scispace - formally typeset
Search or ask a question

Showing papers in "Contributions to Mineralogy and Petrology in 1984"


Journal ArticleDOI
TL;DR: The composition of chromian spinels in alpine-type peridotites has a large reciprocal range of Cr and Al, with increasing Cr# (Cr/(Cr+Al)) reflecting increasing degrees of partial melting in the mantle as mentioned in this paper.
Abstract: The composition of chromian spinel in alpine-type peridotites has a large reciprocal range of Cr and Al, with increasing Cr# (Cr/(Cr+Al)) reflecting increasing degrees of partial melting in the mantle. Using spinel compositions, alpine-type peridotites can be divided into three groups. Type I peridotites and associated volcanic rocks contain spinels with Cr# 0.60, and Type II peridotites and volcanics are a transitional group and contain spinels spanning the full range of spinel compositions in Type I and Type II peridotites. Spinels in abyssal peridotites lie entirely within the Type I spinel field, making ophiolites with Type I alpine-type peridotites the most likely candidates for sections of ocean lithosphere formed at a midocean ridge. The only modern analogs for Type III peridotites and associated volcanic rocks are found in arc-related volcanic and intrusive rocks, continental intrusive assemblages, and oceanic plateau basalts. We infer a sub-volcanic arc petrogenesis for most Type III alpine-type peridotites. Type II alpine-type peridotites apparently reflect composite origins, such as the formation of an island-arc on ocean crust, resulting in large variations in the degree and provenance of melting over relatively short distances. The essential difference between Type I and Type III peridotites appears to be the presence or absence of diopside in the residue at the end of melting.

1,884 citations


Journal ArticleDOI
TL;DR: A pyrope-quartzite originally described by Vialon (1966) from the Dora Maira massif was resampled and reinvestigated in this article, showing that the whole matrix has once been coesite.
Abstract: A pyrope-quartzite originally described by Vialon (1966) from the Dora Maira massif was resampled and reinvestigated. Garnet (up to 25 cm in size), phengite, kyanite, talc and rutile are in textural equilibrium in an undeformed matrix of polygonal quartz. The garnet is a pyrope-almandine solid solution with 90 to 98 mol % Mg end-member. It contains inclusions of coesite which has partially inverted to quartz, resulting in a typical radial cracking of the host garnet around the inclusions. Several lines of evidence show that coesite crystallised under nearly static pressure conditions and that the whole matrix has once been coesite. The formidable pressures of formation implied (≧28 kbar) are independently indicated by i) the coexistence of nearly pure pyrope with free silica and talc, ii) the coexistence of jadeite with kyanite, iii) the high Si content of phengite. Water activity must have been low. The stability of talc-phengite and the presence of rare glaucophane inclusions in pyrope point to low formation temperatures (about 700 °C) and to a probable Alpine age for the assemblage. This is evidence that low temperature gradients, how essentially transient they are, may nevertheless persist to considerable depths. Moreover, the upper crustal (evaporite-related?) origin of the quartzite and its interbedding within a continental unit implies that continental crust may also be subducted to depths of 90 km or more. The return back to the surface is problematic; the retrograde assemblages observed show that it must be tectonic. If the rocks remain at depth, new perspectives open for the genesis of intermediate to acidic magmas. Eventually, the role of continental crust in geodynamics may have to be reconsidered.

1,197 citations


Journal ArticleDOI
TL;DR: In this article, the effects of Calcium on Fe-Mg partitioning between garnet and orthopyroxene were investigated in the pressure-temperature range 5-30 kbar and 800-1,200° C in the FeO-MaggO-Al2O3-SiO2 (FMAS) and CaO-FeO-mgO-aluminous Orthopyroxenes (CFMAS) systems.
Abstract: The partitioning of Fe and Mg between garnet and aluminous orthopyroxene has been experimentally investigated in the pressure-temperature range 5–30 kbar and 800–1,200° C in the FeO-MgO-Al2O3-SiO2 (FMAS) and CaO-FeO-MgO-Al2O3-SiO2 (CFMAS) systems. Within the errors of the experimental data, orthopyroxene can be regarded as macroscopically ideal. The effects of Calcium on Fe-Mg partitioning between garnet and orthopyroxene can be attributed to non-ideal Ca-Mg interactions in the garnet, described by the interaction term:W CaMg ga -W CaFe ga =1,400±500 cal/mol site. Reduction of the experimental data, combined with molar volume data for the end-member phases, permits the calibration of a geothermometer which is applicable to garnet peridotites and granulites: $$T(^\circ C) = \left\{ {\frac{{3,740 + 1,400X_{gr}^{ga} + 22.86P(kb)}}{{R\ln K_D + 1.96}}} \right\} - 273$$ with $$K_D = {{\left\{ {\frac{{Fe}}{{Mg}}} \right\}^{ga} } \mathord{\left/ {\vphantom {{\left\{ {\frac{{Fe}}{{Mg}}} \right\}^{ga} } {\left\{ {\frac{{Fe}}{{Mg}}} \right\}}}} \right. \kern- ulldelimiterspace} {\left\{ {\frac{{Fe}}{{Mg}}} \right\}}}$$ and $$X_{gr}^{ga} = (Ca/Ca + Mg + Fe)^{ga} .$$ The accuracy and precision of this geothermometer are limited by largerelative errors in the experimental and natural-rock data and by the modest absolute variation inK D with temperature. Nevertheless, the geothermometer is shown to yield reasonable temperature estimates for a variety of natural samples.

627 citations


Journal ArticleDOI
TL;DR: In this article, the heat capacities of several dozen silicate glasses and liquids composed of SiO2, TiO 2, Al2O3, Fe2O 3, FeO, MgO, CaO, BaO, Li 2O, Na2O, K2O and Rb2O have been measured by differential scanning and drop calorimetry.
Abstract: The heat capacities of several dozen silicate glasses and liquids composed of SiO2, TiO2, Al2O3, Fe2O3, FeO, MgO, CaO, BaO, Li2O, Na2O, K2O, and Rb2O have been measured by differential scanning and drop calorimetry. These results have been combined with data from the literature to fit C pas a function of composition. A model assuming ideal mixing (linear combination) of partial molar heat capacities of oxide components (each of which is independent of composition), reproduces the glass data within error. The assumption of constancy of ¯C p,iis less accurate for the liquids, but data are not sufficient to adequately constrain a more complex model. For liquids containing alkali metal and alkaline earth oxides, heat capacities are systematically greater in liquids with high “field strength” network modifying cations. Entropies of fusion (per g-atom) and changes of configurational entropy with temperature, are similarly affected by composition. Both smaller cation size and greater charge are therefore inferred to lead to greater development of new structural configurations with increasing temperature in silicate liquids.

