•Journal•ISSN: 2225-1154
Climate
Multidisciplinary Digital Publishing Institute
About: Climate is an academic journal published by Multidisciplinary Digital Publishing Institute. The journal publishes majorly in the area(s): Climate change & Environmental science. It has an ISSN identifier of 2225-1154. It is also open access. Over the lifetime, 1140 publications have been published receiving 14352 citations. The journal is also known as: local climate.
Papers
More filters
TL;DR: In this paper, the authors explore the relationship between "redlining" or the historical practice of refusing home loans or insurance to whole neighborhoods based on a racially motivated perception of safety for investment, with present-day summertime intra-urban land surface temperature anomalies.
Abstract: The increasing intensity, duration, and frequency of heat waves due to human-caused climate change puts historically underserved populations in a heightened state of precarity, as studies observe that vulnerable communities—especially those within urban areas in the United States—are disproportionately exposed to extreme heat. Lacking, however, are insights into fundamental questions about the role of historical housing policies in cauterizing current exposure to climate inequities like intra-urban heat. Here, we explore the relationship between “redlining”, or the historical practice of refusing home loans or insurance to whole neighborhoods based on a racially motivated perception of safety for investment, with present-day summertime intra-urban land surface temperature anomalies. Through a spatial analysis of 108 urban areas in the United States, we ask two questions: (1) how do historically redlined neighborhoods relate to current patterns of intra-urban heat? and (2) do these patterns vary by US Census Bureau region? Our results reveal that 94% of studied areas display consistent city-scale patterns of elevated land surface temperatures in formerly redlined areas relative to their non-redlined neighbors by as much as 7 °C. Regionally, Southeast and Western cities display the greatest differences while Midwest cities display the least. Nationally, land surface temperatures in redlined areas are approximately 2.6 °C warmer than in non-redlined areas. While these trends are partly attributable to the relative preponderance of impervious land cover to tree canopy in these areas, which we also examine, other factors may also be driving these differences. This study reveals that historical housing policies may, in fact, be directly responsible for disproportionate exposure to current heat events.
303 citations
TL;DR: In this article, the authors examined the adaptation of agriculturalists to degrading environmental conditions likely to be caused or exacerbated under global climate change, and found that a majority of the farmers self-identified as having engaged in adaptive behavior.
Abstract: Offering a case study of coastal Bangladesh, this study examines the adaptation of agriculturalists to degrading environmental conditions likely to be caused or exacerbated under global climate change. It examines four central components: (1) the rate of self-reported adoption of adaptive mechanisms (coping strategies) as a result of changes in climate; (2) ranking the potential coping strategies based on their perceived importance to agricultural enterprises; (3) identification the socio-economic factors associated with adoption of coping strategies, and (4) ranking potential constraints to adoption of coping strategies based on farmers’ reporting on the degree to which they face these constraints. As a preliminary matter, this paper also reports on the perceptions of farmers in the study about their experiences with climatic change. The research area is comprised of three villages in the coastal region (Sathkhira district), a geographic region which climate change literature has highlighted as prone to accelerated degradation. One-hundred (100) farmers participated in the project’s survey, from which the data was used to calculate weighted indexes for rankings and to perform logistic regression. The rankings, model results, and descriptive statistics, are reported here. Results showed that a majority of the farmers self-identified as having engaged in adaptive behavior. Out of 14 adaptation strategies, irrigation ranked first among farm adaptive measures, while crop insurance has ranked as least utilized. The logit model explained that out of eight factors surveyed, age, education, family size, farm size, family income, and involvement in cooperatives were significantly related to self-reported adaptation. Despite different support and technological interventions being available, lack of available water, shortage of cultivable land, and unpredictable weather ranked highest as the respondent group’s constraints to coping with environmental degradation and change effects. These results provide policy makers and development service providers with important insight, which can be used to better target interventions which build promote or facilitate the adoption of coping mechanisms with potential to build resiliency to changing climate and resulting environmental impacts.
225 citations
TL;DR: In this paper, the impact and projections of climate change and variability in various sectors (agricultural, health and energy) and its implication on ecology, land use, poverty and welfare are examined.
