scispace - formally typeset
Search or ask a question

Showing papers in "Circulation Research in 2000"


Journal ArticleDOI
TL;DR: Accumulating evidence suggests that oxidant stress alters many functions of the endothelium, including modulation of vasomotor tone, and as the role of these various enzyme sources of ROS become clear, it will perhaps be possible to use more specific therapies to prevent their production and ultimately correct endothelial dysfunction.
Abstract: Accumulating evidence suggests that oxidant stress alters many functions of the endothelium, including modulation of vasomotor tone. Inactivation of nitric oxide (NO(.)) by superoxide and other reactive oxygen species (ROS) seems to occur in conditions such as hypertension, hypercholesterolemia, diabetes, and cigarette smoking. Loss of NO(.) associated with these traditional risk factors may in part explain why they predispose to atherosclerosis. Among many enzymatic systems that are capable of producing ROS, xanthine oxidase, NADH/NADPH oxidase, and uncoupled endothelial nitric oxide synthase have been extensively studied in vascular cells. As the role of these various enzyme sources of ROS become clear, it will perhaps be possible to use more specific therapies to prevent their production and ultimately correct endothelial dysfunction.

3,756 citations


Journal ArticleDOI
TL;DR: Vascular NAD(P)H oxidases have been found to be essential in the physiological response of vascular cells, including growth, migration, and modification of the extracellular matrix and have been linked to hypertension and to pathological states associated with uncontrolled growth and inflammation, such as atherosclerosis.
Abstract: Reactive oxygen species have emerged as important molecules in cardiovascular function. Recent work has shown that NAD(P)H oxidases are major sources of superoxide in vascular cells and myocytes. The biochemical characterization, activation paradigms, structure, and function of this enzyme are now partly understood. Vascular NAD(P)H oxidases share some, but not all, characteristics of the neutrophil enzyme. In response to growth factors and cytokines, they produce superoxide, which is metabolized to hydrogen peroxide, and both of these reactive oxygen species serve as second messengers to activate multiple intracellular signaling pathways. The vascular NAD(P)H oxidases have been found to be essential in the physiological response of vascular cells, including growth, migration, and modification of the extracellular matrix. They have also been linked to hypertension and to pathological states associated with uncontrolled growth and inflammation, such as atherosclerosis.

2,959 citations


Journal ArticleDOI
TL;DR: The organ- and cell-specific expression of ACE2 and its unique cleavage of key vasoactive peptides suggest an essential role for ACE2 in the local renin-angiotensin system of the heart and kidney.
Abstract: ACE2, the first known human homologue of angiotensin-converting enzyme (ACE), was identified from 5' sequencing of a human heart failure ventricle cDNA library. ACE2 has an apparent signal peptide, a single metalloprotease active site, and a transmembrane domain. The metalloprotease catalytic domains of ACE2 and ACE are 42% identical, and comparison of the genomic structures indicates that the two genes arose through duplication. In contrast to the more ubiquitous ACE, ACE2 transcripts are found only in heart, kidney, and testis of 23 human tissues examined. Immunohistochemistry shows ACE2 protein predominantly in the endothelium of coronary and intrarenal vessels and in renal tubular epithelium. Active ACE2 enzyme is secreted from transfected cells by cleavage N-terminal to the transmembrane domain. Recombinant ACE2 hydrolyzes the carboxy terminal leucine from angiotensin I to generate angiotensin 1-9, which is converted to smaller angiotensin peptides by ACE in vitro and by cardiomyocytes in culture. ACE2 can also cleave des-Arg bradykinin and neurotensin but not bradykinin or 15 other vasoactive and hormonal peptides tested. ACE2 is not inhibited by lisinopril or captopril. The organ- and cell-specific expression of ACE2 and its unique cleavage of key vasoactive peptides suggest an essential role for ACE2 in the local renin-angiotensin system of the heart and kidney. The full text of this article is available at http://www. circresaha.org.

2,711 citations


Journal ArticleDOI
TL;DR: It is suggested that elevated phosphate may directly stimulate HSMCs to undergo phenotypic changes that predispose to calcification and offer a novel explanation of the phenomenon of vascular calcification under hyperphosphatemic conditions.
Abstract: Vascular calcification is a common finding in atherosclerosis and a serious problem in diabetic and uremic patients. Because of the correlation of hyperphosphatemia and vascular calcification, the ability of extracellular inorganic phosphate levels to regulate human aortic smooth muscle cell (HSMC) culture mineralization in vitro was examined. HSMCs cultured in media containing normal physiological levels of inorganic phosphate (1.4 mmol/L) did not mineralize. In contrast, HSMCs cultured in media containing phosphate levels comparable to those seen in hyperphosphatemic individuals (>1.4 mmol/L) showed dose-dependent increases in mineral deposition. Mechanistic studies revealed that elevated phosphate treatment of HSMCs also enhanced the expression of the osteoblastic differentiation markers osteocalcin and Cbfa-1. The effects of elevated phosphate on HSMCs were mediated by a sodium-dependent phosphate cotransporter (NPC), as indicated by the ability of the specific NPC inhibitor phosphonoformic acid, to dose dependently inhibit phosphate-induced calcium deposition as well as osteocalcin and Cbfa-1 gene expression. With the use of polymerase chain reaction and Northern blot analyses, the NPC in HSMCs was identified as Pit-1 (Glvr-1), a member of the novel type III NPCs. These data suggest that elevated phosphate may directly stimulate HSMCs to undergo phenotypic changes that predispose to calcification and offer a novel explanation of the phenomenon of vascular calcification under hyperphosphatemic conditions. The full text of this article is available at http://www.circresaha.org.