287 citations


Journal ArticleDOI
TL;DR: A consistent age of about 2.5 AE has been obtained by the Rb-Sr and Sm-Nd whole-rock isochron methods, in agreement with the zircon U-Pb data.
Abstract: The granulite gneisses and their retrograded products of the Qianxi Group from eastern Hebei Province, China, have been investigated for their isotope and trace element geochemistry. A consistent age of about 2.5 AE has been obtained by the Rb-Sr and Sm-Nd whole-rock isochron methods, in agreement with the zircon U-Pb data (Pidgeon 1980; D.Y. Liu, unpubl.). Geochemical arguments from initial isotopic ratios (ISr and INd) and elemental distribution patterns have led us to conclude that this age of about 2.5 AE represents the time of granulite facies metamorphism, which must have followed closely the primary emplacement of their protoliths. Previous claims for early Archean ages (>3.5 AE) of these granulites are not substantiated. The mineral isotope systematics register an important thermal event at about 1.7 AE, roughly corresponding to the time of the widespread Luliang Orogeny (Ma and Wu 1981) or Chungtiao Movement (Huang 1978). The granulites of the Qianxi Group have diverse compositions ranging from ultrabasic through basic-intermediate to acid. Discriminant function calculations suggest that most analyzed samples have igneous parentage. Only a few show characteristics of metasedimentary rocks. The igneous protoliths apparently belong to two series — tholeiitic and calc-alkaline, with the latter dominating in abundance. The majority of the acid granulites have compositions corresponding to tonalite-granodiorite. Except for ultrabasic and metasedimentary rocks, all REE patterns are significantly fractionated with LREE enrichment. The degree of fractionation, as measured by the (La/Yb)N ratios, is most important in the acid granulites. These rocks often show positive Eu anomalies and HREE depletions that are typical of Archean TTG rocks (tonalitetrondhjemite-granodiorite). The existence of komatiites has been previously reported in this region. Although a few rocks have a major element chemistry similar to that for peridotitic komatiites, the lack of associated members in a komatiitic series and the scarcity of REE data have not confirmed the true komatiite occurrence in this region. Many Qianxi granulites are highly depleted in Rb relative to K and Sr. This preferential Rb depletion during granulite facies metamorphism has led to very high K/Rb and very low Rb/Sr ratios. The most comparable case is found in Lewisian granulites. Although the fractionated REE patterns of the basic granulites somewhat resemble those of continental flood basalts, the highly different abundances in other incompatible elements (Ti, Zr, and Ba) readily distinguish them from each other. Nevertheless, the LREE enriched patterns of the basic granulites may suggest an origin of their protoliths by partial melting of LREE-enriched mantle sources. On the other hand, the REE patterns of acid granulites suggest that their protoliths could be derived by partial melting of quartz eclogite, amphibolite or basic granulite. The close time relationship for a series of geologic events, namely, from initial melting of mantle peridotites, through fractional crystallisation of basaltic magmas, to granulite facies metamorphism, seems to occur in many granulite terrains. This relationship, together with the juxtaposition of lithologies of different origins and the exceptionally high pressure conditions (>10 Kb) can be best explained by crustal underplating combined with intracrustal thin-skinned thrusting and stacking of crustal slices. The “andesitic or island arc” model for the formation of the lower continental crust is not in good agreement with the present geochemical data.

268 citations


Journal ArticleDOI
TL;DR: In this article, an unambiguous example of unsupported radiogenic Pb in a 3,950 Ma-old crystal was identified, at one 40 μm spot on the crystal an unusually large heterogeneity in Pb content was found, the concentration of radiogenic pb ranging from 5 to 50 percent higher than could have been generated in 3, 950 Ma by radioactive decay of the coexisting U and Th.
Abstract: Ion microprobe U-Th-Pb isotopic analyses of zircons from a granodioritic orthogneiss from the Napier Complex, Mount Sones, Enderby Land, Antarctica, have identified an unambiguous example of unsupported radiogenic Pb in a 3,950 Ma-old crystal. At one 40 μm spot on the crystal an unusually large heterogeneity in Pb content was found, the concentration of radiogenic Pb ranging from 5 to 50 percent higher than could have been generated in 3,950 Ma by radioactive decay of the co-existing U and Th. This relative excess of radiogenic Pb is attributed to Pb gain rather than to U and Th loss because first, the Pb content varied by more than the U or Th contents and secondly, changes in the Pb/U, Pb/Th and Pb isotopic composition correlated directly with changes in the Pb concentration. The individual 207Pb/206Pb apparent ages ranged from 4,000 Ma to 4,145 Ma, all greater than the inferred age of the crystal. A correlation between 207Pb/206Pb and Pb/U shows that the Pb excess has not resulted from recent Pb movement. The spot apparently gained radiogenic Pb about 2,500 Ma ago, at the same time as the majority of the other zircons in the rock suffered substantial Pb loss. The Pb movement occurred in response to a discrete geologic event. Reverse discordance is a phenomenon that must be considered when interpreting zircon U-Pb ages, especially 207Pb/206Pb ages of single crystals or portions of crystals.

250 citations


Journal ArticleDOI
TL;DR: In this article, the authors proposed a fluid dynamic model for the steady ascent of compressible, two-phase magma (melt+H2O+CO2) in which irreversible phenomena (friction, heat transfer) are accounted for.
Abstract: Kinetic and fluid dynamic constraints on deep-seated magma migration rates suggest ascent velocities in the range 10 to 30 m/s, 10−1 to 10 m/s and 10−2 to 5 m/s for kimberlitic, garnet peridotite-bearing and spinel peridotite-bearing alkalic magmas. These rates virtually demand translithospheric magma transport by a fracture as opposed to diapiric mechanism. The hypothesis that volatile exsolution accelerates magma through the deep lithosphere is tested by solution of the appropriate set of conservation, mass balance and volatile component solubility equations governing the steady ascent (decompression) of compressible, two-phase magma (melt+H2O+CO2) in which irreversible phenomena (friction, heat transfer) are accounted for. The results of the numerical experiments were designed to test the importance of melt bulk composition (kimberlite, nephelinite, alkali basalt), initial conditions (mass flux (M), heat transfer coefficient (B), lumped friction factor (C f )), conduit width (D), initial magma volatile content and geothermal gradients. The fractional increase in ascent rate (Δu/u i ) is rarely greater than approximately 2 during translithospheric migration. The propellant hypothesis is rejected as a first-order mechanism driving magma acceleration during ascent. The most influential parameters governing ascent dynamics are M, C f , D, B and the geotherm. Because of the relatively incompressible nature of the magmatic volatile phase at P>100 MPa, the initial magma volatile content plays a secondary (although demonstrable) role. The main role of volatiles is in controlling the initial magma flux (M) and the magma pressure during ascent. In adiabatic (B=0) simulations, magma ascends nearly isothermally. Generally, however, the assumption of adiabaticity is a poor one especially for flow through narrow (0.5 to 2 m) conduits in old (cold) lithosphere at rates ∼10−1 m/s. The proposed fluid dynamic model is consistent with and complementary to the magma-driven crack propagation models. The generation of mantle metasomatic fluid is a corollary of the non-adiabatic ascent of volatile-bearing magma through the lithosphere. Magma heat death is an important process for the creation of mantle heterogeneity.

