scispace - formally typeset
Search or ask a question

Showing papers in "Computational Intelligence and Neuroscience in 2011"


Journal ArticleDOI
TL;DR: FieldTrip is an open source software package that is implemented as a MATLAB toolbox and includes a complete set of consistent and user-friendly high-level functions that allow experimental neuroscientists to analyze experimental data.
Abstract: This paper describes FieldTrip, an open source software package that we developed for the analysis of MEG, EEG, and other electrophysiological data. The software is implemented as a MATLAB toolbox and includes a complete set of consistent and user-friendly high-level functions that allow experimental neuroscientists to analyze experimental data. It includes algorithms for simple and advanced analysis, such as time-frequency analysis using multitapers, source reconstruction using dipoles, distributed sources and beamformers, connectivity analysis, and nonparametric statistical permutation tests at the channel and source level. The implementation as toolbox allows the user to perform elaborate and structured analyses of large data sets using the MATLAB command line and batch scripting. Furthermore, users and developers can easily extend the functionality and implement new algorithms. The modular design facilitates the reuse in other software packages.

7,963 citations


Journal ArticleDOI
TL;DR: Brainstorm as discussed by the authors is a collaborative open-source application dedicated to magnetoencephalography (MEG) and EEG data visualization and processing, with an emphasis on cortical source estimation techniques and their integration with anatomical magnetic resonance imaging (MRI) data.
Abstract: Brainstorm is a collaborative open-source application dedicated to magnetoencephalography (MEG) and electroencephalography (EEG) data visualization and processing, with an emphasis on cortical source estimation techniques and their integration with anatomical magnetic resonance imaging (MRI) data. The primary objective of the software is to connect MEG/EEG neuroscience investigators with both the best-established and cutting-edge methods through a simple and intuitive graphical user interface (GUI).

2,637 citations


Journal ArticleDOI
TL;DR: A finger-based ECG biometric system, that uses signals collected at the fingers, through a minimally intrusive 1-lead ECG setup recurring to Ag/AgCl electrodes without gel as interface with the skin, is proposed.
Abstract: The ECG signal has been shown to contain relevant information for human identification. Even though results validate the potential of these signals, data acquisition methods and apparatus explored so far compromise user acceptability, requiring the acquisition of ECG at the chest. In this paper, we propose a finger-based ECG biometric system, that uses signals collected at the fingers, through a minimally intrusive 1-lead ECG setup recurring to Ag/AgCl electrodes without gel as interface with the skin. The collected signal is significantly more noisy than the ECG acquired at the chest, motivating the application of feature extraction and signal processing techniques to the problem. Time domain ECG signal processing is performed, which comprises the usual steps of filtering, peak detection, heartbeat waveform segmentation, and amplitude normalization, plus an additional step of time normalization. Through a simple minimum distance criterion between the test patterns and the enrollment database, results have revealed this to be a promising technique for biometric applications.

783 citations


Journal ArticleDOI
TL;DR: Methods to analyze the brain's electric fields recorded with multichannel Electroencephalogram (EEG) and their implementation in the software CARTOOL, designed to visualize the data and the analysis results using 3-dimensional display routines that allow rapid manipulation and animation of 3D images.
Abstract: This paper describes methods to analyze the brain's electric fields recorded with multichannel Electroencephalogram (EEG) and demonstrates their implementation in the software CARTOOL. It focuses on the analysis of the spatial properties of these fields and on quantitative assessment of changes of field topographies across time, experimental conditions, or populations. Topographic analyses are advantageous because they are reference independents and thus render statistically unambiguous results. Neurophysiologically, differences in topography directly indicate changes in the configuration of the active neuronal sources in the brain. We describe global measures of field strength and field similarities, temporal segmentation based on topographic variations, topographic analysis in the frequency domain, topographic statistical analysis, and source imaging based on distributed inverse solutions. All analysis methods are implemented in a freely available academic software package called CARTOOL. Besides providing these analysis tools, CARTOOL is particularly designed to visualize the data and the analysis results using 3-dimensional display routines that allow rapid manipulation and animation of 3D images. CARTOOL therefore is a helpful tool for researchers as well as for clinicians to interpret multichannel EEG and evoked potentials in a global, comprehensive, and unambiguous way.