1,322 citations


Journal ArticleDOI
TL;DR: Local increases in Ang II with Diabetes and with diabetes and hypertension may enhance oxidative damage, activating cardiac cell apoptosis and necrosis, in cells containing this modified amino acid.
Abstract: The renin-angiotensin system is upregulated with diabetes, and this may contribute to the development of a dilated myopathy. Angiotensin II (Ang II) locally may lead to oxidative damage, activating cardiac cell death. Moreover, diabetes and hypertension could synergistically impair myocardial structure and function. Therefore, apoptosis and necrosis were measured in ventricular myocardial biopsies obtained from diabetic and diabetic-hypertensive patients. Accumulation of a marker of oxidative stress, nitrotyrosine, and Ang II labeling were evaluated quantitatively. The diabetic heart showed cardiac hypertrophy, cavitary dilation, and depressed ventricular performance. These alterations were more severe with diabetes and hypertension. Diabetes was characterized by an 85-fold, 61-fold, and 26-fold increase in apoptosis of myocytes, endothelial cells, and fibroblasts, respectively. Apoptosis in cardiac cells did not increase additionally with diabetes and hypertension. Diabetes increased necrosis by 4-fold in myocytes, 9-fold in endothelial cells, and 6-fold in fibroblasts. However, diabetes and hypertension increased necrosis by 7-fold in myocytes and 18-fold in endothelial cells. Similarly, Ang II labeling in myocytes and endothelial cells increased more with diabetes and hypertension than with diabetes alone. Nitrotyrosine localization in cardiac cells followed a comparable pattern. In spite of the difference in the number of nitrotyrosine-positive cells with diabetes and with diabetes and hypertension, apoptosis and necrosis of myocytes, endothelial cells, and fibroblasts were detected only in cells containing this modified amino acid. In conclusion, local increases in Ang II with diabetes and with diabetes and hypertension may enhance oxidative damage, activating cardiac cell apoptosis and necrosis.

788 citations


Journal ArticleDOI
TL;DR: The cardioprotective effects of late PC can be reproduced pharmacologically with clinically relevant agents (eg, NO donors, adenosine receptors agonists, endotoxin derivatives, or opioid receptor agonists), suggesting that this phenomenon might be exploited for therapeutic purposes.
Abstract: —Unlike the early phase of preconditioning (PC), which lasts 2 to 3 hours and protects against infarction but not against stunning, the late phase of PC lasts 3 to 4 days and protects against both infarction and stunning, suggesting that it may have greater clinical relevance. It is now clear that late PC is a polygenic phenomenon that requires the simultaneous activation of multiple stress-responsive genes. Chemical signals released by a sublethal ischemic stress (such as NO, reactive oxygen species, and adenosine) trigger a complex cascade of signaling events that includes the activation of protein kinase C, Src protein tyrosine kinases, and nuclear factor κB and culminates in increased synthesis of inducible NO synthase, cyclooxygenase-2, aldose reductase, Mn superoxide dismutase, and probably other cardioprotective proteins. An analogous sequence of events can be triggered by a variety of stimuli, such as heat stress, exercise, and cytokines. Thus, late PC appears to be a universal response of the heart to stress in general. Importantly, the cardioprotective effects of late PC can be reproduced pharmacologically with clinically relevant agents (eg, NO donors, adenosine receptor agonists, endotoxin derivatives, or opioid receptor agonists), suggesting that this phenomenon might be exploited for therapeutic purposes. The purpose of this review is to summarize current information regarding the pathophysiology and mechanism of late PC.

780 citations


Journal ArticleDOI
TL;DR: The data suggest that the antianginal effects of trimetazidine may occur because of an inhibition of long-chain 3-ketoacyl CoA thiolase activity, which results in a reduction in fatty acid oxidation and a stimulation of glucose oxidation.
Abstract: Trimetazidine is a clinically effective antianginal agent that has no negative inotropic or vasodilator properties. Although it is thought to have direct cytoprotective actions on the myocardium, the mechanism(s) by which this occurs is as yet undefined. In this study, we determined what effects trimetazidine has on both fatty acid and glucose metabolism in isolated working rat hearts and on the activities of various enzymes involved in fatty acid oxidation. Hearts were perfused with Krebs-Henseleit solution containing 100 microU/mL insulin, 3% albumin, 5 mmol/L glucose, and fatty acids of different chain lengths. Both glucose and fatty acids were appropriately radiolabeled with either (3)H or (14)C for measurement of glycolysis, glucose oxidation, and fatty acid oxidation. Trimetazidine had no effect on myocardial oxygen consumption or cardiac work under any aerobic perfusion condition used. In hearts perfused with 5 mmol/L glucose and 0.4 mmol/L palmitate, trimetazidine decreased the rate of palmitate oxidation from 488+/-24 to 408+/-15 nmol x g dry weight(-1) x minute(-1) (P<0.05), whereas it increased rates of glucose oxidation from 1889+/-119 to 2378+/-166 nmol x g dry weight(-1) x minute(-1) (P<0.05). In hearts subjected to low-flow ischemia, trimetazidine resulted in a 210% increase in glucose oxidation rates. In both aerobic and ischemic hearts, glycolytic rates were unaltered by trimetazidine. The effects of trimetazidine on glucose oxidation were accompanied by a 37% increase in the active form of pyruvate dehydrogenase, the rate-limiting enzyme for glucose oxidation. No effect of trimetazidine was observed on glycolysis, glucose oxidation, fatty acid oxidation, or active pyruvate dehydrogenase when palmitate was substituted with 0.8 mmol/L octanoate or 1.6 mmol/L butyrate, suggesting that trimetazidine directly inhibits long-chain fatty acid oxidation. This reduction in fatty acid oxidation was accompanied by a significant decrease in the activity of the long-chain isoform of the last enzyme involved in fatty acid beta-oxidation, 3-ketoacyl coenzyme A (CoA) thiolase activity (IC(50) of 75 nmol/L). In contrast, concentrations of trimetazidine in excess of 10 and 100 micromol/L were needed to inhibit the medium- and short-chain forms of 3-ketoacyl CoA thiolase, respectively. Previous studies have shown that inhibition of fatty acid oxidation and stimulation of glucose oxidation can protect the ischemic heart. Therefore, our data suggest that the antianginal effects of trimetazidine may occur because of an inhibition of long-chain 3-ketoacyl CoA thiolase activity, which results in a reduction in fatty acid oxidation and a stimulation of glucose oxidation.