238 citations


Journal ArticleDOI
TL;DR: In this article, the Redlich-Kister equation has been used to model the CMAS system and the enstatite-diopside join of Lindsley et al. and Gasparik and Newton.
Abstract: In the system CaO-MgO-Al2O3-SiO2 (CMAS), equilibrium alumina contents of orthopyroxene and clinopyroxene, both coexisting with spinel + forsterite or spinel + anorthite, have been reversed in 16 runs at 1,300–1,400°C and 10.2–20.8 kbar, using PbO flux. The present data and the data of Perkins and Newton (1980) have been modeled using the Redlich-Kister equation. The resulting model satisfies most of the reversed data in the CMAS system, agrees very well with thermochemical measurements, and is consistent with the model for the enstatite-diopside join of Lindsley et al. (1981) and with the system MgO-Al2O3-SiO2 of Gasparik and Newton (1984). The present data, however, do not confirm the negative slopes of Al-isopleths in the spinel lherzolite field suggested by Dixon and Presnall (1980). The new model has been used to calculate a graphical two-pyroxene thermobarometer applicable to natural two-pyroxene assemblages closely approaching in composition the CMAS system.

228 citations


Journal ArticleDOI
TL;DR: Brown hornblende occurs in minor amounts in the Artfjallet gabbro and dolerites, except in quartz-dolerites where a pale green hornblend occurs.
Abstract: Brown hornblende occurs in minor amounts in the Artfjallet gabbro and dolerites, except in quartz-dolerites where a pale green hornblende occurs. In the gabbro, brown hornblende is mostly Ti-bearing pargasite or kaersutite. It occurs along veins of orthopyroxene, as rims around and blebs in pyroxenes, with orthopyroxene in coronas between olivine and plagioclase and in coronas between ilmenite and plagioclase. In the olivine-dolerites and orthopyroxene-dolerites brown hornblende is ferroan titanian pargasite or ferroan kaersutite. The pale green hornblende in the quartz-dolerites is a magnesio-hornblende. The hornblendes in the dolerites are interstitial or granular, in some dolerites occurring as coarse oikocrysts. It is proposed that under certain conditions the Ti content of hornblende can be used as a thermometer, derived from experimental data of Helz (1973). Microstructures, compositions and formation temperatures (< 1,040° C) show that the brown hornblende in the gabbro is not magmatic, but of subsolidus origin. Probably it formed as a result of the introduction of water into the gabbro during a deformation event that occurred early in the cooling history of the gabbro. Least-squares modelling of hornblende formation indicates that all magmatic minerals must have participated in the reaction and that the reaction probably was not isochemical. Microstructures, compositions and formation temperatures (1,030-965° C) of brown hornblende in the dolerites are consistent with late-stage crystallization from the magma. For the pale green hornblende in the quartz-dolerites a magmatic origin is likely, but cannot be proven.

215 citations


Journal ArticleDOI
TL;DR: In this article, the authors developed analytical expressions which enable determination of the rates of mineral dissolution and growth and of advective and diffusive mass transport during metamorphism, and showed that the growth steps are linear functions of the driving force (−Δ G) of the overall reaction while diffusion may take place either through a grain boundary fluid film or through the disorganized grain boundary itself.
Abstract: For a given rate of heat input into a prograde metamorphic sequence the extent of overstep of reaction temperature (disequilibrium) depends on the slowest of three sequential steps: (a) surface detachment of reactant minerals, (b) transport of material to the site of mineral growth, and (c) nucleation and growth of the product mineral. We have developed analytical expressions which enable determination of the rates of mineral dissolution and growth and of advective and diffusive mass transport during metamorphism. The dissolution and growth steps are linear functions of the driving force (−Δ G) of the overall reaction while diffusion may take place either through a grain boundary fluid film or through the disorganized grain boundary itself.

214 citations



Journal ArticleDOI
TL;DR: In this article, the melting temperature of the system Qz-Or-Ab-An-H2 O was experimentally reversed in the pressure range 2 - 15 kbar using starting materials made up of mixtures of quartz and synthetic feldspars.
Abstract: The beginning of melting in the system Qz-Or-Ab-An-H2 O was experimentally reversed in the pressure range \(P_{{\text{H}}_{\text{2}} {\text{O}}} = 2 - 15\) kbar using starting materials made up of mixtures of quartz and synthetic feldspars. With increasing pressure the melting temperature decreases from 690° C at 2 kbar to 630° C at 17 kbar in the An-free alkalifeldspar granite system Qz-Or-Ab-H2O. In the granite system Qz-Or-Ab-An-H2O the increase of the solidus temperature with increasing An-content is only very small. In comparison to the alkalifeldspar granite system the solidus temperature increases by 3° C (7° C) if albite is replaced by plagioclase An 20 (An 40). The difference between the solidus temperatures of the alkalifeldspar granite system and of quartz — anorthite — sanidine assemblages (system Qz-Or-An-H2O) is approximately 50° C.

