scispace - formally typeset
Search or ask a question
JournalISSN: 0936-577X

Climate Research 

Inter-Research Science Center
About: Climate Research is an academic journal published by Inter-Research Science Center. The journal publishes majorly in the area(s): Climate change & Climate model. It has an ISSN identifier of 0936-577X. Over the lifetime, 1694 publications have been published receiving 96866 citations. The journal is also known as: CR. Climate research (Print) & Climate research (Print).


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the root-mean-square error (RMSE) and the mean absolute error (MAE) were examined to describe average model-performance error, and it was shown that MAE is a more natural measure of average error than RMSE.
Abstract: The relative abilities of 2, dimensioned statistics — the root-mean-square error (RMSE) and the mean absolute error (MAE) — to describe average model-performance error are examined The RMSE is of special interest because it is widely reported in the climatic and environmental liter- ature; nevertheless, it is an inappropriate and misinterpreted measure of average error RMSE is inappropriate because it is a function of 3 characteristics of a set of errors, rather than of one (the average error) RMSE varies with the variability within the distribution of error magnitudes and with the square root of the number of errors (n 1/2 ), as well as with the average-error magnitude (MAE) Our findings indicate that MAE is a more natural measure of average error, and (unlike RMSE) is unambiguous Dimensioned evaluations and inter-comparisons of average model-performance error, therefore, should be based on MAE

3,500 citations

Journal ArticleDOI
TL;DR: There is a direct influence of global warming on precipitation as mentioned in this paper, as the water holding capacity of air increases by about 7% per 1°C warming, which leads to increased water vapor in the atmosphere.
Abstract: There is a direct influence of global warming on precipitation. Increased heating leads to greater evaporation and thus surface drying, thereby increasing the intensity and duration of drought. However, the water holding capacity of air increases by about 7% per 1°C warming, which leads to increased water vapor in the atmosphere. Hence, storms, whether individual thunderstorms, extratropical rain or snow storms, or tropical cyclones, supplied with increased moisture, produce more intense precipitation events. Such events are observed to be widely occurring, even where total precipitation is decreasing: 'it never rains but it pours!' This increases the risk of flooding. The atmo- spheric and surface energy budget plays a critical role in the hydrological cycle, and also in the slower rate of change that occurs in total precipitation than total column water vapor. With modest changes in winds, patterns of precipitation do not change much, but result in dry areas becoming drier (generally throughout the subtropics) and wet areas becoming wetter, especially in the mid- to high latitudes: the 'rich get richer and the poor get poorer'. This pattern is simulated by climate mod- els and is projected to continue into the future. Because, with warming, more precipitation occurs as rain instead of snow and snow melts earlier, there is increased runoff and risk of flooding in early spring, but increased risk of drought in summer, especially over continental areas. However, with more precipitation per unit of upward motion in the atmosphere, i.e. 'more bang for the buck', atmo- spheric circulation weakens, causing monsoons to falter. In the tropics and subtropics, precipitation patterns are dominated by shifts as sea surface temperatures change, with El Nino a good example. The volcanic eruption of Mount Pinatubo in 1991 led to an unprecedented drop in land precipitation and runoff, and to widespread drought, as precipitation shifted from land to oceans and evaporation faltered, providing lessons for possible geoengineering. Most models simulate precipitation that occurs prematurely and too often, and with insufficient intensity, resulting in recycling that is too large and a lifetime of moisture in the atmosphere that is too short, which affects runoff and soil moisture.