755 citations


Journal ArticleDOI
TL;DR: A fuller understanding of how ROS regulate mitogenesis and apoptosis in vascular smooth muscle and endothelial cells will permit the development of novel strategies to modify or prevent vascular diseases in which these phenotypes predominate.
Abstract: Reactive oxygen species (ROS) have been traditionally regarded as toxic byproducts of aerobic metabolism. However, ROS can also act as intracellular signaling molecules in vascular cells. ROS can mediate phenotypes in vascular endothelial and smooth muscle cells that may be considered both physiological and pathophysiological. Among these are growth, apoptosis, and survival. The specific response elicited by reactive oxygen intermediaries is determined by their specific intracellular target(s). This, in turn, is dependent on the species of oxidant(s) produced, the source and therefore subcellular localization of the oxidant(s), the kinetics of production, and the quantities produced. A fuller understanding of how ROS regulate mitogenesis and apoptosis in vascular smooth muscle and endothelial cells will permit the development of novel strategies to modify or prevent vascular diseases in which these phenotypes predominate.

717 citations


Journal ArticleDOI
TL;DR: Mito KATP channels are not the end effectors of protection, but rather their opening before ischemia generates free radicals that trigger entrance into a preconditioned state and activation of kinases, indicating that diazoxide triggers protection through free radicals.
Abstract: The critical time for opening mitochondrial (mito) K(ATP) channels, putative end effectors of ischemic preconditioning (PC), was examined. In isolated rabbit hearts 29+/-3% of risk zone infarcted after 30 minutes of regional ischemia. Ischemic PC or 5-minute exposure to 10 micromol/L diazoxide, a mito K(ATP) channel opener, reduced infarction to 3+/-1% and 8+/-1%, respectively. The mito K(ATP) channel closer 5-hydroxydecanoate (200 micromol/L), bracketing either 5-minute PC ischemia or diazoxide infusion, blocked protection (24+/-3 and 28+/-6% infarction, respectively). However, 5-hydroxydecanoate starting 5 minutes before long ischemia did not affect protection. Glibenclamide (5 micromol/L), another K(ATP) channel closer, blocked the protection by PC only when administered early. These data suggest that K(ATP) channel opening triggers protection but is not the final step. Five minutes of diazoxide followed by a 30-minute washout still reduced infarct size (8+/-3%), implying memory as seen with other PC triggers. The protection by diazoxide was not blocked by 5 micromol/L chelerythrine, a protein kinase C antagonist, given either to bracket diazoxide infusion or just before the index ischemia. Bracketing preischemic exposure to diazoxide with 50 micromol/L genistein, a tyrosine kinase antagonist, did not affect infarction, but genistein blocked the protection by diazoxide when administered shortly before the index ischemia. Thus, although it is not protein kinase C-dependent, the protection by diazoxide involves tyrosine kinase. Bracketing diazoxide perfusion with N:-(2-mercaptopropionyl) glycine (300 micromol/L) or Mn(III)tetrakis(4-benzoic acid) porphyrin chloride (7 micromol/L), each of which is a free radical scavenger, blocked protection, indicating that diazoxide triggers protection through free radicals. Therefore, mito K(ATP) channels are not the end effectors of protection, but rather their opening before ischemia generates free radicals that trigger entrance into a preconditioned state and activation of kinases.

702 citations


Journal ArticleDOI
TL;DR: It is reported that apoptosis occurs in a human vascular calcification model in which postconfluent vascular smooth muscle cell (VSMC) cultures form nodules spontaneously and calcify after ≈28 days, and incubation of VSMC-derived apoptotic bodies with 45Ca demonstrated that they can concentrate calcium.
Abstract: —The mechanisms involved in the initiation of vascular calcification are not known, but matrix vesicles, the nucleation sites for calcium crystal formation in bone, are likely candidates, because similar structures have been found in calcified arteries. The regulation of matrix vesicle production is poorly understood but is thought to be associated with apoptotic cell death. In the present study, we investigated the role of apoptosis in vascular calcification. We report that apoptosis occurs in a human vascular calcification model in which postconfluent vascular smooth muscle cell (VSMC) cultures form nodules spontaneously and calcify after ≈28 days. Apoptosis occurred before the onset of calcification in VSMC nodules and was detected by several methods, including nuclear morphology, the TUNEL technique, and external display of phosphatidyl serine. Inhibition of apoptosis with the caspase inhibitor ZVAD.fmk reduced calcification in nodules by ≈40%, as measured by the cresolphthalein method and ali...

680 citations


Journal ArticleDOI
TL;DR: Findings indicate that the Tie2 receptor, PI 3'-kinase, and Akt are crucial elements in the signal transduction pathway leading to endothelial cell survival induced by the paracrine activity of Ang1.
Abstract: Angiopoietin-1 (Ang1) is a strong apoptosis survival factor for endothelial cells. In this study, the receptor/second messenger signal transduction pathway for the antiapoptotic effect of Ang1 on human umbilical vein endothelial cells was examined. Pretreatment with soluble Tie2 receptor, but not Tie1 receptor, blocked the Ang1-induced antiapoptotic effect. Ang1 induced phosphorylation of Tie2 and the p85 subunit of phosphatidylinositol 3'-kinase (PI 3'-kinase) and increased PI 3'-kinase activity in a dose-dependent manner. The PI 3'-kinase-specific inhibitors wortmannin and LY294002 blocked the Ang1-induced antiapoptotic effect. Ang1 induced phosphorylation of the serine-threonine kinase Akt at Ser473 in a PI 3'-kinase-dependent manner. Expression of a dominant-negative form of Akt reversed the Ang1-induced antiapoptotic effect. Ang1 mRNA and protein were present in vascular smooth muscle cells but not in endothelial cells. Cultured vascular smooth muscle cells, but not human umbilical vein endothelial cells, secreted Ang1. These findings indicate that the Tie2 receptor, PI 3'-kinase, and Akt are crucial elements in the signal transduction pathway leading to endothelial cell survival induced by the paracrine activity of Ang1.