Journal ArticleDOI
TL;DR: Fractionation density is defined as the ratio of the gram formula weight to molar volume of the chemical components in the liquid phase that are being removed by fractional crystallization as mentioned in this paper.
Abstract: The dynamical behaviour of basaltic magma chambers is fundamentally controlled by the changes that occur in the density of magma as it crystallizes. In this paper the term fractionation density is introduced and defined as the ratio of the gram formula weight to molar volume of the chemical components in the liquid phase that are being removed by fractional crystallization. Removal of olivine and pyroxene, whose values of fractionation density are larger than the density of the magma, causes the density of residual liquid to decrease. Removal of plagioclase, with fractionation density less than the magma density, can cause the density of residual liquid to increase. During the progressive differentiation of basaltic magma, density decreases during fractionation of olivine, olivine-pyroxene, and pyroxene assemblages. When plagioclase joins these mafic phases magma density can sometimes increase leading to a density minimum. Calculations of melt density changes during fractionation show that compositional effects on density are usually greater than associated thermal effects. In the closed-system evolution of basaltic magma, several stages of distinctive fluid dynamical behaviour can be recognised that depend on the density changes which accompany crystallization, as well as on the geometry of the chamber. In an early stage of the evolution, where olivine and/or pyroxenes are the fractionating phases, compositional stratification can occur due to side-wall crystallization and replenishment by new magma, with the most differentiated magma tending to accumulate at the roof of the chamber. When plagioclase becomes a fractionating phase a zone of well-mixed magma with a composition close to the density minimum of the system can form in the chamber. The growth of a zone of constant composition destroys the stratification in the chamber. A chamber of well-mixed magma is maintained while further differentiation occurs, unless the walls of the chamber slope inwards, in which case dense boundary layer flows can lead to stable stratification of cool, differentiated magma at the floor of the chamber. In a basaltic magma chamber replenished by primitive magma, the new magma ponds at the base and evolves until it reaches the same density and composition as overlying magma. Successive cycles of replenishment of primitive magma can also form compositional zonation if successive cycles occur before internal thermal equilibrium is reached in a chamber. In a chamber containing well-mixed, plagioclase — saturated magma, the primitive magma can be either denser or lighter than the resident magma. In the first case, the new magma ponds at the base and fractionates until it reaches the same density as the evolved magma. Mixing then occurs between magmas of different temperatures and compositions. In the second case a turbulent plume is generated that causes the new magma to mix immediately with the resident magma.

Journal ArticleDOI
TL;DR: The preservation of premetamorphic, whole-rock oxygen isotope ratios in Adirondack metasediments shows that neither these rocks nor adjacent anorthosites and gneisses have been penetrated by large amounts of externally derived, hot CO2-H2O fluids during granulite facies metamorphism as mentioned in this paper.
Abstract: The preservation of premetamorphic, whole-rock oxygen isotope ratios in Adirondack metasediments shows that neither these rocks nor adjacent anorthosites and gneisses have been penetrated by large amounts of externally derived, hot CO2-H2O fluids during granulite facies metamorphism. This conclusion is supported by calculations of the effect of fluid volatilization and exchange and is also independently supported by petrologic and phase equilibria considerations. The data suggest that these rocks were not an open system during metamorphism; that fluid/rock ratios were in many instances between 0.0 and 0.1; that externally derived fluids, as well as fluids derived by metamorphic volatilization, rose along localized channels and were not pervasive; and thus that no single generalization can be applied to metamorphic fluid conditions in the Adirondacks.

Journal ArticleDOI
TL;DR: Basalts from DSDP Site 417 (109 Ma) exhibit the effects of several stages of alteration reflecting the evolution of seawater-derived solution compositions and control by the structure and permeability of the crust.
Abstract: Basalts from DSDP Site 417 (109 Ma) exhibit the effects of several stages of alteration reflecting the evolution of seawater-derived solution compositions and control by the structure and permeability of the crust. Characteristic secondary mineral assemblages occur in often superimposed alteration zones within individual basalt fragments. By combining bulk rock and single phase chemical analyses with detailed mineralogic and petrographic studies, chemical changes have been determined for most of the alteration stages identified in the basalts. 1) Minor amounts of saponite, chlorite, and pyrite formed locally in coarse grained portions of massive units, possibly at high temperatures during initial cooling of the basalts. No chemical changes could be determined for this stage. 2) Possible mixing of cooled hydrothermal fluids with seawater resulted in the formation of celadonite-nontronite and Fe-hydroxide-rich black halos around cracks and pillow rims. Gains of K, Rb, H2O, increase of Fe3+/FeT, and possibly some losses of Ca and Mg occurred during this stage. 3a) Extensive circulation of oxygenated seawater resulted in the formation of various smectites, K-feldspar, and Fe-hydroxides in brown and light grey alteration zones around formerly exposed surfaces. K, Rb, H2O, and occasionally P were added to the rocks, Fe3+/FeT increased, and Ca, Mg, Si and occasionally Al and Na were lost. 3b) Anoxic alteration occurred during reaction of basalt with seawater at low water-rock ratios, or with seawater that had previously reacted with basalt. Saponite-rich dark grey alteration zones formed which exhibit very little chemical change: generally only slight increases in Fe3+/FeT and H2O occurred. 4) Zeolites and calcite formed from seawater-derived fluids modified by previous reactions with basalt. Chemical changes involved increases of Ca, Na, H2O, and CO2 in the rocks. 5) A late stage of anoxic conditions resulted in the formation of minor amounts of Mn-calcites and secondary sulfides in previously oxidized rocks. No chemical changes were determined for this stage.

Journal ArticleDOI
TL;DR: In this article, micro-thermometry and Raman laser micro-probe analysis showed that the trapped fluids are dominantly CO2, which may explain the small freezing-point depressions observed in some inclusions.
Abstract: Mantle-derived xenoliths of spinel lherzolite, spinel pyroxenite, garnet pyroxenite and wehrlite from Bullenmerri and Gnotuk maars, southwestern Victoria, Australia contain up to 3 vol.% of fluids trapped at high pressures. The fluid-filled cavities range in size from fluid inclusions (1–100 μm) up to vugs 11/2 cm across, lined with euhedral high-pressure phases. The larger cavities form an integral part of the mosaic microstructure. Microthermometry and Raman laser microprobe analysis show that the fluids are dominantly CO2. Small isolated inclusions may have densities ≥1.19 g/cm3, but most inclusions show microstructural evidence of partial decrepitation during eruption, and these have lower fluid densities. Mass-spectrometric analysis of gases released by crushing or heating shows the presence of He, N2, Ar, H2S, COs and SO2 in small quantities; these may explain the small freezing-point depressions observed in some inclusions. Petrographic, SEM and microprobe studies show that the trapped fluids have reacted with the cavity walls (in clinopyroxene grains) to produce secondary amphiboles and carbonates. The trapped CO2 thus represents only a small residual proportion of an original volatile phase, which has undergone at least two stages of modification — first by equilibration with spinel lherzolite to form amphibole (±mica±apatite), then by limited reaction with the walls of the fluid inclusions. The inferred original fluid was a CO2-H2O mixture, with significant contents of (at least) Cl and sulfur species. Generation of this fluid phase in the garnet-peridotite stability field, followed by its migration to the spinel peridotite stability field, would provide an efficient mechanism for metasomatic enrichment of the upper mantle in LIL elements. This migration could involve either a volatile flux or transport in small volumes of silicate melt that crystallize in the spinel peridotite field. These observations suggest that some portions of the subcontinental upper mantle contain large reservoirs of free fluid CO2, which may be liberated during episodes of rifting or magmatism, to induce granulite-facies metamorphism of the lower crust.

