scispace - formally typeset
Search or ask a question
JournalISSN: 0178-7675

Computational Mechanics 

Springer Science+Business Media
About: Computational Mechanics is an academic journal published by Springer Science+Business Media. The journal publishes majorly in the area(s): Finite element method & Numerical analysis. It has an ISSN identifier of 0178-7675. Over the lifetime, 3880 publications have been published receiving 124218 citations. The journal is also known as: Computational mechanics (Berlin. Print).


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a local symmetric weak form (LSWF) for linear potential problems is developed, and a truly meshless method, based on the LSWF and the moving least squares approximation, is presented for solving potential problems with high accuracy.
Abstract: A local symmetric weak form (LSWF) for linear potential problems is developed, and a truly meshless method, based on the LSWF and the moving least squares approximation, is presented for solving potential problems with high accuracy. The essential boundary conditions in the present formulation are imposed by a penalty method. The present method does not need a “finite element mesh”, either for purposes of interpolation of the solution variables, or for the integration of the “energy”. All integrals can be easily evaluated over regularly shaped domains (in general, spheres in three-dimensional problems) and their boundaries. No post-smoothing technique is required for computing the derivatives of the unknown variable, since the original solution, using the moving least squares approximation, is already smooth enough. Several numerical examples are presented in the paper. In the example problems dealing with Laplace & Poisson's equations, high rates of convergence with mesh refinement for the Sobolev norms ||·||0 and ||·||1 have been found, and the values of the unknown variable and its derivatives are quite accurate. In essence, the present meshless method based on the LSWF is found to be a simple, efficient, and attractive method with a great potential in engineering applications.

2,332 citations

Journal ArticleDOI
TL;DR: The diffuse element method (DEM) as discussed by the authors is a generalization of the finite element approximation (FEM) method, which is used for generating smooth approximations of functions known at given sets of points and for accurately estimating their derivatives.
Abstract: This paper describes the new “diffuse approximation” method, which may be presented as a generalization of the widely used “finite element approximation” method. It removes some of the limitations of the finite element approximation related to the regularity of approximated functions, and to mesh generation requirements. The diffuse approximation method may be used for generating smooth approximations of functions known at given sets of points and for accurately estimating their derivatives. It is useful as well for solving partial differential equations, leading to the so called “diffuse element method” (DEM), which presents several advantages compared to the “finite element method” (FEM), specially for evaluating the derivatives of the unknown functions.

1,951 citations

Journal ArticleDOI
TL;DR: In this article, the authors provide an overview of the existing quasi-static and dynamic phase-field fracture formulations from the physics and the mechanics communities, and propose and test the so-called hybrid formulation, which leads within a staggered implementation to an incrementally linear problem.
Abstract: In this contribution we address the issue of efficient finite element treatment for phase-field modeling of brittle fracture. We start by providing an overview of the existing quasi-static and dynamic phase-field fracture formulations from the physics and the mechanics communities. Within the formulations stemming from Griffith's theory, we focus on quasi-static models featuring a tension-compression split, which prevent cracking in compression and interpenetration of the crack faces upon closure, and on the staggered algorithmic implementation due to its proved robustness. In this paper, we establish an appropriate stopping criterion for the staggered scheme. Moreover, we propose and test the so-called hybrid formulation, which leads within a staggered implementation to an incrementally linear problem. This enables a significant reduction of computational cost--about one order of magnitude--with respect to the available (non-linear) models. The conceptual and structural similarities of the hybrid formulation to gradient-enhanced continuum damage mechanics are outlined as well. Several benchmark problems are solved, including one with own experimental verification.

880 citations

Journal ArticleDOI
TL;DR: A fully-coupled monolithic formulation of the fluid-structure interaction of an incompressible fluid on a moving domain with a nonlinear hyperelastic solid is presented.
Abstract: We present a fully-coupled monolithic formulation of the fluid-structure interaction of an incompressible fluid on a moving domain with a nonlinear hyperelastic solid. The arbitrary Lagrangian–Eulerian description is utilized for the fluid subdomain and the Lagrangian description is utilized for the solid subdomain. Particular attention is paid to the derivation of various forms of the conservation equations; the conservation properties of the semi-discrete and fully discretized systems; a unified presentation of the generalized-α time integration method for fluid-structure interaction; and the derivation of the tangent matrix, including the calculation of shape derivatives. A NURBS-based isogeometric analysis methodology is used for the spatial discretization and three numerical examples are presented which demonstrate the good behavior of the methodology.

866 citations

Journal ArticleDOI
TL;DR: A micro-macro strategy suitable for modeling the mechanical response of heterogeneous materials at large deformations and non-linear history dependent material behaviour is presented and its performance is illustrated by the simulation of pure bending of porous aluminum.
Abstract: A micro-macro strategy suitable for modeling the mechanical response of heterogeneous materials at large deformations and non-linear history dependent material behaviour is presented. When using this micro-macro approach within the context of finite element implementation there is no need to specify the homogenized constitutive behaviour at the macroscopic integration points. Instead, this behaviour is determined through the detailed modeling of the microstructure. The performance of the method is illustrated by the simulation of pure bending of porous aluminum. The influence of the spatial distribution of heterogeneities on the overall macroscopic behaviour is discussed by comparing the results of micro-macro modeling for regular and random structures.

848 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
202393
2022168
2021193
2020157
2019165
2018129