scispace - formally typeset
Search or ask a question

Showing papers in "Comprehensive Physiology in 2014"


OtherDOI
TL;DR: The liver is an essential metabolic organ, and its metabolic function is controlled by insulin and other metabolic hormones, so controlling liver energy metabolism is tightly regulated by neuronal and hormonal signals.
Abstract: The liver is an essential metabolic organ, and its metabolic function is controlled by insulin and other metabolic hormones. Glucose is converted into pyruvate through glycolysis in the cytoplasm, and pyruvate is subsequently oxidized in the mitochondria to generate ATP through the TCA cycle and oxidative phosphorylation. In the fed state, glycolytic products are used to synthesize fatty acids through de novo lipogenesis. Long-chain fatty acids are incorporated into triacylglycerol, phospholipids, and/or cholesterol esters in hepatocytes. These complex lipids are stored in lipid droplets and membrane structures, or secreted into the circulation as very low-density lipoprotein particles. In the fasted state, the liver secretes glucose through both glycogenolysis and gluconeogenesis. During pronged fasting, hepatic gluconeogenesis is the primary source for endogenous glucose production. Fasting also promotes lipolysis in adipose tissue, resulting in release of nonesterified fatty acids which are converted into ketone bodies in hepatic mitochondria though β-oxidation and ketogenesis. Ketone bodies provide a metabolic fuel for extrahepatic tissues. Liver energy metabolism is tightly regulated by neuronal and hormonal signals. The sympathetic system stimulates, whereas the parasympathetic system suppresses, hepatic gluconeogenesis. Insulin stimulates glycolysis and lipogenesis but suppresses gluconeogenesis, and glucagon counteracts insulin action. Numerous transcription factors and coactivators, including CREB, FOXO1, ChREBP, SREBP, PGC-1α, and CRTC2, control the expression of the enzymes which catalyze key steps of metabolic pathways, thus controlling liver energy metabolism. Aberrant energy metabolism in the liver promotes insulin resistance, diabetes, and nonalcoholic fatty liver diseases.

1,444 citations


OtherDOI
TL;DR: This article summarizes anatomical, neurophysiological, pharmacological, and brain imaging studies in humans and animals that have provided insights into the neural circuitry and neurotransmitter mechanisms controlling the lower urinary tract.
Abstract: This article summarizes anatomical, neurophysiological, pharmacological, and brain imaging studies in humans and animals that have provided insights into the neural circuitry and neurotransmitter mechanisms controlling the lower urinary tract. The functions of the lower urinary tract to store and periodically eliminate urine are regulated by a complex neural control system in the brain, spinal cord, and peripheral autonomic ganglia that coordinates the activity of smooth and striated muscles of the bladder and urethral outlet. The neural control of micturition is organized as a hierarchical system in which spinal storage mechanisms are in turn regulated by circuitry in the rostral brain stem that initiates reflex voiding. Input from the forebrain triggers voluntary voiding by modulating the brain stem circuitry. Many neural circuits controlling the lower urinary tract exhibit switch-like patterns of activity that turn on and off in an all-or-none manner. The major component of the micturition switching circuit is a spinobulbospinal parasympathetic reflex pathway that has essential connections in the periaqueductal gray and pontine micturition center. A computer model of this circuit that mimics the switching functions of the bladder and urethra at the onset of micturition is described. Micturition occurs involuntarily in infants and young children until the age of 3 to 5 years, after which it is regulated voluntarily. Diseases or injuries of the nervous system in adults can cause the re-emergence of involuntary micturition, leading to urinary incontinence. Neuroplasticity underlying these developmental and pathological changes in voiding function is discussed.

417 citations


OtherDOI
TL;DR: The physiological role of components of the "classical" renin-angiotensin system is reviewed, with an emphasis on new developments and modern concepts.
Abstract: The renin-angiotensin system has powerful effects in control of the blood pressure and sodium homeostasis These actions are coordinated through integrated actions in the kidney, cardiovascular system and the central nervous system Along with its impact on blood pressure, the renin-angiotensin system also influences a range of processes from inflammation and immune responses to longevity Here, we review the actions of the "classical" renin-angiotensin system, whereby the substrate protein angiotensinogen is processed in a two-step reaction by renin and angiotensin converting enzyme, resulting in the sequential generation of angiotensin I and angiotensin II, the major biologically active renin-angiotensin system peptide, which exerts its actions via type 1 and type 2 angiotensin receptors In recent years, several new enzymes, peptides, and receptors related to the renin-angiotensin system have been identified, manifesting a complexity that was previously unappreciated While the functions of these alternative pathways will be reviewed elsewhere in this journal, our focus here is on the physiological role of components of the "classical" renin-angiotensin system, with an emphasis on new developments and modern concepts

388 citations


OtherDOI
TL;DR: Ocular blood flow is controlled both via direct autonomic influences on the vasculature of the optic nerve, choroid, ciliary body, and iris, as well as via indirect influences on retinal blood flow.
Abstract: The autonomic nervous system influences numerous ocular functions. It does this by way of parasympathetic innervation from postganglionic fibers that originate from neurons in the ciliary and pterygopalatine ganglia, and by way of sympathetic innervation from postganglionic fibers that originate from neurons in the superior cervical ganglion. Ciliary ganglion neurons project to the ciliary body and the sphincter pupillae muscle of the iris to control ocular accommodation and pupil constriction, respectively. Superior cervical ganglion neurons project to the dilator pupillae muscle of the iris to control pupil dilation. Ocular blood flow is controlled both via direct autonomic influences on the vasculature of the optic nerve, choroid, ciliary body, and iris, as well as via indirect influences on retinal blood flow. In mammals, this vasculature is innervated by vasodilatory fibers from the pterygopalatine ganglion, and by vasoconstrictive fibers from the superior cervical ganglion. Intraocular pressure is regulated primarily through the balance of aqueous humor formation and outflow. Autonomic regulation of ciliary body blood vessels and the ciliary epithelium is an important determinant of aqueous humor formation; autonomic regulation of the trabecular meshwork and episcleral blood vessels is an important determinant of aqueous humor outflow. These tissues are all innervated by fibers from the pterygopalatine and superior cervical ganglia. In addition to these classical autonomic pathways, trigeminal sensory fibers exert local, intrinsic influences on many of these regions of the eye, as well as on some neurons within the ciliary and pterygopalatine ganglia.

