each other. The present model can also give the tortuosity with a good approximation near the percolation threshold. The validity of the present tortuosity model is thus verified.

317 citations

Journal ArticleDOI
TL;DR: In this article, the authors derived the canonical entropy, which is the sum of the Bekenstein-Hawking entropy and the correction term of a rotating black hole, and showed that the thermal capacity diverges at the critical point.
Abstract: Recently, the Hawking radiation of a black hole has been studied using the tunnel effect method. The radiation spectrum of a black hole is derived. By discussing the correction to spectrum of the rotating black hole, we obtain the canonical entropy. The derived canonical entropy is equal to the sum of Bekenstein–Hawking entropy and correction term. The correction term near the critical point is different from the one near others. This difference plays an important role in studying the phase transition of the black hole. The black hole thermal capacity diverges at the critical point. However, the canonical entropy is not a complex number at this point. Thus we think that the phase transition created by this critical point is the second order phase transition. The discussed black hole is a five-dimensional Kerr-AdS black hole. We provide a basis for discussing thermodynamic properties of a higher-dimensional rotating black hole.

298 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
2023159
2022287
2021231
2020298
2019242
2018310