scispace - formally typeset
Search or ask a question

Showing papers in "Computer Methods in Biomechanics and Biomedical Engineering in 2015"


Journal ArticleDOI
TL;DR: A new upper limb dynamic model is presented as a tool to evaluate potential differences in predictive behavior between platforms and to benchmark the benchmarking comparison using SIMM–Dynamics Pipeline–SD/Fast and OpenSim platforms.
Abstract: Several opensource or commercially available software platforms are widely used to develop dynamic simulations of movement. While computational approaches are conceptually similar across platforms, technical differences in implementation may influence output. We present a new upper limb dynamic model as a tool to evaluate potential differences in predictive behavior between platforms. We evaluated to what extent differences in technical implementations in popular simulation software environments result in differences in kinematic predictions for single and multijoint movements using EMG- and optimization-based approaches for deriving control signals. We illustrate the benchmarking comparison using SIMM-Dynamics Pipeline-SD/Fast and OpenSim platforms. The most substantial divergence results from differences in muscle model and actuator paths. This model is a valuable resource and is available for download by other researchers. The model, data, and simulation results presented here can be used by future researchers to benchmark other software platforms and software upgrades for these two platforms.

250 citations


Journal ArticleDOI
TL;DR: The identification of the joint axes from clinical images is a robust procedure for human movement modelling and simulation.
Abstract: Subject-specific musculoskeletal models have become key tools in the clinical decision-making process. However, the sensitivity of the calculated solution to the unavoidable errors committed while deriving the model parameters from the available information is not fully understood. The aim of this study was to calculate the sensitivity of all the kinematics and kinetics variables to the inter-examiner uncertainty in the identification of the lower limb joint models. The study was based on the computer tomography of the entire lower-limb from a single donor and the motion capture from a body-matched volunteer. The hip, the knee and the ankle joint models were defined following the International Society of Biomechanics recommendations. Using a software interface, five expert anatomists identified on the donor's images the necessary bony locations five times with a three-day time interval. A detailed subject-specific musculoskeletal model was taken from an earlier study, and re-formulated to define the joint axes by inputting the necessary bony locations. Gait simulations were run using OpenSim within a Monte Carlo stochastic scheme, where the locations of the bony landmarks were varied randomly according to the estimated distributions. Trends for the joint angles, moments, and the muscle and joint forces did not substantially change after parameter perturbations. The highest variations were as follows: (a) 11° calculated for the hip rotation angle, (b) 1% BW × H calculated for the knee moment and (c) 0.33 BW calculated for the ankle plantarflexor muscles and the ankle joint forces. In conclusion, the identification of the joint axes from clinical images is a robust procedure for human movement modelling and simulation.

69 citations


Journal ArticleDOI
TL;DR: Comparisons between the two groups showed that time parameters along with root mean square (RMS) value, amplitude and other parameters could reveal the activities in each phase, suggesting that this is an improved method in evaluating fall risk, which promises benefits in terms of improvement of elderly quality of life.
Abstract: We examined falling risk among elderly using a wearable inertial sensor, which combines accelerometer and gyrosensors devices, applied during the Timed Up and Go (TUG) test. Subjects were categorised into two groups as low fall risk and high fall risk with 13.5 s duration taken to complete the TUG test as the threshold between them. One sensor was attached at the subject's waist dorsally, while acceleration and gyrosensor signals in three directions were extracted during the test. The analysis was carried out in phases: sit-bend, bend-stand, walking, turning, stand-bend and bend-sit. Comparisons between the two groups showed that time parameters along with root mean square (RMS) value, amplitude and other parameters could reveal the activities in each phase. Classification using RMS value of angular velocity parameters for sit-stand phase, RMS value of acceleration for walking phase and amplitude of angular velocity signal for turning phase along with time parameters suggests that this is an improved method in evaluating fall risk, which promises benefits in terms of improvement of elderly quality of life.