375 citations


OtherDOI
TL;DR: The basic neural circuitry of extrinsic inputs to the GI tract as well as the major CNS nuclei that innervate and modulate the activity of these pathways are described.
Abstract: Although the gastrointestinal (GI) tract possesses intrinsic neural plexuses that allow a significant degree of autonomy over GI functions, the central nervous system (CNS) provides extrinsic neural inputs that regulate, modulate, and control these functions. While the intestines are capable of functioning in the absence of extrinsic inputs, the stomach and esophagus are much more dependent upon extrinsic neural inputs, particularly from parasympathetic and sympathetic pathways. The sympathetic nervous system exerts a predominantly inhibitory effect upon GI muscle and provides a tonic inhibitory influence over mucosal secretion while, at the same time, regulates GI blood flow via neurally mediated vasoconstriction. The parasympathetic nervous system, in contrast, exerts both excitatory and inhibitory control over gastric and intestinal tone and motility. Although GI functions are controlled by the autonomic nervous system and occur, by and large, independently of conscious perception, it is clear that the higher CNS centers influence homeostatic control as well as cognitive and behavioral functions. This review will describe the basic neural circuitry of extrinsic inputs to the GI tract as well as the major CNS nuclei that innervate and modulate the activity of these pathways. The role of CNS-centered reflexes in the regulation of GI functions will be discussed as will modulation of these reflexes under both physiological and pathophysiological conditions. Finally, future directions within the field will be discussed in terms of important questions that remain to be resolved and advances in technology that may help provide these answers.

356 citations


OtherDOI
TL;DR: This article provides a comprehensive review of dehydration assessment and presents a unique evaluation of the dehydration and performance literature, suggesting a ≥ 2% dehydration threshold for impaired endurance exercise performance mediated by volume loss.
Abstract: This article provides a comprehensive review of dehydration assessment and presents a unique evaluation of the dehydration and performance literature. The importance of osmolality and volume are emphasized when discussing the physiology, assessment, and performance effects of dehydration. The underappreciated physiologic distinction between a loss of hypo-osmotic body water (intracellular dehydration) and an iso-osmotic loss of body water (extracellular dehydration) is presented and argued as the single most essential aspect of dehydration assessment. The importance of diagnostic and biological variation analyses to dehydration assessment methods is reviewed and their use in gauging the true potential of any dehydration assessment method highlighted. The necessity for establishing proper baselines is discussed, as is the magnitude of dehydration required to elicit reliable and detectable osmotic or volume-mediated compensatory physiologic responses. The discussion of physiologic responses further helps inform and explain our analysis of the literature suggesting a ≥ 2% dehydration threshold for impaired endurance exercise performance mediated by volume loss. In contrast, no clear threshold or plausible mechanism(s) support the marginal, but potentially important, impairment in strength, and power observed with dehydration. Similarly, the potential for dehydration to impair cognition appears small and related primarily to distraction or discomfort. The impact of dehydration on any particular sport skill or task is therefore likely dependent upon the makeup of the task itself (e.g., endurance, strength, cognitive, and motor skill).

328 citations


OtherDOI
TL;DR: Factors that can modulate control mechanisms of the cutaneous vasculature, such as gender, aging, and clinical conditions, are discussed, as are nonthermoregulatory reflex modifiers of thermoregulation cutaneous vascular responses.
Abstract: In this review, we focus on significant developments in our understanding of the mechanisms that control the cutaneous vasculature in humans, with emphasis on the literature of the last half-century To provide a background for subsequent sections, we review methods of measurement and techniques of importance in elucidating control mechanisms for studying skin blood flow In addition, the anatomy of the skin relevant to its thermoregulatory function is outlined The mechanisms by which sympathetic nerves mediate cutaneous active vasodilation during whole body heating and cutaneous vasoconstriction during whole body cooling are reviewed, including discussions of mechanisms involving cotransmission, NO, and other effectors Current concepts for the mechanisms that effect local cutaneous vascular responses to local skin warming and cooling are examined, including the roles of temperature sensitive afferent neurons as well as NO and other mediators Factors that can modulate control mechanisms of the cutaneous vasculature, such as gender, aging, and clinical conditions, are discussed, as are nonthermoregulatory reflex modifiers of thermoregulatory cutaneous vascular responses

324 citations


OtherDOI
TL;DR: This review focuses on the interactions between the gonadal hormone system and the HPA axis as the key mediators of these sex differences, whereby androgens increase and estrogens decrease HPA activity in adulthood.
Abstract: The hypothalamic-pituitary-adrenal (HPA) axis is a major component of the systems that respond to stress, by coordinating the neuroendocrine and autonomic responses. Tightly controlled regulation of HPA responses is critical for maintaining mental and physical health, as hyper- and hypo-activity have been linked to disease states. A long history of research has revealed sex differences in numerous components of the HPA stress system and its responses, which may partially form the basis for sex disparities in disease development. Despite this, many studies use male subjects exclusively, while fewer reports involve females or provide direct sex comparisons. The purpose of this article is to present sex comparisons in the functional and molecular aspects of the HPA axis, through various phases of activity, including basal, acute stress, and chronic stress conditions. The HPA axis in females initiates more rapidly and produces a greater output of stress hormones. This review focuses on the interactions between the gonadal hormone system and the HPA axis as the key mediators of these sex differences, whereby androgens increase and estrogens decrease HPA activity in adulthood. In addition to the effects of gonadal hormones on the adult response, morphological impacts of hormone exposure during development are also involved in mediating sex differences. Additional systems impinging on the HPA axis that contribute to sex differences include the monoamine neurotransmitters norepinephrine and serotonin. Diverse signals originating from the brain and periphery are integrated to determine the level of HPA axis activity, and these signals are, in many cases, sex-specific.