Journal ArticleDOI
TL;DR: In this article, initial Nd isotope ratios are determined for components of 1.9-1.7 Ga age continental crust in the Ketilidian terrain of South Greenland.
Abstract: Initial Nd isotope ratios are determined for components of 1.9-1.7 Ga age continental crust in the Ketilidian terrain of South Greenland. The Ketilidian has well-documented ages of migmatization/metamorphism (1.80 Ga) and post-tectonic granitoid intrusion (1.76-1.74 Ga) from U-Pb zircon studies. The Nd results show that: (1) metatholeiites with chondritic 147Sm/144Nd have eNd=+4 to +5 at 1.8 Ga; (2) migmatites, paragneisses and an early granitoid have eNd close to zero; (3) post-tectonic norites have eNd∼ +1.5, while spatially associated more-abundant granitoids have eNd=0 to +1. The metatholeiites show that a normal depleted mantle (eNd=+4 to +5) was present beneath this 1.9-1.7 Ga orogenic zone, as is the case in such environments today. However, metatholeiites are an insignificant part of the Ketilidian crust, and the bulk initial ratio of the whole terrain lies close to eNd=0. Rather than invoking depleted and undepleted mantle sources whose products did not mix, we infer the eNd=0 value to be caused by mixing of a component derived from depleted mantle (eNd=+ 4 to +5) with Archean crustal material (eNd=-9 to -13). As there are no proven relics of Archean crust beyond the border zone of the Ketilidian, and the eNd= 0 value appears to be a wellhomogenized feature, we propose that the Archean material was added in the form of sediments transported to the orogenic zone on oceanic crust. The Archean component comprised between 5 and 17% of the Ketilidian, and the most reasonable estimate is 10%. Thus this 1.9-1.7 Ga terrain consisted of ∼90% new mantle-derived crust.

Journal ArticleDOI
TL;DR: The metamorphism on the island of Sifnos is characterized by the Eocene development of a coherent highpressure blueschist terrane and an early Miocene greenschist facies overprint.
Abstract: The metamorphism on the island of Sifnos is characterized by the Eocene development of a coherent highpressure blueschist terrane and an early Miocene greenschist facies overprint. This study documents the metamorphic evolution of the blueschist assemblages, still preserved in the northern parts of the island, and their subsequent transformation into greenschists in the central and southern parts. The oxygen isotope geothermometry is based on calibrations for quartz, pyroxenes and magnetite (Matthews et al. 1983a) augmented by revised calibrations for the minerals muscovite (Δ Qz−Mu=1.55×106 T −2), epidote (δ Qz−Ep= 1.56+1.92Δ ps)106 T −2), and rutile (Δ Qz−Ru=4.54×106 T −2). Oxygen isotope analyses of minerals from the Blueschist unit of northern Sifnos give consistent fractionations which are independent of rock type. An average temperature of 455° C was obtained, although the scatter in temperatures deduced from the various geothermometers suggests that equilibration occurs under slightly changing physicochemical conditions. Analyses of minerals and whole rocks shows that pervasive equilibration in the presence of a common metamorphic fluid has not occurred. The minerals and whole rocks of the greenschists of central Sifnos are systematically enriched in 18O relative to the blueschist assemblages. Chemical data indicate that the greenschist overprint was accompanied by a metasomatic enrichment of Ca2+ and CO2. The petrologic, isotopic and chemical evidence favour a metamorphism governed by the infiltration of 18O-CO2 enriched aqueous solutions. It is reasonable to assume that this is connected with the Miocene magmatic activity observed throughout the Cyclades. The marbles separating the Blueschist from the Greenschist unit probably acted as barriers to fluid infiltration into the blueschists and were responsible for their preservation. The pressure of the blueschist metamorphism is estimated at 14±2 kbar, corresponding to a depth of ca. 50 km. The structural style and stratigraphy of Sifnos are suggestive of the subduction of a continental margin sequence. It is clear that the considerable tectonic depression may be associated with continental collision and underthrusting.

Journal ArticleDOI
TL;DR: Along the Western Alps there is geological evidence of late-Alpine (Oligocene) magmatic activity which clearly postdates the Eocene-early Oligocene metamorphism and related deformation of the Alpine nappe pile.
Abstract: Along the Western Alps there is geological evidence of late-Alpine (Oligocene) magmatic activity which clearly postdates the Lepontine (Eocene-early Oligocene) metamorphism and related deformation of the Alpine nappe pile. This magmatic activity was notably delayed in relation to the most important convergent processes and may be related to buoyancy of lithosphere, tensional tectonics and thermal updoming subsequent to the collision between the Eurasian and African plates. The geochemical features of the rocks and the geophysical characteristics of the Alpine chain, suggest that: (a) shoshonitic and calcalkaline melts may have been generated by partial melting of metasomatized peridotitic material and subsequent fractional crystallization and crustal contamination; silicic andesites and latites, however, could have been also derived from metasomatized eclogite or deep continental crust material; (b) the ultrapotassic lamprophyres with high K, P, LREE, Th, Zr, U and high 87Sr/86Sr ratios were generated by partial melting of strongly metasomatized mantle; the varied Sr-isotopic ratios may partially also reflect additional radiogenic component from the continental crust following magma segregation from the source.

Journal ArticleDOI
TL;DR: Sediment cores up to 6.5 m in length from the South Arm of Great Salt Lake, Utah, have been correlated with radiocarbon ages and volcanic tephra layers indicate a record of greater than 30,000 years.
Abstract: Sediment cores up to 6.5 m in length from the South Arm of Great Salt Lake, Utah, have been correlated. Radiocarbon ages and volcanic tephra layers indicate a record of greater than 30,000 years. A variety of approaches have been employed to collect data used in stratigraphic correlation and lake elevation interpretation; these include acoustic stratigraphy, sedimentologic analyses, mineralogy, geochemistry (major element, C, O and S isotopes, and organics), paleontology and pollen. The results indicate that prior to 32,000 year B.P. an ephemeral saline lake-playa system was present in the basin. The perennial lake, which has occupied the basin since this time, rose in a series of three major steps; the freshest water conditions and presumably highest altitude was reached at about 17,000 year B.P. The lake remained fresh for a brief period, followed by a rapid increase in salinity and sharp lowering in elevation to levels below that of the present Great Salt Lake. The lake remained at low elevations, and divided at times into a north and south Basin, until about 8,000 year B.P. Since that time, with the exception of two short rises to about 1290 m, the lake level has remained near the present elevation of 1280 m.