2,525 citations

Journal ArticleDOI
TL;DR: In this paper, the construction of a 10' latitude/longitude data set of mean monthly sur-face climate over global land areas, excluding Antarctica, was described, which includes 8 climate conditions: precipitation, wet-day frequency, temperature, diurnal temperature range, relative humid-ity, sunshine duration, ground frost frequency and windspeed.
Abstract: We describe the construction of a 10' latitude/longitude data set of mean monthly sur- face climate over global land areas, excluding Antarctica The climatology includes 8 climate ele- ments —precipitation, wet-day frequency, temperature, diurnal temperature range, relative humid- ity, sunshine duration, ground frost frequency and windspeed—and was interpolated from a data set of station means for the period centred on 1961 to 1990 Precipitation was first defined in terms of the parameters of the Gamma distribution, enabling the calculation of monthly precipitation at any given return period The data are compared to an earlier data set at 05o latitude/longitude resolution and show added value over most regions The data will have many applications in applied climatology, biogeochemical modelling, hydrology and agricultural meteorology and are available through the International Water Management Institute World Water and Climate Atlas (http://wwwiwmiorg) and the Climatic Research Unit (http://wwwcruueaacuk)

2,206 citations

Journal ArticleDOI
TL;DR: A new global dataset of derived indicators has been compiled to clarify whether fre- quency and/or severity of climatic extremes changed during the second half of the 20th century as discussed by the authors.
Abstract: A new global dataset of derived indicators has been compiled to clarify whether fre- quency and/or severity of climatic extremes changed during the second half of the 20th century. This period provides the best spatial coverage of homogenous daily series, which can be used for calcu- lating the proportion of global land area exhibiting a significant change in extreme or severe weather. The authors chose 10 indicators of extreme climatic events, defined from a larger selection, that could be applied to a large variety of climates. It was assumed that data producers were more inclined to release derived data in the form of annual indicator time series than releasing their origi- nal daily observations. The indicators are based on daily maximum and minimum temperature series, as well as daily totals of precipitation, and represent changes in all seasons of the year. Only time series which had 40 yr or more of almost complete records were used. A total of about 3000 indicator time series were extracted from national climate archives and collated into the unique dataset described here. Global maps showing significant changes from one multi-decadal period to another during the interval from 1946 to 1999 were produced. Coherent spatial patterns of statistically signif- icant changes emerge, particularly an increase in warm summer nights, a decrease in the number of frost days and a decrease in intra-annual extreme temperature range. All but one of the temperature- based indicators show a significant change. Indicators based on daily precipitation data show more mixed patterns of change but significant increases have been seen in the extreme amount derived from wet spells and number of heavy rainfall events. We can conclude that a significant proportion of the global land area was increasingly affected by a significant change in climatic extremes during the second half of the 20th century. These clear signs of change are very robust; however, large areas are still not represented, especially Africa and South America.

1,877 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a range of climate change scenarios for Africa, focusing on changes in both continental and regional seasonal-mean temperature and rainfall, and estimate the associated changes in global CO2 concentration and global mean sea-level change.
Abstract: This paper reviews observed (1900-2000) and possible future (2000-2100) continent- wide changes in temperature and rainfall for Africa. For the historic period we draw upon a new observed global climate data set which allows us to explore aspects of regional climate change related to diurnal temperature range and rainfall variability. The latter includes an investigation of regions where seasonal rainfall is sensitive to El Nino climate variability. This review of past climate change provides the context for our scenarios of future greenhouse gas-induced climate change in Africa. These scenarios draw upon the draft emissions scenarios prepared for the Intergovernmental Panel on Climate Change's Third Assessment Report, a suite of recent global climate model experi- ments, and a simple climate model to link these 2 sets of analyses. We present a range of 4 climate futures for Africa, focusing on changes in both continental and regional seasonal-mean temperature and rainfall. Estimates of associated changes in global CO2 concentration and global-mean sea-level change are also supplied. These scenarios draw upon some of the most recent climate modelling work. We also identify some fundamental limitations to knowledge with regard to future African cli- mate. These include the often poor representation of El Nino climate variability in global climate models, and the absence in these models of any representation of regional changes in land cover and dust and biomass aerosol loadings. These omitted processes may well have important consequences for future African climates, especially at regional scales. We conclude by discussing the value of the sort of climate change scenarios presented here and how best they should be used in national and regional vulnerability and adaptation assessments.

1,330 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
202313
202236
202122
202020
201940
201832