312 citations


OtherDOI
TL;DR: Research questions are posed concerning the influence that variations in morphological configuration may exert upon adaptation, the determinants of postexercise plasma volume recovery, and the physiological mechanisms that modify the cholinergic sensitivity of sweat glands, and changes in basal metabolic rate and body core temperature following adaptation.
Abstract: In this overview, human morphological and functional adaptations during naturally and artificially induced heat adaptation are explored. Through discussions of adaptation theory and practice, a theoretical basis is constructed for evaluating heat adaptation. It will be argued that some adaptations are specific to the treatment used, while others are generalized. Regarding ethnic differences in heat tolerance, the case is put that reported differences in heat tolerance are not due to natural selection, but can be explained on the basis of variations in adaptation opportunity. These concepts are expanded to illustrate how traditional heat adaptation and acclimatization represent forms of habituation, and thermal clamping (controlled hyperthermia) is proposed as a superior model for mechanistic research. Indeed, this technique has led to questioning the perceived wisdom of body-fluid changes, such as the expansion and subsequent decay of plasma volume, and sudomotor function, including sweat habituation and redistribution. Throughout, this contribution was aimed at taking another step toward understanding the phenomenon of heat adaptation and stimulating future research. In this regard, research questions are posed concerning the influence that variations in morphological configuration may exert upon adaptation, the determinants of postexercise plasma volume recovery, and the physiological mechanisms that modify the cholinergic sensitivity of sweat glands, and changes in basal metabolic rate and body core temperature following adaptation.

276 citations


OtherDOI
TL;DR: Both sympathetic and parasympathetic arms of the autonomic nervous system are instrumental in orchestrating neuroimmune processes, although additional studies are required to understand dynamic and complex adrenergic-cholinergic interactions.
Abstract: The present review assesses the current state of literature defining integrative autonomic-immune physiological processing, focusing on studies that have employed electrophysiological, pharmacological, molecular biological, and central nervous system experimental approaches. Central autonomic neural networks are informed of peripheral immune status via numerous communicating pathways, including neural and non-neural. Cytokines and other immune factors affect the level of activity and responsivity of discharges in sympathetic and parasympathetic nerves innervating diverse targets. Multiple levels of the neuraxis contribute to cytokine-induced changes in efferent parasympathetic and sympathetic nerve outflows, leading to modulation of peripheral immune responses. The functionality of local sympathoimmune interactions depends on the microenvironment created by diverse signaling mechanisms involving integration between sympathetic nervous system neurotransmitters and neuromodulators; specific adrenergic receptors; and the presence or absence of immune cells, cytokines, and bacteria. Functional mechanisms contributing to the cholinergic anti-inflammatory pathway likely involve novel cholinergic-adrenergic interactions at peripheral sites, including autonomic ganglion and lymphoid targets. Immune cells express adrenergic and nicotinic receptors. Neurotransmitters released by sympathetic and parasympathetic nerve endings bind to their respective receptors located on the surface of immune cells and initiate immune-modulatory responses. Both sympathetic and parasympathetic arms of the autonomic nervous system are instrumental in orchestrating neuroimmune processes, although additional studies are required to understand dynamic and complex adrenergic-cholinergic interactions. Further understanding of regulatory mechanisms linking the sympathetic nervous, parasympathetic nervous, and immune systems is critical for understanding relationships between chronic disease development and immune-associated changes in autonomic nervous system function.

266 citations


OtherDOI
TL;DR: An integrative model is proposed that may help understanding the interplay among factors, but also acknowledging that the influence from a given factor depends on the exercise hyperthermia situation.
Abstract: This article presents a historical overview and an up-to-date review of hyperthermia-induced fatigue during exercise in the heat. Exercise in the heat is associated with a thermoregulatory burden which mediates cardiovascular challenges and influence the cerebral function, increase the pulmonary ventilation, and alter muscle metabolism; which all potentially may contribute to fatigue and impair the ability to sustain power output during aerobic exercise. For maximal intensity exercise, the performance impairment is clearly influenced by cardiovascular limitations to simultaneously support thermoregulation and oxygen delivery to the active skeletal muscle. In contrast, during submaximal intensity exercise at a fixed intensity, muscle blood flow and oxygen consumption remain unchanged and the potential influence from cardiovascular stressing and/or high skin temperature is not related to decreased oxygen delivery to the skeletal muscles. Regardless, performance is markedly deteriorated and exercise-induced hyperthermia is associated with central fatigue as indicated by impaired ability to sustain maximal muscle activation during sustained contractions. The central fatigue appears to be influenced by neurotransmitter activity of the dopaminergic system, but inhibitory signals from thermoreceptors arising secondary to the elevated core, muscle and skin temperatures and augmented afferent feedback from the increased ventilation and the cardiovascular stressing (perhaps baroreceptor sensing of blood pressure stability) and metabolic alterations within the skeletal muscles are likely all factors of importance for afferent feedback to mediate hyperthermia-induced fatigue during submaximal intensity exercise. Taking all the potential factors into account, we propose an integrative model that may help understanding the interplay among factors, but also acknowledging that the influence from a given factor depends on the exercise hyperthermia situation.