590 citations


Journal ArticleDOI
TL;DR: A set of complementary EEG data collection and processing tools recently developed at the Swartz Center for Computational Neuroscience that connect to and extend the EEGLAB software environment, a freely available and readily extensible processing environment running under Matlab are described.
Abstract: We describe a set of complementary EEG data collection and processing tools recently developed at the Swartz Center for ComputationalNeuroscience (SCCN) that connect to and extend the EEGLAB software environment, a freely available and readily extensible processing environment running under Matlab. The new tools include (1) a new and flexible EEGLAB STUDY design facility for framing and performing statistical analyses on data from multiple subjects; (2) a neuroelectromagnetic forward head modeling toolbox (NFT) for building realistic electrical head models from available data; (3) a source information flow toolbox (SIFT) for modeling ongoing or event-related effective connectivity between cortical areas; (4) a BCILAB toolbox for building online brain-computer interface (BCI) models from available data, and (5) an experimental real-time interactive control and analysis (ERICA) environment for real-time production and coordination of interactive, multimodal experiments.

553 citations


Journal ArticleDOI
TL;DR: SPM8 is integrated with the FieldTrip toolbox, making it possible for users to combine a variety of standard analysis methods with new schemes implemented in SPM and build custom analysis tools using powerful graphical user interface (GUI) and batching tools.
Abstract: SPM is a free and open source software written in MATLAB (The MathWorks, Inc.). In addition to standard M/EEG preprocessing, we presently offer three main analysis tools: (i) statistical analysis of scalp-maps, time-frequency images, and volumetric 3D source reconstruction images based on the general linear model, with correction for multiple comparisons using random field theory; (ii) Bayesian M/EEG source reconstruction, including support for group studies, simultaneous EEG and MEG, and fMRI priors; (iii) dynamic causal modelling (DCM), an approach combining neural modelling with data analysis for which there are several variants dealing with evoked responses, steady state responses (power spectra and cross-spectra), induced responses, and phase coupling. SPM8 is integrated with the FieldTrip toolbox , making it possible for users to combine a variety of standard analysis methods with new schemes implemented in SPM and build custom analysis tools using powerful graphical user interface (GUI) and batching tools.

547 citations


Journal ArticleDOI
TL;DR: The details of the multitask CSP algorithm are outlined, results on two data sets are shown and a clear improvement can be seen, especially when the number of training trials is relatively low.
Abstract: Motor-imagery-based brain-computer interfaces (BCIs) commonly use the common spatial pattern filter (CSP) as preprocessing step before feature extraction and classification. The CSP method is a supervised algorithm and therefore needs subject-specific training data for calibration, which is very time consuming to collect. In order to reduce the amount of calibration data that is needed for a new subject, one can apply multitask (from now on called multisubject) machine learning techniques to the preprocessing phase. Here, the goal of multisubject learning is to learn a spatial filter for a new subject based on its own data and that of other subjects. This paper outlines the details of the multitask CSP algorithm and shows results on two data sets. In certain subjects a clear improvement can be seen, especially when the number of training trials is relatively low.

518 citations


Journal ArticleDOI
TL;DR: The aim of Ragu is to maximize statistical power while minimizing the need for a-priori choices of models and parameters (like inverse models or sensors of interest) that interact with and bias statistics.
Abstract: We present a program (Ragu; Randomization Graphical User interface) for statistical analyses of multichannel event-related EEG and MEG experiments. Based on measures of scalp field differences including all sensors, and using powerful, assumption-free randomization statistics, the program yields robust, physiologically meaningful conclusions based on the entire, untransformed, and unbiased set of measurements. Ragu accommodates up to two within-subject factors and one between-subject factor with multiple levels each. Significance is computed as function of time and can be controlled for type II errors with overall analyses. Results are displayed in an intuitive visual interface that allows further exploration of the findings. A sample analysis of an ERP experiment illustrates the different possibilities offered by Ragu. The aim of Ragu is tomaximize statistical power while minimizing the need for a-priori choices of models and parameters (like inverse models or sensors of interest) that interact with and bias statistics.

280 citations


Journal ArticleDOI
TL;DR: LIMO EEG is a Matlab toolbox (EEGLAB compatible) to analyse evoked responses over all space and time dimensions, while accounting for single trial variability using a simple hierarchical linear modelling of the data.
Abstract: Magnetic- and electric-evoked brain responses have traditionally been analyzed by comparing the peaks or mean amplitudes of signals from selected channels and averaged across trials. More recently, tools have been developed to investigate single trial response variability (e.g., EEGLAB) and to test differences between averaged evoked responses over the entire scalp and time dimensions (e.g., SPM, Fieldtrip). LIMO EEG is a Matlab toolbox (EEGLAB compatible) to analyse evoked responses over all space and time dimensions, while accounting for single trial variability using a simple hierarchical linear modelling of the data. In addition, LIMO EEG provides robust parametric tests, therefore providing a new and complementary tool in the analysis of neural evoked responses.