Journal ArticleDOI
TL;DR: In this paper, the Mauna Ulu flank eruption on Kilauea, Hawaii, the concentrations in the lavas of the minor elements K, P, Na and Ti, and the incompatible trace elements (analyzed by isotope dilution) K, Rb, Cs, Ba, Sr and the REE (except Yb) decreased monotonically and linearly with the time (or date) of the eruption.
Abstract: During the Mauna Ulu flank eruption on Kilauea, Hawaii, the concentrations in the lavas of the minor elements K, P, Na and Ti, and the incompatible trace elements (analyzed by isotope dilution) K, Rb, Cs, Ba, Sr, and the REE (except Yb) decreased monotonically and linearly with the time (or date) of the eruption. At the same time, the concentrations of the major elements and of Yb, and the ratios of K/Rb, K/Cs, Ba/Rb, 87Sr/86Sr and 143Nd/144Nd remained constant. Most of the scatter in the raw concentration data is removed by a simple correction for olivine (plus chromite) fractionation previously established by Wright et al. (1975). These results are explained by simple equilibrium partial melting of a uniform source. The degree of melting increased by about 20% of the initial value during the course of the eruption. The trace element data are inverted by the method originated by Minster and Allegre (1978) and simplified by Hofmann and Feigenson (1983). The source has the following element (or isotope) ratios: K/Rb=501±7, Ba/Rb=14.0±0.5, Rb/Cs=95±7, Rb/Sr=0.0193 (+0.0045, −0.0090), (Ce/Ba)CN= 1.1±0.1, (Sr/Ba)CN=1.19 (+0.30, −0.19), 87Sr/86Sr=0.703521±0.000016, and 143Nd/144Nd=0.512966±0.000008. The REE pattern of the source has a nearly flat or slightly negative slope (=relative LREE enrichment) between Ce and Dy and a strongly positive slope between Dy and Yb. However, this relative HREE enrichment is poorly constrained by the analytical data, is highly model dependent and may not be a true source feature. The Yb concentration in the source is particularly poorly constrained because it is essentially constant in the melts. On the other hand, this special feature demonstrates that Yb must be buffered by a mineral phase with a high partition coefficient for Yb, namely garnet. The calculated clinopyroxene/garnet ratio in the source is roughly equal to one. In contrast, the source of Kohala volcano had previously been found to contain little or no garnet.

Journal ArticleDOI
TL;DR: The Coso volcanic field in southeastern California has been studied in this article, showing that inclusions were probably dispersed throughout small volumes of rhyolitic magma by convective (mechanical) mixing.
Abstract: Basaltic lava flows and high-silica rhyolite domes form the Pleistocene part of the Coso volcanic field in southeastern California. The distribution of vents maps the areal zonation inferred for the upper parts of the Coso magmatic system. Subalkalic basalts (<50% SiO2) were erupted well away from the rhyolite field at any given time. Compositional variation among these basalts can be ascribed to crystal fractionation. Erupted volumes of these basalts decrease with increasing differentiation. Mafic lavas containing up to 58% SiO2, erupted adjacent to the rhyolite field, formed by mixing of basaltic and silicic magma. Basaltic magma interacted with crustal rocks to form other SiO2-rich mafic lavas erupted near the Sierra Nevada fault zone. Several rhyolite domes in the Coso volcanic field contain sparse andesitic inclusions (55–61% SiO2). Pillow-like forms, intricate commingling and local diffusive mixing of andesite and rhyolite at contacts, concentric vesicle distribution, and crystal morphologies indicative of undercooling show that inclusions were incorporated in their rhyolitic hosts as blobs of magma. Inclusions were probably dispersed throughout small volumes of rhyolitic magma by convective (mechanical) mixing. Inclusion magma was formed by mixing (hybridization) at the interface between basaltic and rhyolitic magmas that coexisted in vertically zoned igneous systems. Relict phenocrysts and the bulk compositions of inclusions suggest that silicic endmembers were less differentiated than erupted high-silica rhyolite. Changes in inferred endmembers of magma mixtures with time suggest that the steepness of chemical gradients near the silicic/mafic interface in the zoned reservoir may have decreased as the system matured, although a high-silica rhyolitic cap persisted. The Coso example is an extreme case of large thermal and compositional contrast between inclusion and host magmas; lesser differences between intermediate composition magmas and inclusions lead to undercooling phenomena that suggest smaller ΔT. Vertical compositional zonation in magma chambers has been documented through study of products of voluminous pyroclastic eruptions. Magmatic inclusions in volcanic rocks provide evidence for compositional zonation and mixing processes in igneous systems when only lava is erupted.

Journal ArticleDOI
TL;DR: The Violet Town Volcanics are a 373 Ma old, comagmatic, S-type volcanic sequence mainly comprising crystal-rich intracaldera ignimbrites as discussed by the authors.
Abstract: The Violet Town Volcanics are a 373 Ma old, comagmatic, S-type volcanic sequence mainly comprising crystal-rich intracaldera ignimbrites. Rock types vary from rhyolites to rhyodacites, all containing magmatic cordierite and garnet phenocrysts. Variation in the suite is primarily due to fractionation of early-crystallized quartz, plagioclase and biotite (plus minor accessory phases) in a high-level magma chamber prior to eruption. Early magmatic crystallization occurred at around 4 kb and 850° C with melt water contents between 2.8 and 4 wt.%. This high-temperature, markedly water-undersaturated, restite-poor, granitic magma was generated by partial melting reactions involving biotite breakdown in a dominantly quartzofeldspathic source terrain, leaving a granulite facies residue.

Journal ArticleDOI
TL;DR: The field relationships and geochemical characteristics indicate two suites of plagiogranitic and related rocks coexisting in the higher parts of the Karmoy ophiolite of western Norway as mentioned in this paper.
Abstract: Both field relationships and geochemical characteristics indicate two suites of plagiogranitic and related rocks coexisting in the higher parts of the Karmoy ophiolite of western Norway. The plutonic zone of this ophiolite can be subdivided into three complexes; the East-Karmoy Igneous Complex, the Visnes High Level Complex and the Veavagen Igneous Complex and plagiogranitic rocks are well developed in the first two of these. Within the East-Karmoy Igneous Complex, plagiogranites are associated with high temperature, pre-basic dyke, shear zones. Rare earth element modelling indicates that these plagiogranites were derived by anatexis of amphibolite (hydrated diabase) assuming a starting material consisting of 40% hornblende and 60% plagioclase and that batch melting occurred within the stability field of hornblende. In comparison, plagiogranite occurs in a number of bodies in the upper part of the Visnes High Level Complex and forms a sandwich horizon together with biotite diorites and epidosites between a roof assemblage of dykes, microgabbros and magnetite gabbros, and a floor assemblage of layered and non-layered gabbros. The R.E.E. modelling of the petrogenesis of this series of plagiogranites indicates that they were derived by filter pressing of a differentiated interstitial liquid to the vari-textured gabbros, although the distribution of highly hygromagmatophile elements such as K, Rb, Ba, etc. cannot be explained satisfactorily by this model alone. Depletion in these elements appears to be an autometasomatic effect.