65 citations


Journal ArticleDOI
TL;DR: The well-founded Theory of Porous Media, a continuum-mechanical approach for the description of multi-component aggregates, is used and results in a set of strongly coupled partial differential equations which are spatially discretised using mixed finite elements and solved in a monolithic manner with an implicit Euler time-integration scheme.
Abstract: Human brain tissue is complex and multi-component in nature. It consists of an anisotropic hyperelastic solid material composed of tissue cells and blood vessel walls. Brain tissue is permeated by two viscous pore liquids, the interstitial fluid and the blood. Both liquids are mobile within the tissue and exhibit a significant anisotropic perfusion behaviour. To model this complex aggregate, the well-founded Theory of Porous Media, a continuum-mechanical approach for the description of multi-component aggregates, is used. To include microscopic information, the model is enhanced by tissue characteristics obtained from medical imaging techniques. Moreover, the model is applied to invasive drug-delivery strategies, i.e. the direct extra-vascular infusion of therapeutic agents. For this purpose, the overall interstitial fluid is treated as a real two-component mixture of a liquid solvent and a dissolved therapeutic solute. Finally, the continuum-mechanical model results in a set of strongly coupled partial differential equations which are spatially discretised using mixed finite elements and solved in a monolithic manner with an implicit Euler time-integration scheme. Numerical examples demonstrate the applicability of the presented model.

64 citations


Journal ArticleDOI
TL;DR: In this paper, a 1D blood flow model is incorporated with a Kelvin-Voigt viscoelastic arterial wall, which leads to a nonlinear hyperbolic-parabolic system, which is then solved with four numerical schemes, namely: MacCormack, Taylor-Galerkin, monotonic upwind scheme for conservation law and local discontinuous Galerkin The numerical schemes are tested on a single vessel, a simple bifurcation and a network with 55 arteries
Abstract: A reliable and fast numerical scheme is crucial for the 1D simulation of blood flow in compliant vessels In this paper, a 1D blood flow model is incorporated with a Kelvin-Voigt viscoelastic arterial wall This leads to a nonlinear hyperbolic-parabolic system, which is then solved with four numerical schemes, namely: MacCormack, Taylor-Galerkin, monotonic upwind scheme for conservation law and local discontinuous Galerkin The numerical schemes are tested on a single vessel, a simple bifurcation and a network with 55 arteries The numerical solutions are checked favorably against analytical, semi-analytical solutions or clinical observations Among the numerical schemes, comparisons are made in four important aspects: accuracy, ability to capture shock-like phenomena, computational speed and implementation complexity The suitable conditions for the application of each scheme are discussed

60 citations


Journal ArticleDOI
TL;DR: Time- and location-dependent differences in stresses, strains and fluid pressures occurring in cartilage during walking are revealed, suggesting that meniscectomy might initiate a post-traumatic process leading to osteoarthritis at the lateral compartment of the knee joint.
Abstract: Computational models can be used to evaluate the functional properties of knee joints and possible risk locations within joints. Current models with fibril-reinforced cartilage layers do not provide information about realistic human movement during walking. This study aimed to evaluate stresses and strains within a knee joint by implementing load data from a gait cycle in healthy and meniscectomised knee joint models with fibril-reinforced cartilages. A 3D finite element model of a knee joint with cartilages and menisci was created from magnetic resonance images. The gait cycle data from varying joint rotations, translations and axial forces were taken from experimental studies and implemented into the model. Cartilage layers were modelled as a fibril-reinforced poroviscoelastic material with the menisci considered as a transversely isotropic elastic material. In the normal knee joint model, relatively high maximum principal stresses were specifically predicted to occur in the medial condyle of the knee joint during the loading response. Bilateral meniscectomy increased stresses, strains and fluid pressures in cartilage on the lateral side, especially during the first 50% of the stance phase of the gait cycle. During the entire stance phase, the superficial collagen fibrils modulated stresses of cartilage, especially in the medial tibial cartilage. The present computational model with a gait cycle and fibril-reinforced biphasic cartilage revealed time- and location-dependent differences in stresses, strains and fluid pressures occurring in cartilage during walking. The lateral meniscus was observed to have a more significant role in distributing loads across the knee joint than the medial meniscus, suggesting that meniscectomy might initiate a post-traumatic process leading to osteoarthritis at the lateral compartment of the knee joint.

57 citations


Journal ArticleDOI
TL;DR: The present study revealed that the Newtonian assumption is a good approximation at mid-and-high flow velocities, as the greater the blood flow, the higher the shear rate near the arterial wall.
Abstract: Three non-Newtonian blood viscosity models plus the Newtonian one are analysed for a patient-specific thoracic aorta anatomical model under steady-state flow conditions via wall shear stress (WSS) distribution, non-Newtonian importance factors, blood viscosity and shear rate. All blood viscosity models yield a consistent WSS distribution pattern. The WSS magnitude, however, is influenced by the model used. WSS is found to be the lowest in the vicinity of the three arch branches and along the distal walls of the branches themselves. In this region, the local non-Newtonian importance factor and the blood viscosity are elevated, and the shear rate is low. The present study revealed that the Newtonian assumption is a good approximation at mid-and-high flow velocities, as the greater the blood flow, the higher the shear rate near the arterial wall. Furthermore, the capabilities of the applied non-Newtonian models appeared at low-flow velocities. It is concluded that, while the non-Newtonian power-law model app...