231 citations


Journal ArticleDOI
TL;DR: An overview of the capabilities of the EMMEGS toolbox is provided, together with a simple tutorial for both a standard ERP analysis and a time-frequency analysis.
Abstract: EMEGS (electromagnetic encephalography software) is a MATLAB toolbox designed to provide novice as well as expert users in the field of neuroscience with a variety of functions to perform analysis of EEG and MEG data. The software consists of a set of graphical interfaces devoted to preprocessing, analysis, and visualization of electromagnetic data. Moreover, it can be extended using a plug-in interface. Here, an overview of the capabilities of the toolbox is provided, together with a simple tutorial for both a standard ERP analysis and a time-frequency analysis. Latest features and future directions of the software development are presented in the final section.

217 citations


Journal ArticleDOI
TL;DR: Several methods to help students and researchers to work more efficiently with biomedical signals are highlighted.
Abstract: BioSig is an open source software library for biomedical signal processing. The aim of the BioSig project is to foster research in biomedical signal processing by providing free and open source software tools for many different application areas. Some of the areas where BioSig can be employed are neuroinformatics, brain-computer interfaces, neurophysiology, psychology, cardiovascular systems, and sleep research. Moreover, the analysis of biosignals such as the electroencephalogram (EEG), electrocorticogram (ECoG), electrocardiogram (ECG), electrooculogram (EOG), electromyogram (EMG), or respiration signals is a very relevant element of the BioSig project. Specifically, BioSig provides solutions for data acquisition, artifact processing, quality control, feature extraction, classification, modeling, and data visualization, to name a few. In this paper, we highlight several methods to help students and researchers to work more efficiently with biomedical signals.

Journal ArticleDOI
TL;DR: Feature selection techniques are considered to extract optimal feature subsets for state-of-the-art ECG classification models and indicate that a small number of individual features actually serve the classification and that better performances can be achieved by removing useless features.
Abstract: Supervised and interpatient classification of heart beats is primordial in many applications requiring long-term monitoring of the cardiac function. Several classification models able to cope with the strong class unbalance and a large variety of feature sets have been proposed for this task. In practice, over 200 features are often considered, and the features retained in the final model are either chosen using domain knowledge or an exhaustive search in the feature sets without evaluating the relevance of each individual feature included in the classifier. As a consequence, the results obtained by these models can be suboptimal and difficult to interpret. In this work, feature selection techniques are considered to extract optimal feature subsets for state-of-the-art ECG classification models. The performances are evaluated on real ambulatory recordings and compared to previously reported feature choices using the same models. Results indicate that a small number of individual features actually serve the classification and that better performances can be achieved by removing useless features.

Journal ArticleDOI
TL;DR: It is noted that temporal and frequency patterns of brain signals are able to provide possible descriptors conveying information about the cognitive and emotional processes in subjects observing commercial advertisements that could be unobtainable through common tools used in standard marketing research.
Abstract: Here we present an overview of some published papers of interest for the marketing research employing electroencephalogram (EEG) and magnetoencephalogram (MEG) methods. The interest for these methodologies relies in their high-temporal resolution as opposed to the investigation of such problem with the functional Magnetic Resonance Imaging (fMRI) methodology, also largely used in the marketing research. In addition, EEG and MEG technologies have greatly improved their spatial resolution in the last decades with the introduction of advanced signal processing methodologies. By presenting data gathered through MEG and high resolution EEG we will show which kind of information it is possible to gather with these methodologies while the persons are watching marketing relevant stimuli. Such information will be related to the memorization and pleasantness related to such stimuli. We noted that temporal and frequency patterns of brain signals are able to provide possible descriptors conveying information about the cognitive and emotional processes in subjects observing commercial advertisements. These information could be unobtainable through common tools used in standard marketing research. We also show an example of how an EEG methodology could be used to analyze cultural differences between fruition of video commercials of carbonated beverages in Western and Eastern countries.