Journal ArticleDOI
TL;DR: In this paper, the MgO-Al2O3-SiO2 (MgTschermak) endmember has been modeled assuming an ideal pyroxene solid solution with components Mg2Si2O6 (En) and MgAl2SiO6(MgTs), to yield the following equilibrium condition (J, bar, K): ==================�
Abstract: Equilibrium alumina contents of orthopyroxene coexisting with spinel and forsterite in the system MgO-Al2O3-SiO2 have been reversed at 15 different P-T conditions, in the range 1,030–1,600° C and 10–28 kbar. The present data and three reversals of Danckwerth and Newton (1978) have been modeled assuming an ideal pyroxene solid solution with components Mg2Si2O6 (En) and MgAl2SiO6 (MgTs), to yield the following equilibrium condition (J, bar, K): $$\begin{gathered} RT{\text{ln(}}X_{{\text{MgTs}}} {\text{/}}X_{{\text{En}}} {\text{) + 29,190}} - {\text{13}}{\text{.42 }}T + 0.18{\text{ }}T + 0.18{\text{ }}T^{1.5} \hfill \\ + \int\limits_1^P {\Delta V_{T,P}^{\text{0}} dP = 0,} \hfill \\ \end{gathered} $$ where $$\begin{gathered} + \int\limits_1^P {\Delta V_{T,P}^{\text{0}} dP} \hfill \\ = [0.013 + 3.34 \times 10^{ - 5} (T - 298) - 6.6 \times 10^{ - 7} P]P. \hfill \\ \end{gathered} $$ The data of Perkins et al. (1981) for the equilibrium of orthopyroxene with pyrope have been similarly fitted with the result: $$\begin{gathered} - RT{\text{ln(}}X_{{\text{MgTs}}} \cdot X_{{\text{En}}} {\text{) + 5,510}} - 88.91{\text{ }}T + 19{\text{ }}T^{1.2} \hfill \\ + \int\limits_1^P {\Delta V_{T,P}^{\text{0}} dP = 0,} \hfill \\ \end{gathered} $$ where $$\begin{gathered} + \int\limits_1^P {\Delta V_{T,P}^{\text{0}} dP} \hfill \\ = [ - 0.832 - 8.78{\text{ }} \times {\text{ 10}}^{ - {\text{5}}} (T - 298) + 16.6{\text{ }} \times {\text{ 10}}^{ - 7} P]{\text{ }}P. \hfill \\ \end{gathered} $$ The new parameters are in excellent agreement with measured thermochemical data and give the following properties of the Mg-Tschermak endmember: $$H_{f,970}^0 = - 4.77{\text{ kJ/mol, }}S_{298}^0 = 129.44{\text{ J/mol}} \cdot {\text{K,}}$$ and $$V_{298,1}^0 = 58.88{\text{ cm}}^{\text{3}} .$$

Journal ArticleDOI
TL;DR: In this paper, a phengite-talc-chloritoid-chlorite-kyanite-quartz assemblage is reported from a nearly undeformed quartz-rich metapelite found in the Monte Rosa massif (Western Alps).
Abstract: A phengite-talc-chloritoid-chlorite-kyanite-quartz assemblage is reported from a nearly undeformed quartz-rich metapelite found in the Monte Rosa massif (Western Alps). Chloritoid contains up to 74 mol % of the Mg end member and is the most magnesian ever reported. Textural relationships and mineral compositions suggest equilibrium and therefore a low-variance assemblage which represents the high-pressure stability limit of chlorite+quartz according to the terminal reaction $${\text{chlorite + quartz }} \rightleftarrows {\text{ talc + chloritoid + kyanite + H}}_{\text{2}} {\text{O}}{\text{.}}$$ Mineral compositions combined with new experimental data on the stability of the Mg-chloritoid end member lead, for a temperature close to 500° C, to a pressure estimate of 16 kbar and a water activity of 0.6 which is supported by fluid inclusions study. Chloritoid composition is in fact a fine metamorphic indicator which opens new ways for barometry in high-grade blueschists. It demonstrates here the existence of a high-pressure metamorphism in the Monte Rosa massif. The assemblage remained mineralogically unaffected during the subsequent lower-pressure evolution. Two size fractions of the single phengite generation were analysed by the 39Ar-40Ar incremental release method. Both spectra are identical with a plateau at 110±3 Ma representing over 96% of the 39Ar degassed. The ages of the first heating steps are discordant and increase with increasing temperature from values near 70 Ma to the plateau age. Isotope correlation diagrams show two 36Ar components, one released at high temperature and correlated with 40Ar and 39Ar, the other released at low temperature in a mixture of atmospheric argon and of a loosely held argon of 70 Ma apparent age. The 110 Ma plateau age may reflect the presence of homogeneously incorporated excess argon, the 70 Ma value might then be a true age. However we favour the alternative hypothesis that the 110 Ma plateau age is a true age, implying that the internal crystalline massifs of the Western Alps have endured high-pressure metamorphism as early as mid-Cretaceous. Whatever the interpretation chosen, the preserved high-pressure mineral assemblage remained isotopically unaffected during the low-pressure mid-Tertiary event which is recorded by the 37 Ma plateau age of phengite from a foliated, recrystallised quartzite collected in the same, westernmost part of the massif. The contrasting behaviour of the two samples shows that even at temperatures as high as 400–450° C deformation and recrystallisation are also major controlling factors of isotope mobility.