Journal ArticleDOI
TL;DR: It is demonstrated that ECs, in contrast to SMCs, express a gp91phox-containing leukocyte-type NADPH oxidase, which is a major source for arterial ROS generation and affects the bioavailability of endothelium-derived NO.
Abstract: Reactive oxygen species (ROS) play an important role in regulating vascular tone and intracellular signaling; the enzymes producing ROS in the vascular wall are, however, poorly characterized. We investigated whether a functionally active NADPH oxidase similar to the leukocyte enzyme, ie, containing the subunits p22phox and gp91phox, is expressed in endothelial cells (ECs) and smooth muscle cells (SMCs). Phorbol 12-myristate 13-acetate (PMA), a stimulus for leukocyte NADPH oxidase, increased ROS generation in cultured ECs and endothelium-intact rat aortic segments, but not in SMCs or endothelium-denuded arteries. NADPH enhanced chemiluminescence in all preparations. p22phox mRNA and protein was detected in ECs and SMCs, whereas the expression of gp91phox was confined to ECs. Endothelial gp91phox was identical to the leukocyte form as determined by sequence analysis. In contrast, mitogenic oxidase-1 (mox1) was expressed in SMCs, but not in ECs. To determine the functional relevance of gp91phox expression, experiments were performed in aortic segments from wild-type, gp91phox(-/-), and endothelial NO synthase (eNOS)(-/-) mice. PMA-induced ROS generation was comparable in aortae from wild-type and eNOS(-/-) mice, but was attenuated in segments from gp91phox(-/-) mice. Endothelium-dependent relaxation was greater in aortae from gp91phox(-/-) than from wild-type mice. The ROS scavenger tiron increased endothelium-dependent relaxation in segments from wild-type, but not from gp91phox(-/-) mice. These data demonstrate that ECs, in contrast to SMCs, express a gp91phox-containing leukocyte-type NADPH oxidase. This enzyme is a major source for arterial ROS generation and affects the bioavailability of endothelium-derived NO.

Journal ArticleDOI
TL;DR: An important role for NAD(P)H oxidase-mediated superoxide production in human atherosclerosis is suggested and reduced endothelial vasorelaxations and increased vascular NAD(H) oxidase activity were both associated with increased clinical risk factors for Atherosclerosis.
Abstract: Superoxide anion plays important roles in vascular disease states. Increased superoxide production contributes to reduced nitric oxide (NO) bioactivity and endothelial dysfunction in experimental models of vascular disease. We measured superoxide production by NAD(P)H oxidase in human blood vessels and examined the relationships between NAD(P)H oxidase activity, NO-mediated endothelial function, and clinical risk factors for atherosclerosis. Endothelium-dependent vasorelaxations and direct measurements of vascular superoxide production were determined in human saphenous veins obtained from 133 patients with coronary artery disease and identified risk factors. The predominant source of vascular superoxide production was an NAD(P)H-dependent oxidase. Increased vascular NAD(P)H oxidase activity was associated with reduced NO-mediated vasorelaxation. Furthermore, reduced endothelial vasorelaxations and increased vascular NAD(P)H oxidase activity were both associated with increased clinical risk factors for atherosclerosis. Diabetes and hypercholesterolemia were independently associated with increased NADH-dependent superoxide production. The association of increased vascular NAD(P)H oxidase activity with endothelial dysfunction and with clinical risk factors suggests an important role for NAD(P)H oxidase-mediated superoxide production in human atherosclerosis. The full text of this article is available at http://www.circresaha.org.

Journal ArticleDOI
TL;DR: Current evidence points to an important role of localized signaling complexes involved in the PKA-mediated regulation of ICa, including A-kinase anchor proteins and binding of phosphatase PP2a to the carboxyl terminus of the &agr;1C subunit, critically involved in PKC regulation.
Abstract: Voltage-dependent L-type Ca(2+) channels are multisubunit transmembrane proteins, which allow the influx of Ca(2+) (I:(Ca)) essential for normal excitability and excitation-contraction coupling in cardiac myocytes. A variety of different receptors and signaling pathways provide dynamic regulation of I:(Ca) in the intact heart. The present review focuses on recent evidence describing the molecular details of regulation of L-type Ca(2+) channels by protein kinase A (PKA) and protein kinase C (PKC) pathways. Multiple G protein-coupled receptors act through cAMP/PKA pathways to regulate L-type channels. ss-Adrenergic receptor stimulation results in a marked increase in I:(Ca), which is mediated by a cAMP/PKA pathway. Growing evidence points to an important role of localized signaling complexes involved in the PKA-mediated regulation of I:(Ca), including A-kinase anchor proteins and binding of phosphatase PP2a to the carboxyl terminus of the alpha(1C) (Ca(v)1.2) subunit. Both alpha(1C) and ss(2a) subunits of the channel are substrates for PKA in vivo. The regulation of L-type Ca(2+) channels by Gq-linked receptors and associated PKC activation is complex, with both stimulation and inhibition of I:(Ca) being observed. The amino terminus of the alpha(1C) subunit is critically involved in PKC regulation. Crosstalk between PKA and PKC pathways occurs in the modulation of I:(Ca). Ultimately, precise regulation of I:(Ca) is needed for normal cardiac function, and alterations in these regulatory pathways may prove important in heart disease.

Journal ArticleDOI
TL;DR: The hypothesis that VEGF gene transfer may also augment the population of circulating endothelial progenitor cells (EPCs) supports the notion that neovascularization of human ischemic tissues after angiogenic growth factor therapy is not limited to angiogenesis but involves circulate endothelial precursors that may home to isChemic foci and differentiate in situ through a process of vasculogenesis.
Abstract: Preclinical studies in animal models and early results of clinical trials in patients suggest that intramuscular injection of naked plasmid DNA encoding vascular endothelial growth factor (VEGF) can promote neovascularization of ischemic tissues. Such neovascularization has been attributed exclusively to sprout formation of endothelial cells derived from preexisting vessels. We investigated the hypothesis that VEGF gene transfer may also augment the population of circulating endothelial progenitor cells (EPCs). In patients with critical limb ischemia receiving VEGF gene transfer, gene expression was documented by a transient increase in plasma levels of VEGF. A culture assay documented a significant increase in EPCs (219%, P<0.001), whereas patients who received an empty vector had no change in circulating EPCs, as was the case for volunteers who received saline injections (VEGF versus empty vector, P<0.001; VEGF versus saline, P<0.005). Fluorescence-activated cell sorter analysis disclosed an overall increase of up to 30-fold in endothelial lineage markers KDR (VEGF receptor-2), VE-cadherin, CD34, alpha(v)beta(3), and E-selectin after VEGF gene transfer. Constitutive overexpression of VEGF in patients with limb ischemia augments the population of circulating EPCs. These findings support the notion that neovascularization of human ischemic tissues after angiogenic growth factor therapy is not limited to angiogenesis but involves circulating endothelial precursors that may home to ischemic foci and differentiate in situ through a process of vasculogenesis.