57 citations


Journal ArticleDOI
TL;DR: A 3D method was developed to directly quantify PA based on 3D architectural data that were acquired from cadaveric specimens through dissection and digitization, and is based on the geometric analysis of fascicle attachment.
Abstract: Pennation angle (PA) is an important property of human skeletal muscle that plays a significant role in determining the force contribution of fascicles to skeletal movement. Two-dimensional (2D) ultrasonography is the most common approach to measure PA. However, in principle, it is challenging to infer knowledge of three-dimensional (3D) architecture from 2D assessment. Furthermore, architectural complexity and variation impose more difficulties on reliable and consistent quantification of PA. Thus, the purpose of our study is to provide accurate insight into the correspondence between 2D assessment and the underlying 3D architecture. To this end, a 3D method was developed to directly quantify PA based on 3D architectural data that were acquired from cadaveric specimens through dissection and digitization. Those data were then assessed two-dimensionally by simulating ultrasound imaging. To achieve consistency over intermuscular variation, our proposed 3D method is based on the geometric analysis of fascic...

56 citations


Journal ArticleDOI
TL;DR: The purpose of the study is to develop a realistic 3D finite element model of the hemi-pelvis and to assess stress and strain distribution during a gait cycle and application of hip-joint force through an anatomical femoral head having a cartilage layer was found to be more appropriate than a perfectly spherical head.
Abstract: An appropriate method of application of the hip-joint force and stress analysis of the pelvic bone, in particular the acetabulum, is necessary to investigate the changes in load transfer due to implantation and to calculate the reference stimulus for bone remodelling simulations. The purpose of the study is to develop a realistic 3D finite element (FE) model of the hemi-pelvis and to assess stress and strain distribution during a gait cycle. The FE modelling approach of the pelvic bone was based on CT scan data and image segmentation of cortical and cancellous bone boundaries. Application of hip-joint force through an anatomical femoral head having a cartilage layer was found to be more appropriate than a perfectly spherical head, thereby leading to more accurate stress–strain distribution in the acetabulum. Within the acetabulum, equivalent strains varied between 0.1% and 0.7% strain in the cancellous bone. High compressive (15–30 MPa) and low tensile (0–5 MPa) stresses were generated within the acetabul...

55 citations


Journal ArticleDOI
TL;DR: Results show that the angulation strongly alters its mechanical stress distribution, and the instantaneous wall shear stress distributions are substantially moderated by the arterial wall compliance.
Abstract: The aim of this study is to elucidate the correlation between coronary artery branch angulation, local mechanical and haemodynamic forces at the vicinity of bifurcation Using a coupled fluid-structure interaction (FSI) modelling approach, five idealized left coronary artery models with various angles ranging from 70° to 110° were developed to investigate the influence of branch angulations In addition, one CT image-based model was reconstructed to further demonstrate the medical application potential of the proposed FSI coupling method The results show that the angulation strongly alters its mechanical stress distribution, and the instantaneous wall shear stress distributions are substantially moderated by the arterial wall compliance As high tensile stress is hypothesized to cause stenosis, the left circumflex side bifurcation shoulder is indicated to induce atherosclerotic changes with a high tendency for wide-angled models

54 citations


Journal ArticleDOI
TL;DR: An overview of the simulation techniques employed for modelling the flow of red blood cells (RBCs) in blood plasma is provided and topics such as modelling fluid–structure interaction with the immersed boundary method and boundary integral method are discussed.
Abstract: In this review, we provide an overview of the simulation techniques employed for modelling the flow of red blood cells (RBCs) in blood plasma. The scope of this review omits the fluid modelling aspect while focusing on other key components in the RBC-plasma model such as (1) describing the RBC deformation with shell-based and spring-based RBC models, (2) constitutive models for RBC aggregation based on bridging theory and depletion theory and (3) additional strategies required for completing the RBC-plasma flow model. These include topics such as modelling fluid-structure interaction with the immersed boundary method and boundary integral method, and updating the variations in multiphase fluid property through the employment of index field methods. Lastly, we summarily discuss the current state and aims of RBC modelling and suggest some research directions for the further development of this field of modelling.