OtherDOI
TL;DR: The effects of these various pathologies on brainstem cardiorespiratory networks are discussed, special consideration being given to the interactions between central and peripheral chemoreflexes.
Abstract: Lung ventilation fluctuates widely with behavior but arterial PCO2 remains stable. Under normal conditions, the chemoreflexes contribute to PaCO2 stability by producing small corrective cardiorespiratory adjustments mediated by lower brainstem circuits. Carotid body (CB) information reaches the respiratory pattern generator (RPG) via nucleus solitarius (NTS) glutamatergic neurons which also target rostral ventrolateral medulla (RVLM) presympathetic neurons thereby raising sympathetic nerve activity (SNA). Chemoreceptors also regulate presympathetic neurons and cardiovagal preganglionic neurons indirectly via inputs from the RPG. Secondary effects of chemoreceptors on the autonomic outflows result from changes in lung stretch afferent and baroreceptor activity. Central respiratory chemosensitivity is caused by direct effects of acid on neurons and indirect effects of CO2 via astrocytes. Central respiratory chemoreceptors are not definitively identified but the retrotrapezoid nucleus (RTN) is a particularly strong candidate. The absence of RTN likely causes severe central apneas in congenital central hypoventilation syndrome. Like other stressors, intense chemosensory stimuli produce arousal and activate circuits that are wake- or attention-promoting. Such pathways (e.g., locus coeruleus, raphe, and orexin system) modulate the chemoreflexes in a state-dependent manner and their activation by strong chemosensory stimuli intensifies these reflexes. In essential hypertension, obstructive sleep apnea and congestive heart failure, chronically elevated CB afferent activity contributes to raising SNA but breathing is unchanged or becomes periodic (severe CHF). Extreme CNS hypoxia produces a stereotyped cardiorespiratory response (gasping, increased SNA). The effects of these various pathologies on brainstem cardiorespiratory networks are discussed, special consideration being given to the interactions between central and peripheral chemoreflexes.

OtherDOI
TL;DR: 11β-HSD1 and MR antagonists mitigate inappropriate activation of MR under conditions of oxidative stress that contributes to the pathophysiology of the cardiometabolic syndrome; however, MR antagonists decrease normal MR/GR functional interactions, a particular concern for neurons mediating cognition, memory, and affect.
Abstract: The primary adrenal cortical steroid hormones, aldosterone, and the glucocorticoids cortisol and corticosterone, act through the structurally similar mineralocorticoid (MR) and glucocorticoid receptors (GRs). Aldosterone is crucial for fluid, electrolyte, and hemodynamic homeostasis and tissue repair; the significantly more abundant glucocorticoids are indispensable for energy homeostasis, appropriate responses to stress, and limiting inflammation. Steroid receptors initiate gene transcription for proteins that effect their actions as well as rapid non-genomic effects through classical cell signaling pathways. GR and MR are expressed in many tissues types, often in the same cells, where they interact at molecular and functional levels, at times in synergy, others in opposition. Thus the appropriate balance of MR and GR activation is crucial for homeostasis. MR has the same binding affinity for aldosterone, cortisol, and corticosterone. Glucocorticoids activate MR in most tissues at basal levels and GR at stress levels. Inactivation of cortisol and corticosterone by 11β-HSD2 allows aldosterone to activate MR within aldosterone target cells and limits activation of the GR. Under most conditions, 11β-HSD1 acts as a reductase and activates cortisol/corticosterone, amplifying circulating levels. 11β-HSD1 and MR antagonists mitigate inappropriate activation of MR under conditions of oxidative stress that contributes to the pathophysiology of the cardiometabolic syndrome; however, MR antagonists decrease normal MR/GR functional interactions, a particular concern for neurons mediating cognition, memory, and affect.

OtherDOI
TL;DR: The circadian rhythm of the HPA axis is characterized by a pulsatile release of glucocorticoids from the adrenal gland that results in rapid ultradian oscillations of hormone levels both in the blood and within target tissues, including the brain.
Abstract: The hypothalamic-pituitary-adrenal (HPA) axis regulates circulating levels of glucocorticoid hormones, and is the major neuroendocrine system in mammals that provides a rapid response and defense against stress. Under basal (i.e., unstressed) conditions, glucocorticoids are released with a pronounced circadian rhythm, characterized by peak levels of glucocorticoids during the active phase, that is daytime in humans and nighttime in nocturnal animals such as mice and rats. When studied in more detail, it becomes clear that the circadian rhythm of the HPA axis is characterized by a pulsatile release of glucocorticoids from the adrenal gland that results in rapid ultradian oscillations of hormone levels both in the blood and within target tissues, including the brain. In this review, we discuss the regulation of these circadian and ultradian HPA rhythms, how these rhythms change in health and disease, and how they affect the physiology and behavior of the organism.

Journal ArticleDOI
TL;DR: How knowledge in these areas of comparative physiology has expanded considerably during the last two decades is demonstrated, bridging seminal classical works with studies based on new approaches at all levels of anatomical and functional organization.
Abstract: The article discusses advances in osmoregulation and excretion with emphasis on how multicellular animals in different osmotic environments regulate their milieu interieur. Mechanisms of energy transformations in animal osmoregulation are dealt with in biophysical terms with respect to water and ion exchange across biological membranes and coupling of ion and water fluxes across epithelia. The discussion of functions is based on a comparative approach analyzing mechanisms that have evolved in different taxonomic groups at biochemical, cellular and tissue levels and their integration in maintaining whole body water and ion homeostasis. The focus is on recent studies of adaptations and newly discovered mechanisms of acclimatization during transitions of animals between different osmotic environments. Special attention is paid to hypotheses about the diversity of cellular organization of osmoregulatory and excretory organs such as glomerular kidneys, antennal glands, Malpighian tubules and insect gut, gills, integument and intestine, with accounts on experimental approaches and methods applied in the studies. It is demonstrated how knowledge in these areas of comparative physiology has expanded considerably during the last two decades, bridging seminal classical works with studies based on new approaches at all levels of anatomical and functional organization. A number of as yet partially unanswered questions are emphasized, some of which are about how water and solute exchange mechanisms at lower levels are integrated for regulating whole body extracellular water volume and ion homeostasis of animals in their natural habitats. © 2014 American Physiological Society.