Journal ArticleDOI
TL;DR: This Review is part of a thematic series on Calcium Cycling in Cardiovascular Cells, which includes the following articles: Ca2+ Release Mechanisms,Ca2+ Sparks, and Local Control of Excitation-Contraction Coupling in Normal Heart Muscle Interaction Between Ca2- and H+ and Functional Consequences in Vascular Smooth Muscle Cardiac Intracellular Calcium Release Channels.
Abstract: This Review is part of a thematic series on Calcium Cycling in Cardiovascular Cells , which includes the following articles: Ca2+ Release Mechanisms, Ca2+ Sparks, and Local Control of Excitation-Contraction Coupling in Normal Heart Muscle Interaction Between Ca2+ and H+ and Functional Consequences in Vascular Smooth Muscle Cardiac Intracellular Calcium Release Channels: Role in Heart Failure Calcium Fluxes Involved in Control of Cardiac Myocyte Contraction C. William Balke, Guest Editor Intracellular Ca2+ is the central regulator of cardiac contractility. Moreover, it is becoming increasingly apparent that alterations in myocyte Ca2+ regulation may be critically important in both the mechanical dysfunction and arrhythmogenesis associated with congestive heart failure.1 2 Thus, it is imperative to have a clear and relatively quantitative understanding of how cellular Ca2+ levels are regulated during the normal contraction-relaxation cycle. The scope and relevant references in this field are far too large for this format, so my focus here is narrower and more personal than elsewhere.3 4 5 Figure 1A⇓ shows the key pathways involved in myocyte Ca2+ transport. During the cardiac action potential (AP) L-type Ca2+ channels are activated and Ca2+ enters the cell via Ca2+ current ( I Ca) and also a much smaller amount enters via Na+-Ca2+ exchange (NCX). Ca2+ influx triggers Ca2+ release from the sarcoplasmic reticulum (SR) and, to some extent, can also contribute to activation of the myofilaments directly. The Ca2+ entry plus the amount released from the SR via Ca2+-induced Ca2+ release (CICR) raises cytosolic free [Ca2+] ([Ca2+]i), causing Ca2+ binding to multiple cytosolic Ca2+ buffers. One of the most functionally important cytosolic Ca2+ buffers is the thin-filament protein troponin C …

Journal ArticleDOI
TL;DR: It is demonstrated for the first time, to the authors' knowledge, that E2 rapidly induces phosphorylation and activation of eNOS through the phosphatidylinositol 3 (PI3)-kinase–Akt pathway, and this explains the reduced requirement for cytosolic Ca2+ fluxes and describes an important pathway relevant to cardiovascular pathophysiology.
Abstract: —17β-Estradiol (E2) is a rapid activator of endothelial nitric oxide synthase (eNOS). The product of this activation event, NO, is a fundamental determinant of cardiovascular homeostasis. We previously demonstrated that E2-stimulated endothelial NO release can occur without an increase in cytosolic Ca2+. Here we demonstrate for the first time, to our knowledge, that E2 rapidly induces phosphorylation and activation of eNOS through the phosphatidylinositol 3 (PI3)-kinase–Akt pathway. E2 treatment (10 ng/mL) of the human endothelial cell line, EA.hy926, resulted in increased NO production, which was abrogated by the PI3-kinase inhibitor, LY294002, and the estrogen receptor antagonist ICI 182,780. E2 stimulated rapid Akt phosphorylation on serine 473. As has been shown for vascular endothelial growth factor, eNOS is an E2-activated Akt substrate, demonstrated by rapid eNOS phosphorylation on serine 1177, a critical residue for eNOS activation and enhanced sensitivity to resting cellular Ca2+ levels. Adenoviral-mediated EA.hy926 transduction confirmed functional involvement of Akt, because a kinase-deficient, dominant-negative Akt abolished E2-stimulated NO release. The membrane-impermeant E2BSA conjugate, shown to bind endothelial cell membrane sites, also induced rapid Akt and consequent eNOS phosphorylation. Thus, engagement of membrane estrogen receptors results in rapid endothelial NO release through a PI3-kinase–Akt-dependent pathway. This explains, in part, the reduced requirement for cytosolic Ca2+ fluxes and describes an important pathway relevant to cardiovascular pathophysiology.

Journal ArticleDOI
TL;DR: It is determined that 0.2% to 1.4% of ECs in vessels in control tissues derived from hematopoietic progenitors during the 4 months after irradiation and hematopolietic recovery is large enough to be encouraging for attempts to manipulate this contribution for therapeutic gain.
Abstract: Granulation tissue formation is an example of new tissue development in an adult. Its rich vascular network has been thought to derive via angiogenic sprouting and extension of preexisting vessels from the surrounding tissue. The possibility that circulating cells of hematopoietic origin can differentiate into vascular endothelial cells (ECs) in areas of vascular remodeling has recently gained credibility. However, no quantitative data have placed the magnitude of this contribution into a physiological perspective. We have used hematopoietic chimeras to determine that 0.2% to 1.4% of ECs in vessels in control tissues derived from hematopoietic progenitors during the 4 months after irradiation and hematopoietic recovery. By contrast, 8.3% to 11.2% of ECs in vessels that developed in sponge-induced granulation tissue during 1 month derived from circulating hematopoietic progenitors. This recruitment of circulating progenitors to newly forming vessels would be difficult to observe in standard histological studies, but it is large enough to be encouraging for attempts to manipulate this contribution for therapeutic gain.