Journal ArticleDOI
TL;DR: The results suggest that the functions of knee ligaments in this model approximated the behaviour of the physical knee and the enhanced knee structures can improve the ability to investigate knee joint biomechanics during various gait activities.
Abstract: Musculoskeletal models are widely used to investigate joint kinematics and predict muscle force during gait. However, the knee is usually simplified as a one degree of freedom joint and knee ligaments are neglected. The aim of this study was to develop an OpenSim gait model with enhanced knee structures. The knee joint in this study included three rotations and three translations. The three knee rotations and mediolateral translation were independent, with proximodistal and anteroposterior translations occurring as a function of knee flexion/extension. Ten elastic elements described the geometrical and mechanical properties of the anterior and posterior cruciate ligaments (ACL and PCL), and the medial and lateral collateral ligaments (MCL and LCL). The three independent knee rotations were evaluated using OpenSim to observe ligament function. The results showed that the anterior and posterior bundles of ACL and PCL (aACL, pACL and aPCL, pPCL) intersected during knee flexion. The aACL and pACL mainly provi...

Journal ArticleDOI
TL;DR: In this article, the authors developed a validated quantitative model to predict how cells in fracture callus might respond to change in their mechanical microenvironment due to different configurations of locking compression plate (LCP) in clinical practice, particularly in the early stage of healing.
Abstract: Flexible fixation or the so-called 'biological fixation' has been shown to encourage the formation of fracture callus, leading to better healing outcomes. However, the nature of the relationship between the degree of mechanical stability provided by a flexible fixation and the optimal healing outcomes has not been fully understood. In this study, we have developed a validated quantitative model to predict how cells in fracture callus might respond to change in their mechanical microenvironment due to different configurations of locking compression plate (LCP) in clinical practice, particularly in the early stage of healing. The model predicts that increasing flexibility of the LCP by changing the bone-plate distance (BPD) or the plate working length (WL) could enhance interfragmentary strain in the presence of a relatively large gap size (> 3 mm). Furthermore, conventional LCP normally results in asymmetric tissue development during early stage of callus formation, and the increase of BPD or WL is insufficient to alleviate this problem.

Journal ArticleDOI
TL;DR: The findings of this study could have implications not only for understanding the extension and rupture mechanism of UV but also for interventions and surgeries, including balloon angioplasty, bypass and stenting.
Abstract: Coronary artery disease is responsible for almost 30% of all deaths worldwide. The saphenous vein and umbilical vein (UV) are the most common veins using for treatment as a coronary artery bypass graft (CABG). The mechanical properties of UV belonging to its long-term patency for CABG are very important. However, there is a lack of knowledge on the linear elastic and nonlinear hyperelastic mechanical properties of the UV. In this study, three stress definitions (second Piola–Kichhoff stress, engineering stress and true stress) and four strain definitions (Almansi–Hamel strain, Green–St Venant strain, engineering strain and true strain) are used to determine the elastic modulus, maximum stress and strain of eight human UVs under circumferential loading. The nonlinear mechanical behaviour of the UV is computationally investigated using Mooney–Rivlin hyperelastic model. A numerical finite element analysis is also carried out to simulate the constitutive modelling versus its numerical results. The results sho...

Journal ArticleDOI
TL;DR: The aim was to develop a method for comparison of stress distribution in various fixation devices, to determine whether the use of multibody musculoskeletal input in such model is applicable and to report the approach.
Abstract: This paper addresses the evaluation of clavicle fixation devices, by means of computational models. The aim was to develop a method for comparison of stress distribution in various fixation devices, to determine whether the use of multibody musculoskeletal input in such model is applicable and to report the approach. The focus was on realistic loading and the motivation for the work is that the treatment can be enhanced by a better understanding of the loading of the clavicle and fixation device. The method can be used to confirm the strength of customised plates, for optimisation of new plates and to complement experimental studies. A finite element (FE) mesh of the clavicle geometry was created from computed tomography data and imported into the FE solver where the model was subjected to muscle forces and other boundary conditions from a multibody musculoskeletal model performing a typical activity of daily life. A reconstruction plate and screws were also imported into the model. The combination models...