Journal ArticleDOI
TL;DR: The ELAN toolbox is based on 25 years of methodological developments at the Brain Dynamics and Cognition Laboratory in Lyon and was used in many papers including the very first studies of time-frequency analysis of EEG data exploring evoked and induced oscillatory activities in humans.
Abstract: The recent surge in computational power has led to extensive methodological developments and advanced signal processing techniques that play a pivotal role in neuroscience. In particular, the field of brain signal analysis has witnessed a strong trend towards multidimensional analysis of large data sets, for example, single-trial time-frequency analysis of high spatiotemporal resolution recordings. Here, we describe the freely available ELAN software package which provides a wide range of signal analysis tools for electrophysiological data including scalp electroencephalography (EEG), magnetoencephalography (MEG), intracranial EEG, and local field potentials (LFPs). The ELAN toolbox is based on 25 years of methodological developments at the Brain Dynamics and Cognition Laboratory in Lyon and was used in many papers including the very first studies of time-frequency analysis of EEG data exploring evoked and induced oscillatory activities in humans. This paper provides an overview of the concepts and functionalities of ELAN, highlights its specificities, and describes its complementarity and interoperability with other toolboxes.

Journal ArticleDOI
TL;DR: This paper introduces PyEEG, an open source Python module for EEG feature extraction, which has the potential to save much time for computational neuroscientists.
Abstract: Computer-aided diagnosis of neural diseases from EEG signals (or other physiological signals that can be treated as time series, e.g., MEG) is an emerging field that has gained much attention in past years. Extracting features is a key component in the analysis of EEG signals. In our previous works, we have implemented many EEG feature extraction functions in the Python programming language. As Python is gaining more ground in scientific computing, an open source Python module for extracting EEG features has the potential to save much time for computational neuroscientists. In this paper, we introduce PyEEG, an open source Python module for EEG feature extraction.

Journal ArticleDOI
TL;DR: A group-level temporal ICA model for event related EEG is described and results indicate that group ICA is adequate for decomposition of single trials with physiological jitter, and reconstructs event related sources with high accuracy.
Abstract: Independent component analysis (ICA) is a powerful method for source separation and has been used for decomposition of EEG, MRI, and concurrent EEG-fMRI data. ICA is not naturally suited to draw group inferences since it is a non-trivial problem to identify and order components across individuals. One solution to this problem is to create aggregate data containing observations from all subjects, estimate a single set of components and then back-reconstruct this in the individual data. Here, we describe such a group-level temporal ICA model for event related EEG. When used for EEG time series analysis, the accuracy of component detection and back-reconstruction with a group model is dependent on the degree of intra- and interindividual time and phase-locking of event related EEG processes.We illustrate this dependency in a group analysis of hybrid data consisting of three simulated event-related sources with varying degrees of latency jitter and variable topographies. Reconstruction accuracy was tested for temporal jitter 1, 2 and 3 times the FWHM of the sources for a number of algorithms. The results indicate that group ICA is adequate for decomposition of single trials with physiological jitter, and reconstructs event related sources with high accuracy.

Journal ArticleDOI
TL;DR: NUTMEG is a source analysis toolbox geared towards cognitive neuroscience researchers using MEG and EEG, including intracranial recordings, and offers several variants of adaptive beamformers, probabilistic reconstruction algorithms, as well as minimum-norm techniques to generate functional maps of spatiotemporal neural source activity.
Abstract: NUTMEG is a source analysis toolbox geared towards cognitive neuroscience researchers using MEG and EEG, including intracranial recordings. Evoked and unaveraged data can be imported to the toolbox for source analysis in either the time or time-frequency domains. NUTMEG offers several variants of adaptive beamformers, probabilistic reconstruction algorithms, as well as minimum-norm techniques to generate functional maps of spatiotemporal neural source activity. Lead fields can be calculated from single and overlapping sphere head models or imported from other software. Group averages and statistics can be calculated as well. In addition to data analysis tools, NUTMEG provides a unique and intuitive graphical interface for visualization of results. Source analyses can be superimposed onto a structural MRI or headshape to provide a convenient visual correspondence to anatomy. These results can also be navigated interactively, with the spatial maps and source time series or spectrogram linked accordingly. Animations can be generated to view the evolution of neural activity over time. NUTMEG can also display brain renderings and perform spatial normalization of functional maps using SPM's engine. As a MATLAB package, the end user may easily link with other toolboxes or add customized functions.