Journal ArticleDOI
TL;DR: The MyHC protein isoform content of human heart samples of known MyHC mRNA composition is determined and it is demonstrated that alphaMyHC protein was easily detectable in 12 nonfailing hearts and translational regulation may be operative.
Abstract: In the heart, the relative proportions of the 2 forms of the motor protein myosin heavy chain (MyHC) have been shown to be affected by a wide variety of pathological and physiological stimuli. Hearts that express the faster MyHC motor protein, alpha, produce more power than those expressing the slower MyHC motor protein, beta, leading to the hypothesis that MyHC isoforms play a major role in the determination of cardiac contractility. We showed previously that a significant amount of alphaMyHC mRNA is expressed in nonfailing human ventricular myocardium and that alphaMyHC mRNA expression is decreased 15-fold in end-stage failing left ventricles. In the present study, we determined the MyHC protein isoform content of human heart samples of known MyHC mRNA composition. We demonstrate that alphaMyHC protein was easily detectable in 12 nonfailing hearts. alphaMyHC protein represented 7.2+/-3.2% of total MyHC protein (compared with approximately 35% of the MyHC mRNA), suggesting that translational regulation may be operative; in contrast, there was effectively no detectable alphaMyHC protein in the left ventricles of 10 end-stage failing human hearts.

Journal ArticleDOI
TL;DR: The issues of its presence in, significance for, and overall contribution to heart failure, will be addressed and its implications for future research and treatment strategies in heart failure are discussed.
Abstract: This MiniReview is part of a thematic series on Apoptosis in the Cardiovascular System , which includes the following articles: Apoptosis and Heart Failure: A Critical Review of the Literature Vascular Cell Apoptosis in Remodeling, Restenosis, and Plaque Rupture Apoptosis During Cardiovascular Development Myocyte Apoptosis in Ischemic Heart Disease Endothelial Cell Apoptosis in Angiogenesis and Vessel Regression Richard Kitsis, Editor When the concept of apoptosis was introduced in the 1970s,1 it attracted only limited attention. However, less than two decades ago, Horvitz and colleagues2 3 4 identified its essential genetic components in the roundworm, Caenorhabditis elegans , and apoptosis emerged as a significant research front. The explosion of knowledge that took place is represented by the accumulation of >25 000 studies in the last 5 years alone. It is now clear that apoptosis is an important aspect of normal organ development and cellular regulation and that it plays a role in a wide variety of physiological and pathological conditions. However, there is still much debate and controversy concerning the role of apoptosis in heart failure. To address the issues of its presence in, significance for, and overall contribution to heart failure, we will review the currently available literature and then discuss its implications for future research and treatment strategies in heart failure. The etiology of heart failure involves multiple agents and conditions,5 but the progressive loss of cardiac myocytes is one of the most important pathogenic components. During the past few years, there has been accumulating evidence in both human and animal models suggesting that apoptosis may be an important mode of cell death during heart failure (Table 1⇓). Therefore, the possibility of limiting cardiac myocyte loss by inhibiting apoptosis has potentially important implications in the treatment of heart failure. View this table: Table 1. Heart Failure Models Associated With Increased …

Journal ArticleDOI
TL;DR: It is shown that angiopoietin-1, a cytokine essential in fetal angiogenesis, not only supports the localization of proteins into junctions between endothelial cells and decreases the phosphorylation of PECAM-1 and vascular endothelial cadherin, but it also strengthens these junctions, as evidenced by a decrease in basal permeability and inhibition of permeability responses to thrombin andascular endothelial growth factor.
Abstract: Inflammation is a basic pathological mechanism that underlies many diseases. An important component of the inflammatory response is the passage of plasma components and leukocytes from the blood vessel into the tissues. The endothelial monolayer lining blood vessels reacts to stimuli such as thrombin or vascular endothelial growth factor by changes in cell-cell junctions, an increase in permeability, and the leakage of plasma components into tissues. Other stimuli, such as tumor necrosis factor-alpha (TNF-alpha), are responsible for stimulating the transmigration of leukocytes. Here we show that angiopoietin-1, a cytokine essential in fetal angiogenesis, not only supports the localization of proteins such as platelet endothelial cell adhesion molecule-1 (PECAM-1) into junctions between endothelial cells and decreases the phosphorylation of PECAM-1 and vascular endothelial cadherin, but it also strengthens these junctions, as evidenced by a decrease in basal permeability and inhibition of permeability responses to thrombin and vascular endothelial growth factor. Furthermore, angiopoietin-1 inhibits TNF-alpha-stimulated leukocyte transmigration. Angiopoietin-1 may thus have a major role in maintaining the integrity of endothelial monolayers.

Journal ArticleDOI
TL;DR: The hypothesis that uncoupling induced by acute ischemia is associated with changes in phosphorylation of the major cardiac gap junction protein, connexin43 (Cx43), is tested and it is suggested that dephosphorylation and translocation of Cx43 from gap junctions into intracellular pools.
Abstract: Electrical uncoupling at gap junctions during acute myocardial ischemia contributes to conduction abnormalities and reentrant arrhythmias. Increased levels of intracellular Ca(2+) and H(+) and accumulation of amphipathic lipid metabolites during ischemia promote uncoupling, but other mechanisms may play a role. We tested the hypothesis that uncoupling induced by acute ischemia is associated with changes in phosphorylation of the major cardiac gap junction protein, connexin43 (Cx43). Adult rat hearts perfused on a Langendorff apparatus were subjected to ischemia or ischemia/reperfusion. Changes in coupling were monitored by measuring whole-tissue resistance. Changes in the amount and distribution of phosphorylated and nonphosphorylated isoforms of Cx43 were measured by immunoblotting and confocal immunofluorescence microscopy using isoform-specific antibodies. In control hearts, virtually all Cx43 identified immunohistochemically at apparent intercellular junctions was phosphorylated. During ischemia, however, Cx43 underwent progressive dephosphorylation with a time course similar to that of electrical uncoupling. The total amount of Cx43 did not change, but progressive reduction in total Cx43 immunofluorescent signal and concomitant accumulation of nonphosphorylated Cx43 signal occurred at sites of intercellular junctions. Functional recovery during reperfusion was associated with increased levels of phosphorylated Cx43. These observations suggest that uncoupling induced by ischemia is associated with dephosphorylation of Cx43, accumulation of nonphosphorylated Cx43 within gap junctions, and translocation of Cx43 from gap junctions into intracellular pools.