OtherDOI
TL;DR: The present knowledge of the effects of circulating catecholamines on peripheral organs and tissues, as well as on memory in the brain are discussed, with a focus on the "fight-or-flight" response.
Abstract: Physical challenges, emotional arousal, increased physical activity, or changes in the environment can evoke stress, requiring altered activity of visceral organs, glands, and smooth muscles. These alterations are necessary for the organism to function appropriately under these abnormal conditions and to restore homeostasis. These changes in activity comprise the "fight-or-flight" response and must occur rapidly or the organism may not survive. The rapid responses are mediated primarily via the catecholamines, epinephrine, and norepinephrine, secreted from the adrenal medulla. The catecholamine neurohormones interact with adrenergic receptors present on cell membranes of all visceral organs and smooth muscles, leading to activation of signaling pathways and consequent alterations in organ function and smooth muscle tone. During the "fight-or-flight response," the rise in circulating epinephrine and norepinephrine from the adrenal medulla and norepinephrine secreted from sympathetic nerve terminals cause increased blood pressure and cardiac output, relaxation of bronchial, intestinal and many other smooth muscles, mydriasis, and metabolic changes that increase levels of blood glucose and free fatty acids. Circulating catecholamines can also alter memory via effects on afferent sensory nerves impacting central nervous system function. While these rapid responses may be necessary for survival, sustained elevation of circulating catecholamines for prolonged periods of time can also produce pathological conditions, such as cardiac hypertrophy and heart failure, hypertension, and posttraumatic stress disorder. In this review, we discuss the present knowledge of the effects of circulating catecholamines on peripheral organs and tissues, as well as on memory in the brain.

OtherDOI
TL;DR: The methods of scaling analysis are reviewed, using examples for a range of traits with an emphasis on those related to metabolism in animals, and mechanistic explanations for metabolic rate that may explain the size- and temperature-dependence of this trait are proposed.
Abstract: Life on earth spans a size range of around 21 orders of magnitude across species and can span a range of more than 6 orders of magnitude within species of animal. The effect of size on physiology is, therefore, enormous and is typically expressed by how physiological phenomena scale with mass(b). When b ≠ 1 a trait does not vary in direct proportion to mass and is said to scale allometrically. The study of allometric scaling goes back to at least the time of Galileo Galilei, and published scaling relationships are now available for hundreds of traits. Here, the methods of scaling analysis are reviewed, using examples for a range of traits with an emphasis on those related to metabolism in animals. Where necessary, new relationships have been generated from published data using modern phylogenetically informed techniques. During recent decades one of the most controversial scaling relationships has been that between metabolic rate and body mass and a number of explanations have been proposed for the scaling of this trait. Examples of these mechanistic explanations for metabolic scaling are reviewed, and suggestions made for comparing between them. Finally, the conceptual links between metabolic scaling and ecological patterns are examined, emphasizing the distinction between (1) the hypothesis that size- and temperature-dependent variation among species and individuals in metabolic rate influences ecological processes at levels of organization from individuals to the biosphere and (2) mechanistic explanations for metabolic rate that may explain the size- and temperature-dependence of this trait.

OtherDOI
TL;DR: An overview of neural mechanisms and pathophysiology underlying various complications of autonomic dysfunctions after SCI is provided for better understanding these disorders and guides to pursue novel therapeutic approaches to alleviate secondary complications.
Abstract: Spinal cord injury (SCI) results not only in motor and sensory deficits but also in autonomic dysfunctions. The disruption of connections between higher brain centers and the spinal cord, or the impaired autonomic nervous system itself, manifests a broad range of autonomic abnormalities. This includes compromised cardiovascular, respiratory, urinary, gastrointestinal, thermoregulatory, and sexual activities. These disabilities evoke potentially life-threatening symptoms that severely interfere with the daily living of those with SCI. In particular, high thoracic or cervical SCI often causes disordered hemodynamics due to deregulated sympathetic outflow. Episodic hypertension associated with autonomic dysreflexia develops as a result of massive sympathetic discharge often triggered by unpleasant visceral or sensory stimuli below the injury level. In the pelvic floor, bladder and urethral dysfunctions are classified according to upper motor neuron versus lower motor neuron injuries; this is dependent on the level of lesion. Most impairments of the lower urinary tract manifest in two interrelated complications: bladder storage and emptying. Inadequate or excessive detrusor and sphincter functions as well as detrusor-sphincter dyssynergia are examples of micturition abnormalities stemming from SCI. Gastrointestinal motility disorders in spinal cord injured-individuals are comprised of gastric dilation, delayed gastric emptying, and diminished propulsive transit along the entire gastrointestinal tract. As a critical consequence of SCI, neurogenic bowel dysfunction exhibits constipation and/or incontinence. Thus, it is essential to recognize neural mechanisms and pathophysiology underlying various complications of autonomic dysfunctions after SCI. This overview provides both vital information for better understanding these disorders and guides to pursue novel therapeutic approaches to alleviate secondary complications.

OtherDOI
TL;DR: There is evidence from experiments in animals, but not humans, that vestibulosympathetic reflexes are patterned, and differ between body regions, and neural pathways that could mediate adaptive plasticity in the responses are proposed.
Abstract: Evidence accumulated over 30 years, from experiments on animals and human subjects, has conclusively demonstrated that inputs from the vestibular otolith organs contribute to the control of blood pressure during movement and changes in posture. This review considers the effects of gravity on the body axis, and the consequences of postural changes on blood distribution in the body. It then separately considers findings collected in experiments on animals and human subjects demonstrating that the vestibular system regulates blood distribution in the body during movement. Vestibulosympathetic reflexes differ from responses triggered by unloading of cardiovascular receptors such as baroreceptors and cardiopulmonary receptors, as they can be elicited before a change in blood distribution occurs in the body. Dissimilarities in the expression of vestibulosympathetic reflexes in humans and animals are also described. In particular, there is evidence from experiments in animals, but not humans, that vestibulosympathetic reflexes are patterned, and differ between body regions. Results from neurophysiological and neuroanatomical studies in animals are discussed that identify the neurons that mediate vestibulosympathetic responses, which include cells in the caudal aspect of the vestibular nucleus complex, interneurons in the lateral medullary reticular formation, and bulbospinal neurons in the rostral ventrolateral medulla. Recent findings showing that cognition can modify the gain of vestibulosympathetic responses are also presented, and neural pathways that could mediate adaptive plasticity in the responses are proposed, including connections of the posterior cerebellar vermis with the vestibular nuclei and brainstem nuclei that regulate blood pressure.