Journal ArticleDOI
TL;DR: Tests with a mind typing paradigm based on a P300 brain-computer interface on a group of amyotrophic lateral sclerosis, middle cerebral artery stroke, and subarachnoid hemorrhage patients, suffering from motor and speech disabilities, find that one type of linear classifier yielded a higher classification accuracy.
Abstract: We report on tests with a mind typing paradigm based on a P300 brain-computer interface (BCI) on a group of amyotrophic lateral sclerosis (ALS), middle cerebral artery (MCA) stroke, and subarachnoid hemorrhage (SAH) patients, suffering from motor and speech disabilities. We investigate the achieved typing accuracy given the individual patient's disorder, and how it correlates with the type of classifier used. We considered 7 types of classifiers, linear as well as nonlinear ones, and found that, overall, one type of linear classifier yielded a higher classification accuracy. In addition to the selection of the classifier, we also suggest and discuss a number of recommendations to be considered when building a P300-based typing system for disabled subjects.

Journal ArticleDOI
TL;DR: OpenMEEG, which solves the electromagnetic forward problem in the quasistatic regime, for head models with piecewise constant conductivity, consists of the symmetric Boundary Element Method, which is based on an extended Green Representation theorem.
Abstract: To recover the sources giving rise to electro- and magnetoencephalography in individual measurements, realistic physiological modeling is required, and accurate numerical solutions must be computed. We present OpenMEEG, which solves the electromagnetic forward problem in the quasistatic regime, for head models with piecewise constant conductivity. The core of OpenMEEG consists of the symmetric Boundary Element Method, which is based on an extended Green Representation theorem. OpenMEEG is able to provide lead fields for four different electromagnetic forward problems: Electroencephalography (EEG), Magnetoencephalography (MEG), Electrical Impedance Tomography (EIT), and intracranial electric potentials (IPs). OpenMEEG is open source and multiplatform. It can be used from Python and Matlab in conjunction with toolboxes that solve the inverse problem; its integration within FieldTrip is operational since release 2.0.


Journal ArticleDOI
TL;DR: In this paper, a wearable sensor system for gait evaluation using gyroscopes and accelerometers for application to rehabilitation, healthcare and so on was developed, which measured the joint angles using the Kalman filter.
Abstract: The purpose of this study is to develop wearable sensor system for gait evaluation using gyroscopes and accelerometers for application to rehabilitation, healthcare and so on. In this paper, simultaneous measurement of joint angles of lower limbs and stride length was tested with a prototype of wearable sensor system. The system measured the joint angles using the Kalman filter. Signals from the sensor attached on the foot were used in the stride length estimation detecting foot movement automatically. Joint angles of the lower limbs were measured with stable and reasonable accuracy compared to those values measured with optical motion measurement system with healthy subjects. It was expected that the stride length measurement with the wearable sensor system would be practical by realizing more stable measurement accuracy. Sensor attachment position was suggested not to affect significantly measurement of slow and normal speed movements in a test with the rigid body model. Joint angle patterns measured in 10m walking with a healthy subject were similar to common patterns. High correlation between joint angles at some characteristic points and stride velocity were also found adequately. These results suggested that the wireless wearable inertial sensor system could detect characteristics of gait.

Journal ArticleDOI
TL;DR: The HMM classifiers incorporate the statistical information available on movement dynamics into the classification process, without discarding the time history of previous outcomes as GMMs do, and the benefits of the obtained statistical leverage are illustrated and discussed.
Abstract: Accelerometers are a popular choice as body-motion sensors: the reason is partly in their capability of extracting information that is useful for automatically inferring the physical activity in which the human subject is involved, beside their role in feeding biomechanical parameters estimators. Automatic classification of human physical activities is highly attractive for pervasive computing systems, whereas contextual awareness may ease the human-machine interaction, and in biomedicine, whereas wearable sensor systems are proposed for long-term monitoring. This paper is concerned with the machine learning algorithms needed to performthe classification task. HiddenMarkovModel (HMM) classifiers are studied by contrasting them with Gaussian Mixture Model (GMM) classifiers. HMMs incorporate the statistical information available on movement dynamics into the classification process, without discarding the time history of previous outcomes as GMMs do. An example of the benefits of the obtained statistical leverage is illustrated and discussed by analyzing two datasets of accelerometer time series.