Journal ArticleDOI
TL;DR: The data suggest that the production of ADMA by human endothelial cells is regulated by S-adenosylmethionine-dependent methyltransferases, which may be due in part to the enhanced gene expression of PRMTs.
Abstract: Asymmetrical dimethylarginine (ADMA) is an endogenous nitric oxide synthase inhibitor. It is formed by protein arginine N-methyltransferases (PRMTs), which utilize S-adenosylmethionine as methyl group donor. ADMA plasma concentration is elevated in hypercholesterolemia, leading to endothelial dysfunction and producing proathero- genic changes of endothelial cell function. Four different isoforms of human PRMTs have been identified. Because the release of ADMA from human endothelial cells is increased in the presence of native or oxidized LDL cholesterol, we investigated the potential involvement of PRMT activity and gene expression in this effect. We found that the production of ADMA by human endothelial cells is upregulated in the presence of methionine or homocysteine and inhibited by either of the methyltransferase inhibitors S-adenosylhomocysteine, adenosine dialdehyde, or cycloleucine. This effect is specific for ADMA but not symmetrical dimethylarginine. The upregulation of ADMA release by native and oxidized LDL is abolished by S-adenosylhomocysteine and by the antioxidant pyrrollidine dithiocarbamate. Furthermore, a methyl- 14 C label is transferred from S-adenosylmethionine to ADMA but not symmetrical dimethylarginine, in human endothelial cells. The expression of PRMTs is upregulated in the presence of native or oxidized LDL. Our data suggest that the production of ADMA by human endothelial cells is regulated by S-adenosylmethionine- dependent methyl- transferases. This activity is upregulated by LDL cholesterol, which may be due in part to the enhanced gene expression of PRMTs. In concentrations reached by stimulation of methyltransferases (5 to 50 mmol/L), ADMA significantly inhibited the formation of 15 N-nitrite from L-(guanidino- 15 N2)arginine. These findings suggest a novel mechanism by which ADMA concentration is elevated in hypercholesterolemia, leading to endothelial dysfunction and atherosclerosis. (Circ Res. 2000;87:99-105.)

Journal ArticleDOI
TL;DR: Testing the hypothesis that the inflammatory cytokines can regulate fibroblast extracellular matrix metabolism found that IL-1β increased the expression of proMMP... and TNF-α each increased total matrix metalloproteinase (MMP) activity as measured by in-gel zymography.
Abstract: —We tested the hypothesis that the inflammatory cytokines can regulate fibroblast extracellular matrix metabolism. Neonatal and adult rat cardiac fibroblasts cultures in vitro were exposed to interleukin (IL)–1β (4 ng/mL), tumor necrosis factor-α (TNF-α; 100 ng/mL), IL-6 (10 ng/mL), or interferon-γ (IFN-γ; 500 U/mL) for 24 hours. IL-1β, and to a lesser extent TNF-α, decreased collagen synthesis, which was measured as collagenase-sensitive [3H]proline incorporation, but had no effect on cell number or total protein synthesis. IL-1β decreased the expression of procollagen α1(I), α2(I), and α1(III) mRNA, but increased the expression of procollagen α1(IV), α2(IV), and fibronectin mRNA, indicating a selective transcriptional downregulation of fibrillar collagen synthesis. IL-1β and TNF-α each increased total matrix metalloproteinase (MMP) activity as measured by in-gel zymography, causing specific increases in the bands corresponding to MMP-13, MMP-2, and MMP-9. IL-1β increased the expression of proMMP...

Journal ArticleDOI
TL;DR: The concept that in addition to the free radical burden of cigarette smoke, a dysfunctional NOS III due to BH4 depletion may contribute at least in part to endothelial dysfunction in chronic smokers is supported.
Abstract: —Conditions associated with impaired nitric oxide (NO) activity and accelerated atherosclerosis have been shown to be associated with a reduced bioavailability of tetrahydrobiopterin (BH4)....

Journal ArticleDOI
TL;DR: These studies identify sEH as a novel therapeutic target for control of blood pressure and the identification of a potent and selective inhibitor of EET hydrolysis will be invaluable in separating the vascular effects of the EET and DHET eicosanoids.
Abstract: The cytochrome P450-derived epoxyeicosatrienoic acids (EETs) have potent effects on renal vascular reactivity and tubular sodium and water transport; however, the role of these eicosanoids in the pathogenesis of hypertension is controversial. The current study examined the hydrolysis of the EETs to the corresponding dihydroxyeicosatrienoic acids (DHETs) as a mechanism for regulation of EET activity and blood pressure. EET hydrolysis was increased 5- to 54-fold in renal cortical S9 fractions from the spontaneously hypertensive rat (SHR) relative to the normotensive Wistar-Kyoto (WKY) rat. This increase was most significant for the 14,15-EET regioisomer, and there was a clear preference for hydrolysis of 14, 15-EET over the 8,9- and 11,12-EETs. Increased EET hydrolysis was consistent with increased expression of soluble epoxide hydrolase (sEH) in the SHR renal microsomes and cytosol relative to the WKY samples. The urinary excretion of 14,15-DHET was 2.6-fold higher in the SHR than in the WKY rat, confirming increased EET hydrolysis in the SHR in vivo. Blood pressure was decreased 22+/-4 mm Hg (P:<0.01) 6 hours after treatment of SHRs with the selective sEH inhibitor N:, N:'-dicyclohexylurea; this treatment had no effect on blood pressure in the WKY rat. These studies identify sEH as a novel therapeutic target for control of blood pressure. The identification of a potent and selective inhibitor of EET hydrolysis will be invaluable in separating the vascular effects of the EET and DHET eicosanoids.