Journal ArticleDOI
TL;DR: The Jurassic Notch Peak granitic stock, western Utah, discordantly intrudes Cambrian interbedded pure limestones and calcareous argillites as mentioned in this paper, and metamorphosed argillite and limestone samples, collected along traverses away from the intrusion, were analyzed for δ18O, δ13C, and δD.
Abstract: The Jurassic Notch Peak granitic stock, western Utah, discordantly intrudes Cambrian interbedded pure limestones and calcareous argillites. Contact metamorphosed argillite and limestone samples, collected along traverses away from the intrusion, were analyzed for δ18O, δ13C, and δD. The δ13C and δ18O values for the limestones remain constant at about 0.5 (PDB) and 20 (SMOW), respectively, with increasing metamorphic grade. The whole rock δ18O values of the argillites systematically decrease from 19 to as low as 8.1, and the δ13C values of the carbonate fraction from 0.5 to −11.8. The change in δ13C values can be explained by Rayleigh decarbonation during calcsilicate reactions, where calculated \(\Delta ^{13} {\text{C}}_{\left( {{\text{CO}}_{\text{2}} - {\text{cc}}} \right)}\) is about 4.5 permil for the high-grade samples and less for medium and low-grade samples suggesting a range in temperatures at which most decarbonation occurred. However, the amount of CO2 released was not anough to decrease the whole rock δ18O to the values observed in the argillites. The low δ18O values close to the intrusion suggest interaction with magmatic water that had a δ18O value of 8.5. The extreme lowering of δ13C by fractional devolatilization and the lowering of δ18O in argillites close to the intrusion indicates oxgen-equivalent fluid/rock ratios in excess of 1.0 and X(CO2)F of the fluid less than 0.2. Mineral assemblages in conjunction with the isotopic data indicate a strong influence of water infiltration on the reaction relations in the argillites and separate fluid and thermal fronts moving thru the argillites. The different stable isotope relations in limestones and argillites attest to the importance of decarbonation in the enhancement of permeability. The flow of fluids was confined to the argillite beds (argillite aquifers) whereas the limestones prevented vertical fluid flow and convective cooling of the stock.

Journal ArticleDOI
TL;DR: In this article, the authors investigated the relationship between the madupite and wyomingite/orendite sources and their evolution on the basis of two simple alternative sets of models: two isotopically distinct, LREE enriched and slightly heterogeneous sources are required.
Abstract: Nd and Sr isotopic compositions and Rb, Sr, Sm and Nd concentrations are reported for madupites, wyomingites and orendites from the Pleistocene volcanic field of the Leucite Hills, Wyoming. All Leucite Hills rocks have negative eNd signatures, indicating derivation or contribution from an old light rare earth element (LREE) enriched source. In this respect they are similar to all occurrences of high potassium magmas so far investigated. But Sr isotopic variations are comparatively small and 87Sr/ 86Sr ratios are unusually low for high-K magmas (0.7053–0.7061, one sample excluded). These values suggest that the light REE enrichment of the source was not accompanied by a strong increase in Rb/Sr. Wyomingites and orendites are isotopically indistinguishable which is consistent with chemical and petrographic evidence for their derivation from a common magma series depending on emplacement conditions. Basic to ultrabasic madupites and more silicic wyomingites/orendites are distinct in their Nd isotopic variations (madupites: eNd= −10.5 to −12.3; wyomingites/orendites: eNd= −13.7 to −17.0) despite similar Sm/Nd ratios and complete overlap in 87Sr/86Sr. Selective or bulk assimilation of crustal material is unlikely to have significantly affected the Nd and Sr isotopic compositions of the magmas. The measured isotopic ratios are considered to reflect source values. The distinct isotopic characteristics of madupite and wyomingite/orendite magmas preclude their derivation by fractional crystallization, from a common primary magma, by liquid immiscibility or by partial melting of a homogeneous source. Two isotopically distinct, LREE enriched and slightly heterogeneous sources are required. Heterogeneities were most pronounced between magma sources from each volcanic centre (butte or mesa). The relationship between the madupite and wyomingite/orendite sources and their evolution is discussed on the basis of two simple alternative sets of models:

Journal ArticleDOI
TL;DR: The field setting, petrography, mineralogy, and geochemistry of a suite of picrite basalts and related magnesian olivine tholeiites (New Georgia arc picrites) from the New Georgia Volcanics, Kolo caldera in the active ensimatic Solomon Islands arc are presented in this article.
Abstract: The field setting, petrography, mineralogy, and geochemistry of a suite of picrite basalts and related magnesian olivine tholeiites (New Georgia arc picrites) from the New Georgia Volcanics, Kolo caldera in the active ensimatic Solomon Islands arc are presented. These lavas, with an areal extent in the order of 1002 km and almost 1 km thick in places, are located close to the intersection of the Woodlark spreading zone with the Pacific plate margin. They contain abundant olivine (Fo94-75) and diopside (Cr2O3 1.1-0.4%, Al2O3 1–3%), and spinels characterised by a large range in Cr/(Cr+Al) (0.85–0.46) and Mg/(Mg+ Fe++) (0.65−0.1). The spinels are Fe+++ rich, with Fe+++/ (Fe++++Cr+Al) varying from 0.06 to 1.0. A discrete group of spinels with the highest Cr/(Cr+Al) (0.83–0.86) and lowest Fe+++ contents are included in the most Mg-rich olivine (Fo91–94) and both may be xenocrystal in origin. The lavas, which range between 10–28% MgO, define linear trends on oxide (element) — MgO diagrams and these trends are interpreted as olivine (∼0.9) clinopyroxene (∼0.1) control lines. For the reconstructed parent magma composition of these arc picrites, ratios involving CaO, Al2O3, TiO2, Zr, V and Sc are very close to chondritic. REE patterns are slightly LREE — enriched ((La/Sm)N 1.3–1.43) and HREE are flat. All lavas show marked enrichments in K, Rb, Sr, Ba, and LREE relative to MORB with similar MgO contents, but the TiO2 content of the proposed parent magma is close to those of postulated primary MORB liquids. It is proposed that the arc parent magma was produced by partial melting of sub-oceanic upper mantle induced by the introduction of LILE — enriched hydrous fluids derived by dehydration and/or partial melting of subducted ocean crust and possibly minor sediments.

Journal ArticleDOI
TL;DR: Komatiitic rocks from Gorgona Island, Colombia, in contrast to their Archaean counterparts, occur as rather structureless flows as mentioned in this paper, and textural and mineralogical features indicate that the komatiites may have crystallized from superheated liquids.
Abstract: Komatiitic rocks from Gorgona Island, Colombia, in contrast to their Archaean counterparts, occur as rather structureless flows. In addition, textural and mineralogical features indicate that the Gorgona komatiites may have crystallized from superheated liquids. Komatiitic rocks have MgO contents which range from 24 to 11 wt.% and plot on well-defined olivine (Fo90) control lines. Calculations show that potential evolved liquids (MgO<11 wt%) will be SiO2-poor. Komatiites, in this case, cannot be regarded as parental to the associated tholeiitic basalt sequence.