Journal ArticleDOI
TL;DR: The feasibility of using a parametric human FE model to investigate the obesity effects on occupant responses in frontal crashes was demonstrated and predicted significantly higher risks of injuries to the thorax and lower extremities in frontal crashed compared with non-obese occupants.
Abstract: The objective of this study is to investigate the effects of obesity on occupant responses in frontal crashes using whole-body human finite element (FE) models representing occupants with different obesity levels. In this study, the geometry of THUMS 4 midsize male model was varied using mesh morphing techniques with target geometries defined by statistical models of external body contour and exterior ribcage geometry. Models with different body mass indices (BMIs) were calibrated against cadaver test data under high-speed abdomen loading and frontal crash conditions. A parametric analysis was performed to investigate the effects of BMI on occupant injuries in frontal crashes based on the Taguchi method while controlling for several vehicle design parameters. Simulations of obese occupants predicted significantly higher risks of injuries to the thorax and lower extremities in frontal crashes compared with non-obese occupants, which is consistent with previous field data analyses. These higher injury risks...

Journal ArticleDOI
TL;DR: It can be observed that stenoses in an artery significantly influence the haemodynamic parameters of wall shear stress and pressure drop in contrast to dilatations case, deduces that stenosis plays a more critical role in plaque growth and vulnerability in contrastto dilatation, and should be the key element in cardiovascular pathology and diagnosis.
Abstract: In this paper, we have analysed pulsatile flow through partially occluded elastic arteries, to determine the haemodynamic parameters of wall shear stress (WSS), wall pressure gradient and pressure drops (ΔP), contributing to enhanced flow resistance and myocardial ischaemic regions which impair cardiac contractility and cause increased work load on the heart. In summary, it can be observed that stenoses in an artery significantly influence the haemodynamic parameters of wall shear stress and pressure drop in contrast to dilatations case. This deduces that stenosis plays a more critical role in plaque growth and vulnerability in contrast to dilatation, and should be the key element in cardiovascular pathology and diagnosis. Through quantitative analysis of WSS and ΔP, we have provided a clearer insight into the haemodynamics of atherosclerotic arteries. Determination of these parameters can be helpful to cardiologists, because it is directly implicated in the genesis and development of atherosclerosis.

Journal ArticleDOI
TL;DR: The biomechanical model of the upper limb describing the infraspinatus by a single bundle could not solve the complete motion of anterior flexion and shows that a lower level of muscle discretisation provides worse estimations regarding the muscle forces.
Abstract: The inverse dynamics technique applied to musculoskeletal models, and supported by optimisation techniques, is used extensively to estimate muscle and joint reaction forces. However, the solutions of the redundant muscle force sharing problem are sensitive to the detail and modelling assumptions of the models used. This study presents four alternative biomechanical models of the upper limb with different levels of discretisation of muscles by bundles and muscle paths, and their consequences on the estimation of the muscle and joint reaction forces. The muscle force sharing problem is solved for the motions of abduction and anterior flexion, acquired using video imaging, through the minimisation of an objective function describing muscle metabolic energy consumption. While looking for the optimal solution, not only the equations of motion are satisfied but also the stability of the glenohumeral and scapulothoracic joints is preserved. The results show that a lower level of muscle discretisation provides worse estimations regarding the muscle forces. Moreover, the poor discretisation of muscles relevant to the joint in analysis limits the applicability of the biomechanical model. In this study, the biomechanical model of the upper limb describing the infraspinatus by a single bundle could not solve the complete motion of anterior flexion. Despite the small differences in the magnitude of the forces predicted by the biomechanical models with more complex muscular systems, in general, there are no significant variations in the muscular activity of equivalent muscles.

Journal ArticleDOI
TL;DR: In this article, a geometric sensitivity analysis of finite element (FE) models of the osseoligamentous spine using pre-operative computed tomography (CT) data-sets for spinal surgery patients has been developed.
Abstract: Software to create individualised finite element (FE) models of the osseoligamentous spine using pre-operative computed tomography (CT) data-sets for spinal surgery patients has recently been developed. This study presents a geometric sensitivity analysis of this software to assess the effect of intra-observer variability in user-selected anatomical landmarks. User-selected landmarks on the osseous anatomy were defined from CT data-sets for three scoliosis patients and these landmarks were used to reconstruct patient-specific anatomy of the spine and ribcage using parametric descriptions. The intra-observer errors in landmark co-ordinates for these anatomical landmarks were calculated. FE models of the spine and ribcage were created using the reconstructed anatomy for each patient and these models were analysed for a loadcase simulating clinical flexibility assessment. The intra-observer error in the anatomical measurements was low in comparison to the initial dimensions, with the exception of the angular measurements for disc wedge and zygapophyseal joint (z-joint) orientation and disc height. This variability suggested that CT resolution may influence such angular measurements, particularly for small anatomical features, such as the z-joints, and may also affect disc height. The results of the FE analysis showed low variation in the model predictions for spinal curvature with the mean intra-observer variability substantially less than the accepted error in clinical measurement. These findings demonstrate that intra-observer variability in landmark point selection has minimal effect on the subsequent FE predictions for a clinical loadcase.