Journal ArticleDOI
TL;DR: Understanding IGF axis regulation establishes a scientific basis for strategies directed to limit or reverse plaque growth and vulnerability in atherosclerosis and in the neointimal hyperplasia of restenosis.
Abstract: Insulin-like growth factors I and II (IGF-I and -II) and their regulatory proteins are secreted by cells of the cardiovascular system. They are growth promoters for arterial cells and mediators of cardiovascular disease. IGFs are bound to IGF binding proteins (IGFBPs), which modulate IGF ligand-receptor interaction and consequently to IGF action. IGFBPs are in turn posttranslationally modulated by specific proteases. This dynamic balance (IGFs, IGFBPs, and IGFBP proteases) constitutes the IGF axis and ultimately determines the extent of IGF-dependent cellular effects. Dysregulated actions of this axis influence coronary atherosclerosis through effects on vascular smooth muscle cell growth, migration, and extracellular matrix synthesis in the atherosclerotic plaque. IGF-I promotes macrophage chemotaxis, excess LDL cholesterol uptake, and release of proinflammatory cytokines. Endothelial cells also receive the effects of IGFs stimulating their migration and organization forming capillary networks. Neointimal hyperplasia of restenosis after coronary artery injury is also modulated by the IGF axis. IGFs stimulate vascular smooth muscle cell proliferation and migration to form the neointima and upregulate tropoelastin synthesis after disruption of the elastic layer. Understanding IGF axis regulation establishes a scientific basis for strategies directed to limit or reverse plaque growth and vulnerability in atherosclerosis and in the neointimal hyperplasia of restenosis.

Journal ArticleDOI
TL;DR: It is hypothesized that peroxynitrite itself is responsible for cytokine-induced cardiac depression, and stimulated the concerted enhancement in superoxide and NO-generating activities in the heart, thereby enhancing peroxlynitrite generation, which causes myocardial contractile failure.
Abstract: Proinflammatory cytokines depress myocardial contractile function by enhancing the expression of inducible NO synthase (iNOS), yet the mechanism of iNOS-mediated myocardial injury is not clear As the reaction of NO with superoxide to form peroxynitrite markedly enhances the toxicity of NO, we hypothesized that peroxynitrite itself is responsible for cytokine-induced cardiac depression Isolated working rat hearts were perfused for 120 minutes with buffer containing interleukin-1 beta, interferon-gamma, and tumor necrosis factor-alpha Cardiac mechanical function and myocardial iNOS, xanthine oxidoreductase (XOR), and NAD(P)H oxidase activities (sources of superoxide) were measured during the perfusion Cytokines induced a marked decline in myocardial contractile function accompanied by enhanced activity of myocardial XOR, NADH oxidase, and iNOS Cardiac NO content, myocardial superoxide production, and perfusate nitrotyrosine and dityrosine levels, markers of peroxynitrite, were increased in cytokine-treated hearts The peroxynitrite decomposition catalyst FeTPPS (5,10,15, 20-tetrakis-[4-sulfonatophenyl]-porphyrinato-iron[III]), the NO synthase inhibitor N(G)-nitro-L-arginine, and the superoxide scavenger tiron each inhibited the decline in myocardial function and decreased perfusate nitrotyrosine levels Proinflammatory cytokines stimulate the concerted enhancement in superoxide and NO-generating activities in the heart, thereby enhancing peroxynitrite generation, which causes myocardial contractile failure

Journal ArticleDOI
TL;DR: The data taken together suggest that ERK plays a protective role, whereas p38 and JNK mediate apoptosis in cardiomyocytes subjected to ischemia/reoxygenation (I/R), and the dynamic balance of their activities is critical in determiningCardiomyocyte fate subsequent to reperfusional injury.
Abstract: —Three major mammalian mitogen-activated protein kinases, extracellular signal–regulated kinase (ERK), p38, and c-Jun NH2-terminal protein kinase (JNK), have been identified in the cardiomyocyte, but their respective roles in the heart are not well understood. The present study explored their functions and cross talk in ischemia/reoxygenation (I/R)–induced cardiac apoptosis. Exposing rat neonatal cardiomyocytes to ischemia resulted in a rapid and transient activation of ERK, p38, and JNK. On reoxygenation, further activation of all 3 mitogen-activated protein kinases was noted; peak activities increased (fold) by 5.5, 5.2, and 6.2, respectively. Visual inspection of myocytes exposed to I/R identified 18.6% of the cells as showing morphological features of apoptosis, which was further confirmed by DNA ladder and terminal deoxyribonucleotide transferase–mediated dUTP nick end labeling (TUNEL). Myocytes treated with PD98059, a MAPK/ERK kinase (MEK1/MEK2) inhibitor, displayed a suppression of I/R-indu...

Journal ArticleDOI
TL;DR: In this article, the effect of 1 alpha,25-dihydroxyvitamin D(3) [1, 25(OH)(2)D(3]], the active metabolite of vitamin D, on angiogenesis was evaluated by using well-characterized in vitro and in vivo model systems.
Abstract: Modulation of angiogenesis is now a recognized strategy for the prevention and treatment of pathologies categorized by their reliance on a vascular supply. The purpose of this study was to evaluate the effect of 1 alpha,25-dihydroxyvitamin D(3) [1, 25(OH)(2)D(3)], the active metabolite of vitamin D(3), on angiogenesis by using well-characterized in vitro and in vivo model systems. 1,25(OH)(2)D(3) (1 x 10(-9) to 1 x 10(-7) mol/L) significantly inhibited vascular endothelial growth factor (VEGF)-induced endothelial cell sprouting and elongation in vitro in a dose-dependent manner and had a small, but significant, inhibitory effect on VEGF-induced endothelial cell proliferation. 1, 25(OH)(2)D(3) also inhibited the formation of networks of elongated endothelial cells within 3D collagen gels. The addition of 1, 25(OH)(2)D(3) to endothelial cell cultures containing sprouting elongated cells induced the regression of these cells, in the absence of any effect on cells present in the cobblestone monolayer. Analysis of nuclear morphology, DNA integrity, and enzymatic in situ labeling of apoptosis-induced strand breaks demonstrated that this regression was due to the induction of apoptosis specifically within the sprouting cell population. The effect of 1,25(OH)(2)D(3) on angiogenesis in vivo was investigated by using a model in which MCF-7 breast carcinoma cells, which had been induced to overexpress VEGF, were xenografted subcutaneously together with MDA-435S breast carcinoma cells into nude mice. Treatment with 1,25(OH)(2)D(3) (12.5 pmol/d for 8 weeks) produced tumors that were less well vascularized than tumors formed in mice treated with vehicle alone. These results highlight the potential use of 1,25(OH)(2)D(3) in both the prevention and regression of conditions characterized by pathological angiogenesis.