Abstract: This paper provides a holistic literature review of climate change and variability in Ghana by examining the impact and projections of climate change and variability in various sectors (agricultural, health and energy) and its implication on ecology, land use, poverty and welfare. The findings suggest that there is a projected high temperature and low rainfall in the years 2020, 2050 and 2080, and desertification is estimated to be proceeding at a rate of 20,000 hectares per annum. Sea-surface temperatures will increase in Ghana’s waters and this will have drastic effects on fishery. There will be a reduction in the suitability of weather within the current cocoa-growing areas in Ghana by 2050 and an increase evapotranspiration of the cocoa trees. Furthermore, rice and rooted crops (especially cassava) production are expected to be low. Hydropower generation is also at risk and there will be an increase in the incidence rate of measles, diarrheal cases, guinea worm infestation, malaria, cholera, cerebro-spinal meningitis and other water related diseases due to the current climate projections and variability. These negative impacts of climate change and variability worsens the plight of the poor, who are mostly women and children.
185 citations
TL;DR: In this article, the spatial distribution of daily extreme precipitation indices as defined by the Expert Team on Climate Change Detection, Monitoring and Indices (ETCCDMI) from 210 stations over the period of 1981-2010 was analyzed.
Abstract: As a mountainous country, Nepal is most susceptible to precipitation extremes and related hazards, including severe floods, landslides and droughts that cause huge losses of life and property, impact the Himalayan environment, and hinder the socioeconomic development of the country. Given that the countrywide assessment of such extremes is still lacking, we present a comprehensive picture of prevailing precipitation extremes observed across Nepal. First, we present the spatial distribution of daily extreme precipitation indices as defined by the Expert Team on Climate Change Detection, Monitoring and Indices (ETCCDMI) from 210 stations over the period of 1981–2010. Then, we analyze the temporal changes in the computed extremes from 76 stations, featuring long-term continuous records for the period of 1970–2012, by applying a non-parametric Mann−Kendall test to identify the existence of a trend and Sen’s slope method to calculate the true magnitude of this trend. Further, the local trends in precipitation extremes have been tested for their field significance over the distinct physio-geographical regions of Nepal, such as the lowlands, middle mountains and hills and high mountains in the west (WL, WM and WH, respectively), and likewise, in central (CL, CM and CH) and eastern (EL, EM and EH) Nepal. Our results suggest that the spatial patterns of high-intensity precipitation extremes are quite different to that of annual or monsoonal precipitation. Lowlands (Terai and Siwaliks) that feature relatively low precipitation and less wet days (rainy days) are exposed to high-intensity precipitation extremes. Our trend analysis suggests that the pre-monsoonal precipitation is significantly increasing over the lowlands and CH, while monsoonal precipitation is increasing in WM and CH and decreasing in CM, CL and EL. On the other hand, post-monsoonal precipitation is significantly decreasing across all of Nepal while winter precipitation is decreasing only over the WM region. Both high-intensity precipitation extremes and annual precipitation trends feature east−west contrast, suggesting significant increase over the WM and CH region but decrease over the EM and CM regions. Further, a significant positive trend in the number of consecutive dry days but significant negative trend in the number of wet (rainy) days are observed over the whole of Nepal, implying the prolongation of the dry spell across the country. Overall, the intensification of different precipitation indices over distinct parts of the country indicates region-specific risks of floods, landslides and droughts. The presented findings, in combination with population and environmental pressures, can support in devising the adequate region-specific adaptation strategies for different sectors and in improving the livelihood of the rural communities in Nepal.
173 citations
TL;DR: In this article, the authors discuss the growth requirements and greenhouse gas release potential of staple cereal crops and assess the impact of climate change on their yields, and discuss potential solutions for minimizing the influence of global warming on crop productivity.
Abstract: By the end of this century, the average global temperature is predicted to rise due to the increasing release of greenhouse gases (GHGs) into the atmosphere. This change in climate can reduce agricultural yields, resulting in food insecurity. However, agricultural activities are one of the major contributors of GHGs and lower yields can trigger increased activity to meet the demand for food, resulting in higher quantities of GHGs released into the atmosphere. In this paper, we discuss the growth requirements and greenhouse gas release potential of staple cereal crops and assess the impact of climate change on their yields. Potential solutions for minimizing the influence of climate change on crop productivity are discussed. These include breeding to obtain cereals that are more tolerant to conditions caused by climate change, increased production of these new cultivars, improved irrigation, and more effective use of fertilizers. Furthermore, different predictive models inferred that climate change would reduce production of major cereal crops, except for millets due to their ability to grow in variable climatic conditions, and in dry areas due to a strong root system. Moreover, millets are not resource-intensive crops and release fewer greenhouse gases compared to other cereals. Therefore, in addition to addressing food security, millets have an enormous potential use for reducing the impact of agriculture on global warming and should be grown on a global scale as an alternative to major cereals and grains.
137 citations