Journal ArticleDOI
TL;DR: A biomechanical basis is provided for the reported improved performance of locking plates in poorer bone quality by comparing the mechanical behaviour of the more recent locking compression plate (LCP) with the traditional dynamic compression plates (DCPs) in bone of varying quality using finite element modelling.
Abstract: While locking plate fixation is becoming increasingly popular for complex and osteoporotic fractures, for many indications compression plating remains the standard choice. This study compares the mechanical behaviour of the more recent locking compression plate (LCP) device, with the traditional dynamic compression plates (DCPs) in bone of varying quality using finite element modelling. The bone properties considered include orthotropy, inhomogeneity, cortical thinning and periosteal apposition associated with osteoporosis. The effect of preloads induced by compression plating was included in the models. Two different fracture scenarios were modelled: one with complete reduction and one with a fracture gap. The results show that the preload arising in DCPs results in large principal strains in the bone all around the perimeter of the screw hole, whereas for LCPs large principal strains occur primarily on the side of the screw proximal to the load. The strains within the bone produced by the two screw types are similar in healthy bone with a reduced fracture gap; however, the DCP produces much larger strains in osteoporotic bone. In the presence of a fracture gap, the DCP results in a considerably larger region with high tensile strains and a slightly smaller region with high compressive strains. These findings provide a biomechanical basis for the reported improved performance of locking plates in poorer bone quality.

Journal ArticleDOI
TL;DR: Assessment of the stress distribution in implant prosthetic screws with different heights of the clinical crown of the prosthesis using the method of three-dimensional finite element analysis concluded that the increase of the crown was damaging to the stress Distribution on the screw, mainly in oblique loading.
Abstract: The retaining screw of the implant-supported dental prosthesis is the weakest point of the crown/implant system. Furthermore, crown height is another important factor that may increase the lever arm. Therefore, the aim of this study was to assess the stress distribution in implant prosthetic screws with different heights of the clinical crown of the prosthesis using the method of three-dimensional finite element analysis. Three models were created with implants (3.75 mm × 10 mm) and crowns (heights of 10, 12.5 and 15 mm). The results were visualised by means of von Mises stress maps that increased the crown heights. The screw structure exhibited higher levels of stresses in the oblique load. The oblique loading resulted in higher stress concentration when compared with the axial loading. It is concluded that the increase of the crown was damaging to the stress distribution on the screw, mainly in oblique loading.

Journal ArticleDOI
TL;DR: The acinus consists of complex, branched alveolar ducts and numerous surrounding alveoli, and so it is hypothesized that the particle deposition can be much influenced by the complex acinar geometry.
Abstract: The acinus consists of complex, branched alveolar ducts and numerous surrounding alveoli, and so in this study, we hypothesized that the particle deposition can be much influenced by the complex acinar geometry, and simulated the airflow and particle deposition (density = 1.0 g/cm(3), diameter = 1 and 3 μm) numerically in a pulmonary acinar model based on synchrotron micro-CT of the mammalian lung. We assumed that the fluid-structure interaction was neglected and that alveolar flow was induced by the expansion and contraction of the acinar model with the volume changing sinusoidally with time as the moving boundary conditions. The alveolar flow was dominated by radial flows, and a weak recirculating flow was observed at the proximal side of alveoli during the entire respiratory cycle, despite the maximum Reynolds number at the inlet being 0.029. Under zero gravity, the particle deposition rate after single breathing was less than 0.01, although the particles were transported deeply into the acinus after inspiration. Under a gravitational field, the deposition rate and map were influenced strongly by gravity orientation. In the case of a particle diameter of 1 μm, the rate increased dramatically and mostly non-deposited particles remained in the model, indicating that the rate would increase further after repeated breathing. At a particle diameter of 3 μm, the rate was 1.0 and all particles were deposited during single breathing. Our results show that the particle deposition rate in realistic pulmonary acinar model is higher than in an idealized model.