OtherDOI
TL;DR: Understanding the mechanisms within this complex regulatory system will allow for the development of treatment recommendations and countermeasures to reduce risks during the ever-increasing frequency of severe heat events that are predicted to occur.
Abstract: Heat stress increases human morbidity and mortality compared to normothermic conditions. Many occupations, disease states, as well as stages of life are especially vulnerable to the stress imposed on the cardiovascular system during exposure to hot ambient conditions. This review focuses on the cardiovascular responses to heat stress that are necessary for heat dissipation. To accomplish this regulatory feat requires complex autonomic nervous system control of the heart and various vascular beds. For example, during heat stress cardiac output increases up to twofold, by increases in heart rate and an active maintenance of stroke volume via increases in inotropy in the presence of decreases in cardiac preload. Baroreflexes retain the ability to regulate blood pressure in many, but not all, heat stress conditions. Central hypovolemia is another cardiovascular challenge brought about by heat stress, which if added to a subsequent central volumetric stress, such as hemorrhage, can be problematic and potentially dangerous, as syncope and cardiovascular collapse may ensue. These combined stresses can compromise blood flow and oxygenation to important tissues such as the brain. It is notable that this compromised condition can occur at cardiac outputs that are adequate during normothermic conditions but are inadequate in heat because of the increased systemic vascular conductance associated with cutaneous vasodilation. Understanding the mechanisms within this complex regulatory system will allow for the development of treatment recommendations and countermeasures to reduce risks during the ever-increasing frequency of severe heat events that are predicted to occur.

OtherDOI
TL;DR: During the course of fever, counterinflammatory factors, "endogenous antipyretics," are elaborated peripherally and centrally to limit fever in strength and duration.
Abstract: Fever is a cardinal symptom of infectious or inflammatory insults, but it can also arise from noninfectious causes. The fever-inducing agent that has been used most frequently in experimental studies designed to characterize the physiological, immunological and neuroendocrine processes and to identify the neuronal circuits that underlie the manifestation of the febrile response is lipopolysaccharide (LPS). Our knowledge of the mechanisms of fever production and lysis is largely based on this model. Fever is usually initiated in the periphery of the challenged host by the immediate activation of the innate immune system by LPS, specifically of the complement (C) cascade and Toll-like receptors. The first results in the immediate generation of the C component C5a and the subsequent rapid production of prostaglandin E2 (PGE2). The second, occurring after some delay, induces the further production of PGE2 by induction of its synthesizing enzymes and transcription and translation of proinflammatory cytokines. The Kupffer cells (Kc) of the liver seem to be essential for these initial processes. The subsequent transfer of the pyrogenic message from the periphery to the brain is achieved by neuronal and humoral mechanisms. These pathways subserve the genesis of early (neuronal signals) and late (humoral signals) phases of the characteristically biphasic febrile response to LPS. During the course of fever, counterinflammatory factors, "endogenous antipyretics," are elaborated peripherally and centrally to limit fever in strength and duration. The multiple interacting pro- and antipyretic signals and their mechanistic effects that underlie endotoxic fever are the subjects of this review.

OtherDOI
TL;DR: A complete understanding of the signaling events regulating aldosterone biosynthesis may allow the identification of novel targets for therapeutic interventions in hypertension, primary aldosteronism, congestive heart failure, renal disease, and other cardiovascular disorders.
Abstract: Aldosterone is a steroid hormone synthesized in and secreted from the outer layer of the adrenal cortex, the zona glomerulosa. Aldosterone is responsible for regulating sodium homeostasis, thereby helping to control blood volume and blood pressure. Insufficient aldosterone secretion can lead to hypotension and circulatory shock, particularly in infancy. On the other hand, excessive aldosterone levels, or those too high for sodium status, can cause hypertension and exacerbate the effects of high blood pressure on multiple organs, contributing to renal disease, stroke, visual loss, and congestive heart failure. Aldosterone is also thought to directly induce end-organ damage, including in the kidneys and heart. Because of the significance of aldosterone to the physiology and pathophysiology of the cardiovascular system, it is important to understand the regulation of its biosynthesis and secretion from the adrenal cortex. Herein, the mechanisms regulating aldosterone production in zona glomerulosa cells are discussed, with a particular emphasis on signaling pathways involved in the secretory response to the main controllers of aldosterone production, the renin-angiotensin II system, serum potassium levels and adrenocorticotrophic hormone. The signaling pathways involved include phospholipase C-mediated phosphoinositide hydrolysis, inositol 1,4,5-trisphosphate, cytosolic calcium levels, calcium influx pathways, calcium/calmodulin-dependent protein kinases, diacylglycerol, protein kinases C and D, 12-hydroxyeicostetraenoic acid, phospholipase D, mitogen-activated protein kinase pathways, tyrosine kinases, adenylate cyclase, and cAMP-dependent protein kinase. A complete understanding of the signaling events regulating aldosterone biosynthesis may allow the identification of novel targets for therapeutic interventions in hypertension, primary aldosteronism, congestive heart failure, renal disease, and other cardiovascular disorders.