Journal ArticleDOI
TL;DR: A software interface to stream MEG signals in real time from the 306-channel Elekta Neuromag MEG system to an external workstation is developed and it is shown here that real-time source imaging is possible by demonstrating real- time monitoring and feedback of alpha-band power fluctuations over parieto-occipital and frontal areas.
Abstract: To date, the majority of studies using magnetoencephalography (MEG) rely on off-line analysis of the spatiotemporal properties of brain activity. Real-time MEG feedback could potentially benefit multiple areas of basic and clinical research: brain-machine interfaces, neurofeedback rehabilitation of stroke and spinal cord injury, and new adaptive paradigm designs, among others. We have developed a software interface to stream MEG signals in real time from the 306-channel Elekta Neuromag MEG system to an external workstation. The signals can be accessed with a minimal delay (≤45 ms) when data are sampled at 1000 Hz, which is sufficient for most real-time studies. We also show here that real-time source imaging is possible by demonstrating real-time monitoring and feedback of alpha-band power fluctuations over parieto-occipital and frontal areas. The interface is made available to the academic community as an open-source resource.

Journal ArticleDOI
TL;DR: The “fMRI artefact rejection and sleep scoring toolbox’, or “FA𝕊T”, is developed in Matlab as an add-on toolbox for SPM8 and, therefore, internally uses its S PM8-meeg data format.
Abstract: We started writing the "fMRI artefact rejection and sleep scoring toolbox", or "FAST", to process our sleep EEG-fMRI data, that is, the simultaneous recording of electroencephalographic and functional magnetic resonance imaging data acquired while a subject is asleep. FAST tackles three crucial issues typical of this kind of data: (1) data manipulation (viewing, comparing, chunking, etc.) of long continuous M/EEG recordings, (2) rejection of the fMRI-induced artefact in the EEG signal, and (3) manual sleep-scoring of the M/EEG recording. Currently, the toolbox can efficiently deal with these issues via a GUI, SPM8 batching system or hand-written script. The tools developed are, of course, also useful for other EEG applications, for example, involving simultaneous EEG-fMRI acquisition, continuous EEG eye-balling, and manipulation. Even though the toolbox was originally devised for EEG data, it will also gracefully handle MEG data without any problem. "FAST" is developed in Matlab as an add-on toolbox for SPM8 and, therefore, internally uses its SPM8-meeg data format. "FAST" is available for free, under the

Journal ArticleDOI
TL;DR: The SSVEP responses of three periodic stimuli: square wave (with different duty cycles), triangle wave, and sine wave are compared to find an effective stimulus and the connection between the strength of the harmonics inSSVEP and the type of stimulus is demonstrated.
Abstract: Steady state visual evoked potential (SSVEP) is the brain's natural electrical potential response for visual stimuli at specific frequencies. Using a visual stimulus flashing at some given frequency will entrain the SSVEP at the same frequency, thereby allowing determination of the subject's visual focus. The faster an SSVEP is identified, the higher information transmission rate the system achieves. Thus, an effective stimulus, defined as one with high success rate of eliciting SSVEP and high signal-noise ratio, is desired. Also, researchers observed that harmonic frequencies often appear in the SSVEP at a reduced magnitude. Are the harmonics in the SSVEP elicited by the fundamental stimulating frequency or by the artifacts of the stimuli? In this paper, we compare the SSVEP responses of three periodic stimuli: square wave (with different duty cycles), triangle wave, and sine wave to find an effective stimulus. We also demonstrate the connection between the strength of the harmonics in SSVEP and the type of stimulus.

Journal ArticleDOI
TL;DR: A hypothesis that language and cognition are two separate but closely interacting mechanisms is developed, consistent with Arbib's "language prewired brain” built on top of mirror neuron system and models recent neuroimaging data about cognition, remaining unnoticed by other theories.
Abstract: How language and cognition interact in thinking? Is language just used for communication of completed thoughts, or is it fundamental for thinking? Existing approaches have not led to a computational theory. We develop a hypothesis that language and cognition are two separate but closely interacting mechanisms. Language accumulates cultural wisdom; cognition develops mental representations modeling surrounding world and adapts cultural knowledge to concrete circumstances of life. Language is acquired from surrounding language "ready-made" and therefore can be acquired early in life. This early acquisition of language in childhood encompasses the entire hierarchy from sounds to words, to phrases, and to highest concepts existing in culture. Cognition is developed from experience. Yet cognition cannot be acquired from experience alone; language is a necessary intermediary, a "teacher." A mathematical model is developed; it overcomes previous difficulties and leads to a computational theory. This model is consistent with Arbib's "language prewired brain" built on top of mirror neuron system. It models recent neuroimaging data about cognition, remaining unnoticed by other theories. A number of properties of language and cognition are explained, which previously seemed mysterious, including influence of language grammar on cultural evolution, which may explain specifics of English and Arabic cultures.