Journal ArticleDOI
TL;DR: The directional dependent tissue response of the brain and the variable efficiency of PPE with respect to the blast orientation were two major results of this study.
Abstract: A parametric study was conducted to delineate the efficacy of personal protective equipment (PPE), such as ballistic faceshields and advanced combat helmets, in the case of a blast. The propagations of blast waves and their interactions with an unprotected head, a helmeted one, and a fully protected finite element head model (FEHM) were modeled. The biomechanical parameters of the brain were recorded when the FEHM was exposed to shockwaves from the front, back, top, and bottom. The directional dependent tissue response of the brain and the variable efficiency of PPE with respect to the blast orientation were two major results of this study.

Journal ArticleDOI
TL;DR: Investigation of the effect of widely used assumption of no translational degrees of freedom in musculoskeletal trunk models on trunk muscle forces, spinal loads, kinematics, and stability during a number of static activities indicated that ignoring intervertebral translational DOFs had in general low to moderate impact on model predictions.
Abstract: Due to the complexity of the human spinal motion segments, the intervertebral joints are often simulated in the musculoskeletal trunk models as pivots thus allowing no translational degrees of freedom (DOFs). This work aims to investigate, for the first time, the effect of such widely used assumption on trunk muscle forces, spinal loads, kinematics, and stability during a number of static activities. To address this, the shear deformable beam elements used in our nonlinear finite element (OFE) musculoskeletal model of the trunk were either substantially stiffened in translational directions (SFE model) or replaced by hinge joints interconnected through rotational springs (HFE model). Results indicated that ignoring intervertebral translational DOFs had in general low to moderate impact on model predictions. Compared with the OFE model, the SFE and HFE models predicted generally larger L4–L5 and L5–S1 compression and shear loads, especially for tasks with greater trunk angles; differences reached ∼15% for ...

Journal ArticleDOI
TL;DR: A novel constitutive model to simulate an orthotropic rate-dependent behaviour of the passive myocardium at finite strains showing excellent agreement compared to experimental data obtained from the literature and significant deviations in the strain field relative to the elastic solution.
Abstract: This contribution presents a novel constitutive model in order to simulate an orthotropic rate-dependent behaviour of the passive myocardium at finite strains. The motivation for the consideration of orthotropic viscous effects in a constitutive level lies in the disagreement between theoretical predictions and experimentally observed results. In view of experimental observations, the material is deemed as nearly incompressible, hyperelastic, orthotropic and viscous. The viscoelastic response is formulated by means of a rheological model consisting of a spring coupled with a Maxwell element in parallel. In this context, the isochoric free energy function is decomposed into elastic equilibrium and viscous non-equilibrium parts. The baseline elastic response is modelled by the orthotropic model of Holzapfel and Ogden [Holzapfel GA, Ogden RW. 2009. Constitutive modelling of passive myocardium: a structurally based framework for material characterization. Philos Trans Roy Soc A Math Phys Eng Sci. 367:3445–347...

Journal ArticleDOI
TL;DR: Investigation of the neuromuscular response to wrist perturbations and gripping demands by considering both co-contraction and muscle contributions to joint stiffness, suggesting enhanced contributions rather than muscular redistribution.
Abstract: The purpose of this study was to investigate how gripping modulates forearm muscle co-contraction prior to and during sudden wrist perturbations. Ten males performed a sub-maximal gripping task (no grip, 5% and 10% of maximum) while a perturbation forced wrist flexion or extension. Wrist joint angles and activity from 11 muscles were used to determine forearm co-contraction and muscle contributions to wrist joint stiffness. Co-contraction increased in all pairs as grip force increased (from no grip to 10% grip), corresponding to a 36% increase in overall wrist joint stiffness. Inclusion of individual muscle contributions to wrist joint stiffness enhanced the understanding of forearm co-contraction. The extensor carpi radialis longus (ECRL) and brevis had the largest stiffness contributions (34.5 ± 1.3% and 20.5 ± 2.3%, respectively), yet muscle pairs including ECRL produced the lowest co-contraction. The muscles contributing most to wrist stiffness were consistent across conditions (ECRL for extensors; Fl...