OtherDOI
TL;DR: Greater attention to patient heterogeneity and more consistent approaches to assessing treatment effects on HPA function may solidify the value of HPA measures in predicting treatment response or developing novel strategies to manage psychiatric disease.
Abstract: Evidence of aberrant hypothalamic-pituitary-adrenocortical (HPA) activity in many psychiatric disorders, although not universal, has sparked long-standing interest in HPA hormones as biomarkers of disease or treatment response. HPA activity may be chronically elevated in melancholic depression, panic disorder, obsessive-compulsive disorder, and schizophrenia. The HPA axis may be more reactive to stress in social anxiety disorder and autism spectrum disorders. In contrast, HPA activity is more likely to be low in PTSD and atypical depression. Antidepressants are widely considered to inhibit HPA activity, although inhibition is not unanimously reported in the literature. There is evidence, also uneven, that the mood stabilizers lithium and carbamazepine have the potential to augment HPA measures, while benzodiazepines, atypical antipsychotics, and to some extent, typical antipsychotics have the potential to inhibit HPA activity. Currently, the most reliable use of HPA measures in most disorders is to predict the likelihood of relapse, although changes in HPA activity have also been proposed to play a role in the clinical benefits of psychiatric treatments. Greater attention to patient heterogeneity and more consistent approaches to assessing treatment effects on HPA function may solidify the value of HPA measures in predicting treatment response or developing novel strategies to manage psychiatric disease.

OtherDOI
TL;DR: A key goal of future research is to understand better the link between alpha-synucleinopathy and loss of catecholamine neurons in PD, which is important for understanding disease mechanisms.
Abstract: Dysautonomias are conditions in which altered function of one or more components of the autonomic nervous system (ANS) adversely affects health. This review updates knowledge about dysautonomia in Parkinson disease (PD). Most PD patients have symptoms or signs of dysautonomia; occasionally, the abnormalities dominate the clinical picture. Components of the ANS include the sympathetic noradrenergic system (SNS), the parasympathetic nervous system (PNS), the sympathetic cholinergic system (SCS), the sympathetic adrenomedullary system (SAS), and the enteric nervous system (ENS). Dysfunction of each component system produces characteristic manifestations. In PD, it is cardiovascular dysautonomia that is best understood scientifically, mainly because of the variety of clinical laboratory tools available to assess functions of catecholamine systems. Most of this review focuses on this aspect of autonomic involvement in PD. PD features cardiac sympathetic denervation, which can precede the movement disorder. Loss of cardiac SNS innervation occurs independently of the loss of striatal dopaminergic innervation underlying the motor signs of PD and is associated with other nonmotor manifestations, including anosmia, REM behavior disorder, orthostatic hypotension (OH), and dementia. Autonomic dysfunction in PD is important not only in clinical management and in providing potential biomarkers but also for understanding disease mechanisms (e.g., autotoxicity exerted by catecholamine metabolites). Since Lewy bodies and Lewy neurites containing alpha-synuclein constitute neuropathologic hallmarks of the disease, and catecholamine depletion in the striatum and heart are characteristic neurochemical features, a key goal of future research is to understand better the link between alpha-synucleinopathy and loss of catecholamine neurons in PD.

OtherDOI
TL;DR: This review summarizes the understanding of the functional organization and neurochemical influences within the CNS networks that modulate the level of BAT sympathetic nerve activity to produce the thermoregulatory and metabolic alterations in BAT thermogenesis and BAT energy expenditure that contribute to overall energy homeostasis and the autonomic support of behavior.
Abstract: Thermogenesis, the production of heat energy, in brown adipose tissue is a significant component of the homeostatic repertoire to maintain body temperature during the challenge of low environmental temperature in many species from mouse to man and plays a key role in elevating body temperature during the febrile response to infection. The sympathetic neural outflow determining brown adipose tissue (BAT) thermogenesis is regulated by neural networks in the CNS which increase BAT sympathetic nerve activity in response to cutaneous and deep body thermoreceptor signals. Many behavioral states, including wakefulness, immunologic responses, and stress, are characterized by elevations in core body temperature to which central command-driven BAT activation makes a significant contribution. Since energy consumption during BAT thermogenesis involves oxidation of lipid and glucose fuel molecules, the CNS network driving cold-defensive and behavioral state-related BAT activation is strongly influenced by signals reflecting the short- and long-term availability of the fuel molecules essential for BAT metabolism and, in turn, the regulation of BAT thermogenesis in response to metabolic signals can contribute to energy balance, regulation of body adipose stores and glucose utilization. This review summarizes our understanding of the functional organization and neurochemical influences within the CNS networks that modulate the level of BAT sympathetic nerve activity to produce the thermoregulatory and metabolic alterations in BAT thermogenesis and BAT energy expenditure that contribute to overall energy homeostasis and the autonomic support of behavior. © 2014 American Physiological Society. Compr Physiol 4:1677-1713, 2014.

OtherDOI
TL;DR: The pathophysiology of HPA dysfunction is reviewed with respect to increased basal adrenocorticotropic hormone (ACTH) and cortisol secretion, decreased glucoc Corticoid (GC) negative feedback at the level of the paraventricular nucleus (PVN) of the hypothalamus, hippocampus, and prefrontal cortex, and flattening of diurnal pattern of cortisol release.
Abstract: Human aging is associated with increasing frailty and morbidity which can result in significant disability. Dysfunction of the hypothalamic-pituitary-adrenal (HPA) axis may contribute to aging-related diseases like depression, cognitive deficits, and Alzheimer's disease in some older individuals. In addition to neuro-cognitive dysfunction, it has also been associated with declining physical performance possibly due to sarcopenia. This article reviews the pathophysiology of HPA dysfunction with respect to increased basal adrenocorticotropic hormone (ACTH) and cortisol secretion, decreased glucocorticoid (GC) negative feedback at the level of the paraventricular nucleus (PVN) of the hypothalamus, hippocampus (HC), and prefrontal cortex (PFC), and flattening of diurnal pattern of cortisol release. It is possible that the increased cortisol secretion is secondary to peripheral conversion from cortisone. There is a decline in pregnolone secretion and C-19 steroids (DHEA) with aging. There is a small decrease in aldosterone with aging, but a subset of the older population have a genetic predisposition to develop hyperaldosteronism due to the increased ACTH stimulation. The understanding of the HPA axis and aging remains a complex area with conflicting studies leading to controversial interpretations.