Journal ArticleDOI
TL;DR: Generality, along with the reported results, supports adopting the introduced approach to benefit from the biologically plausible synaptic models in a wide range of intuitive signal processing.
Abstract: An integration of both the Hebbian-based and reinforcement learning (RL) rules is presented for dynamic synapses. The proposed framework permits the Hebbian rule to update the hidden synaptic model parameters regulating the synaptic response rather than the synaptic weights. This is performed using both the value and the sign of the temporal difference in the reward signal after each trial. Applying this framework, a spiking network with spike-timing-dependent synapses is tested to learn the exclusive-OR computation on a temporally coded basis. Reward values are calculated with the distance between the output spike train of the network and a reference target one. Results show that the network is able to capture the required dynamics and that the proposed framework can reveal indeed an integrated version of Hebbian and RL. The proposed framework is tractable and less computationally expensive. The framework is applicable to a wide class of synaptic models and is not restricted to the used neural representation. This generality, along with the reported results, supports adopting the introduced approach to benefit from the biologically plausible synaptic models in a wide range of intuitive signal processing.

Journal ArticleDOI
TL;DR: In a first experimental study, a model of coupled repressilators is analysed and its ability to synchronise clock signals in a monofrequential manner is demonstrated.
Abstract: Exploration of chronobiological systems emerges as a growing research field within bioinformatics focusing on various applications in medicine, agriculture, and material sciences. From a systems biological perspective, the question arises whether biological control systems for regulation of oscillatory signals and their technical counterparts utilise similar mechanisms. If so, modelling approaches and parameterisation adopted from building blocks can help to identify general components for frequency control in circadian clocks along with gaining insight into mechanisms of clock synchronisation to external stimuli like the daily rhythm of sunlight and darkness. Phase-locked loops could be an interesting candidate in this context. Both, biology and engineering, can benefit from a unified view resulting from systems modularisation. In a first experimental study, we analyse a model of coupled repressilators. We demonstrate its ability to synchronise clock signals in a monofrequential manner. Several oscillators initially deviate in phase difference and frequency with respect to explicit reaction and diffusion rates. Accordingly, the duration of the synchronisation process depends on dedicated reaction and diffusion parameters whose settings still lack to be sufficiently captured analytically.

Journal ArticleDOI
TL;DR: The main goal of this paper is to give the basis for creating a computer-based clinical decision support (CDS) system for laryngopathies based on the speech signal analysis using recurrent neural networks (RNNs).
Abstract: The main goal of this paper is to give the basis for creating a computer-based clinical decision support (CDS) system for laryngopathies. One of approaches which can be used in the proposed CDS is based on the speech signal analysis using recurrent neural networks (RNNs). RNNs can be used for pattern recognition in time series data due to their ability of memorizing some information from the past. The Elman networks (ENs) are a classical representative of RNNs. To improve learning ability of ENs, we may modify and combine them with another kind of RNNs, namely, with the Jordan networks. The modified Elman-Jordan networks (EJNs) manifest a faster and more exact achievement of the target pattern. Validation experiments were carried out on speech signals of patients from the control group and with two kinds of laryngopathies.

Journal ArticleDOI
TL;DR: The basic features and system architecture of Craniux are introduced and the validation of the system under real-time BMI operation using simulated and real electrocorticographic signals are described.
Abstract: This paper presents "Craniux," an open-access, open-source software framework for brain-machine interface (BMI) research. Developed in LabVIEW, a high-level graphical programming environment, Craniux offers both out-of-the-box functionality and amodular BMI software framework that is easily extendable. Specifically, it allows researchers to take advantage of multiple features inherent to the Lab VIEW environment for on-the-fly data visualization, parallel processing, multithreading, and data saving. This paper introduces the basic features and system architecture of Craniux and describes the validation of the system under realtime BMI operation using simulated and real electrocorticographic (ECoG) signals. Our results indicate that Craniux is able to operate consistently in real time, enabling a seamless work flow to achieve brain control of cursor movement. The Craniux software framework is made available to the scientific research community to provide a LabVIEW-based BMI software platform for future BMI research and development.