Journal ArticleDOI
TL;DR: A finite element model of the human eye using simple constitutive models was developed and an interpretation of the resulting pressure, based on the propagation and reflection of the waves inside the eye bulb and orbit, is proposed.
Abstract: Primary blast injury (PBI) is the general term that refers to injuries resulting from the mere interaction of a blast wave with the body Although few instances of primary ocular blast injury, without a concomitant secondary blast injury from debris, are documented, some experimental studies demonstrate its occurrence In order to investigate PBI to the eye, a finite element model of the human eye using simple constitutive models was developed The material parameters were calibrated by a multi-objective optimisation performed on available eye impact test data The behaviour of the human eye and the dynamics of mechanisms occurring under PBI loading conditions were modelled For the generation of the blast waves, different combinations of explosive (trinitrotoluene) mass charge and distance from the eye were analysed An interpretation of the resulting pressure, based on the propagation and reflection of the waves inside the eye bulb and orbit, is proposed The peculiar geometry of the bony orbit (similar

Journal ArticleDOI
TL;DR: Results show that computation of biophysical stimuli within cells are achievable with single-cell computational models; correspondence between computed and measured force/displacement behaviours provides a high-level validation of the model.
Abstract: A finite element model of a single cell was created and used to compute the biophysical stimuli generated within a cell under mechanical loading. Major cellular components were incorporated in the model: the membrane, cytoplasm, nucleus, microtubules, actin filaments, intermediate filaments, nuclear lamina and chromatin. The model used multiple sets of tensegrity structures. Viscoelastic properties were assigned to the continuum components. To corroborate the model, a simulation of atomic force microscopy indentation was performed and results showed a force/indentation simulation with the range of experimental results. A parametric analysis of both increasing membrane stiffness (thereby modelling membrane peroxidation with age) and decreasing density of cytoskeletal elements (thereby modelling reduced actin density with age) was performed. Comparing normal and aged cells under indentation predicts that aged cells have a lower membrane area subjected to high strain as compared with young cells, but the difference, surprisingly, is very small and may not be measurable experimentally. Ageing is predicted to have a more significant effect on strain deep in the nucleus. These results show that computation of biophysical stimuli within cells are achievable with single-cell computational models; correspondence between computed and measured force/displacement behaviours provides a high-level validation of the model. Regarding the effect of ageing, the models suggest only small, although possibly physiologically significant, differences in internal biophysical stimuli between normal and aged cells.

Journal ArticleDOI
TL;DR: The results indicate that the proposed system achieves high accuracy in classification of breast tissues using the electrical impedance spectroscopy.
Abstract: In this paper, we present a new approach for breast tissue classification using the features derived from electrical impedance spectroscopy. This method is composed of a feature extraction method, feature selection phase and a classification step. The feature extraction phase derives the features from the electrical impedance spectra. The extracted features consist of the impedivity at zero frequency (I0), the phase angle at 500 KHz, the high-frequency slope of phase angle, the impedance distance between spectral ends, the area under spectrum, the normalised area, the maximum of the spectrum, the distance between impedivity at I0 and the real part of the maximum frequency point and the length of the spectral curve. The system uses the information theoretic criterion as a strategy for feature selection and the combining extreme learning machines (ELMs) for the classification phase. The results of several ELMs are combined using the support vector machines classifier, and the result of classification is reported as a measure of the performance of the system. The results indicate that the proposed system achieves high accuracy in classification of breast tissues using the electrical impedance spectroscopy.

Journal ArticleDOI
TL;DR: A methodology has been developed to evaluate neck response at multiple levels in a human body FE model during simulated automotive impacts and is ideal for comparing neck forces and moments to existing injury threshold values, calculating injury criteria and for better understanding the biomechanical mechanisms of neck injury and load sharing during sub-injurious and injurious loading.
Abstract: Human body finite element (FE) models are beginning to play a more prevalent role in the advancement of automotive safety. A methodology has been developed to evaluate neck response at multiple levels in a human body FE model during simulated automotive impacts. Three different impact scenarios were simulated: a frontal impact of a belted driver with airbag deployment, a frontal impact of a belted passenger without airbag deployment and an unbelted side impact sled test. Cross sections were created at each vertebral level of the cervical spine to calculate the force and moment contributions of different anatomical components of the neck. Adjacent level axial force ratios varied between 0.74 and 1.11 and adjacent level bending moment ratios between 0.55 and 1.15. The present technique is ideal for comparing neck forces and moments to existing injury threshold values, calculating injury criteria and for better understanding the biomechanical mechanisms of neck injury and load sharing during sub-injurious an...