OtherDOI
TL;DR: The morphology, transduction properties, reflex functions, and respiratory sensations of these receptors are reviewed, focusing primarily on recent findings derived from using new technologies such as neural immunochemistry, isolated airway-nerve preparation, cultured airway neurons, patch-clamp electrophysiology, transgenic mice, and other cellular and molecular approaches.
Abstract: Sensory nerves innervating the lung and airways play an important role in regulating various cardiopulmonary functions and maintaining homeostasis under both healthy and disease conditions. Their activities conducted by both vagal and sympathetic afferents are also responsible for eliciting important defense reflexes that protect the lung and body from potential health-hazardous effects of airborne particulates and chemical irritants. This article reviews the morphology, transduction properties, reflex functions, and respiratory sensations of these receptors, focusing primarily on recent findings derived from using new technologies such as neural immunochemistry, isolated airway-nerve preparation, cultured airway neurons, patch-clamp electrophysiology, transgenic mice, and other cellular and molecular approaches. Studies of the signal transduction of mechanosensitive afferents have revealed a new concept of sensory unit and cellular mechanism of activation, and identified additional types of sensory receptors in the lung. Chemosensitive properties of these lung afferents are further characterized by the expression of specific ligand-gated ion channels on nerve terminals, ganglion origin, and responses to the action of various inflammatory cells, mediators, and cytokines during acute and chronic airway inflammation and injuries. Increasing interest and extensive investigations have been focused on uncovering the mechanisms underlying hypersensitivity of these airway afferents, and their role in the manifestation of various symptoms under pathophysiological conditions. Several important and challenging questions regarding these sensory nerves are discussed. Searching for these answers will be a critical step in developing the translational research and effective treatments of airway diseases.

OtherDOI
TL;DR: The distal convoluted tubule (DCT) is a short nephron segment, interposed between the macula densa and collecting duct, which plays a key role in regulating extracellular fluid volume and electrolyte homeostasis.
Abstract: The distal convoluted tubule (DCT) is a short nephron segment, interposed between the macula densa and collecting duct. Even though it is short, it plays a key role in regulating extracellular fluid volume and electrolyte homeostasis. DCT cells are rich in mitochondria, and possess the highest density of Na+/K+-ATPase along the nephron, where it is expressed on the highly amplified basolateral membranes. DCT cells are largely water impermeable, and reabsorb sodium and chloride across the apical membrane via electroneurtral pathways. Prominent among this is the thiazide-sensitive sodium chloride cotransporter, target of widely used diuretic drugs. These cells also play a key role in magnesium reabsorption, which occurs predominantly, via a transient receptor potential channel (TRPM6). Human genetic diseases in which DCT function is perturbed have provided critical insights into the physiological role of the DCT, and how transport is regulated. These include Familial Hyperkalemic Hypertension, the salt-wasting diseases Gitelman syndrome and EAST syndrome, and hereditary hypomagnesemias. The DCT is also established as an important target for the hormones angiotensin II and aldosterone; it also appears to respond to sympathetic-nerve stimulation and changes in plasma potassium. Here, we discuss what is currently known about DCT physiology. Early studies that determined transport rates of ions by the DCT are described, as are the channels and transporters expressed along the DCT with the advent of molecular cloning. Regulation of expression and activity of these channels and transporters is also described; particular emphasis is placed on the contribution of genetic forms of DCT dysregulation to our understanding.

OtherDOI
TL;DR: It is concluded that men and women do not exhibit major quantitative differences in physiological thermoregulatory responses to exercise and/or body heating when factors such as fitness and body size are taken into account.
Abstract: The present discussion reviews current knowledge regarding influences of the primary reproductive hormones on mechanisms of thermoregulatory control in women. The human body is remarkably capable of maintaining body temperature within a few tenths of a degree of normal (37°C) over a wide range of activity and environmental exposures; this regulation is accomplished via integration of central and peripheral thermal information at the preoptic area of the anterior hypothalamus (PO/AH). We describe both central and peripheral mechanisms involved in controlling thermoregulation in humans, and how these mechanisms are affected by sex and hormone exposure. Estrogens generally promote vasodilation, heat dissipation, and lower body temperature and progesterone or progestins generally have the opposite effect. Estrogens and progesterone/progestins can also interact with androgens; this is an important point because androgens in the body can increase in both older and younger women. The study of reproductive hormone (estrogens, progesterone, luteinizing, and follicle stimulating hormones) effects on body systems is challenging because of the complex and multifaceted influences of these hormones, both individually and in combination. Thus, a number of methods to alter hormone exposure are explained in this article. We conclude that men and women do not exhibit major quantitative differences in physiological thermoregulatory responses to exercise and/or body heating when factors such as fitness and body size are taken into account. However, female and male reproductive hormones have important influences that can significantly alter individual thermoregulatory responses at various points throughout the lifespan.

OtherDOI
TL;DR: As modern humans dispersed into a wide range of habitats over the last few hundred thousand years, recent selection has helped populations cope better with a broader range of locomotor and thermoregulatory challenges, but all humans remain essentially adapted for long distance locomotion rather than speed, and to dump rather than retain heat.
Abstract: Humans are unique in many respects including being furless, striding bipeds that excel at walking and running long distances in hot conditions. This review summarizes what we do and do not know about the evolution of these characteristics, and how they are related. Although many details remain poorly known, the first hominins (species more closely related to humans than to chimpanzees) apparently diverged from the chimpanzee lineage because of selection for bipedal walking, probably because it improved their ability to forage efficiently. However, because bipedal hominins are necessarily slow runners, early hominins in open habitats likely benefited from improved abilities to dump heat in order to forage safely during times of peak heat when predators were unable to hunt them. Endurance running capabilities evolved later, probably as adaptations for scavenging and then hunting. If so, then there would have been strong selection for heat-loss mechanisms, especially sweating, to persistence hunt, in which hunters combine endurance running and tracking to drive their prey into hyperthermia. As modern humans dispersed into a wide range of habitats over the last few hundred thousand years, recent selection has helped populations cope better with a broader range of locomotor and thermoregulatory challenges, but all humans remain essentially adapted for long distance locomotion rather than speed, and to dump rather than retain heat.