scispace - formally typeset
Search or ask a question

Showing papers in "Contributions to Mineralogy and Petrology in 1992"


Journal ArticleDOI
Max W. Schmidt1
TL;DR: The Al-in-hornblende barometer, which correlates Altot content of magmatic hornblende linearly with crystallization pressure of intrusion (Hammarstrom and Zen 1986), has been calibrated experimentally under water-saturated conditions at pressures of 2.5-13 kbar and temperatures of 700-655°C.
Abstract: The Al-in-hornblende barometer, which correlates Altot content of magmatic hornblende linearly with crystallization pressure of intrusion (Hammarstrom and Zen 1986), has been calibrated experimentally under water-saturated conditions at pressures of 2.5–13 kbar and temperatures of 700–655°C. Equilibration of the assemblage hornlende-biotite-plagioclase-orthoclasequartz-sphene-Fe-Ti-oxide-melt-vapor from a natural tonalite 15–20° above its wet solidus results in hornblende compositions which can be fit by the equation: P(±0.6 kbar) = −3.01 + 4.76 Al hbl tot r 2=0.99, where Altot is the total Al content of hornblende in atoms per formula unit (apfu). Altot increase with pressure can be ascribed mainly to a tschermak-exchange ( $$t\vec k,{\text{ Mg}}_{{\text{ - 1 }}} {\text{Al}}^{{\text{VI}}} {\text{Si}}_{{\text{ - 1}}} {\text{ Al}}^{{\text{IV}}}$$ ) accompanied by minor plagioclase-substitution ( $$\vec pl,{\text{ Ca}}_{{\text{ - 1 }}} {\text{Na}}^{{\text{M(4)}}} {\text{ Al}}_{{\text{ - 1}}}^{{\text{IV}}} {\text{ Si}}$$ ). This experimental calibration agrees well with empirical field calibrations, wherein pressures are estimated by contact-aureole barometry, confirming that contact-aureole pressures and pressures calculated by the Al-in-hornblende barometer are essentially identical. This calibration is also consistent with the previous experimental calibration by Johnson and Rutherford (1989b) which was accomplished at higher temperatures, stabilizing the required buffer assemblage by use of mixed H2O-CO2 fluids. The latter calibration yields higher Altot content in hornblendes at corresponding pressures, this can be ascribed to increased edenite-exchange ( $$\vec ed,{\text{ }}\square _{{\text{ }} - {\text{ }}1}^{ A} {\text{ Na}}^{\text{A}} {\text{Si }}_{ - {\text{ }}1} {\text{Al}}^{{\text{IV}}}$$ ) at elevated temperatures. The comparison of both experimental calibrations shows the important influence of the fluid composition, which affects the solidus temperature, on equilibration of hornblende in the buffering phase assemblage.

1,248 citations


Journal ArticleDOI
TL;DR: Oscillatory zoning is a common feature in zircons from acid igneous rocks and is believed to form during crystallisation of zirons from a magma by a mechanism which is not yet understood as mentioned in this paper.
Abstract: Oscillatory zoning is a common feature in zircons from acid igneous rocks and is believed to form during crystallisation of zircons from a magma by a mechanism which is not yet understood. Many zircons with oscillatory zoning also show a patchwork replacement of zoned by unzoned zircon. The unzoned zircon occurs as rounded, transgressive patches distributed throughout the zoned zircon and as areas of transitional replacement where zoned zircon is progressively replaced by unzoned zircon such that only faint traces of original zones remain. This structure is interpreted as a progressive recrystallisation of the oscillatory zoned zircon made unstable by the incorporation of high concentrations of contaminant elements during magmatic crystallisation. Recrystallisation overprints oscillatory zones and appears to have occurred after completion of primary crystallisation. It is accompanied by loss of U, Th and Pb and the removal of oscillatory zones. The recrystallised unzoned zircon is extremely stable with respect to later Pb loss and tends to retain a concordant or slightly discordant U−Pb age. Recrystallisation provides a mechanism for resetting zircon U−Pb ages which is independent of the degree of radiation damage of the zircon lattice. This differs from other models of discordance which involve a leaching of radiogenic Pb as a consequence of a progressive breakdown of the zircon structure through time-integraded radiation damage further enhanced by high concentrations of trace-element contaminants. The U−Pb age of the unzoned zircon may date the recrystallisation event, which may be close to the age of primary crystallisation or reflect a later metamorphism.

439 citations


Journal ArticleDOI
Nigel Harris1, S. Inger1
TL;DR: The presence or absence of a vapour phase during incongruent-melt reactions of muscovite and biotite together with the composition of the protolith determines the trace element characteristics of the resulting melt, provided that equilibrium melting occurs for those phases that host the tracc elements of interest as mentioned in this paper.
Abstract: The presence or absence of a vapour phase during incongruent-melt reactions of muscovite and biotite together with the composition of the protolith determines the trace-element characteristics of the resulting melt, provided that equilibrium melting occurs for those phases that host the tracc elements of interest. For granitic melts, Rb, Sr and Ba provide critical constraints on the conditions that prevailed during melting, whereas REE are primarily controlled by accessory phase behaviour. Mass-balance constraints for eutectic granites that are formed by the incongruent melting of muscovite in pelites indicate that melting in the presence of a vapour phase will result in a large melt fraction, and deplete the restite in feldspar. Hence the melt will be characterized by low Rb/Sr and high Sr/Ba ratios. In contrast, vapour-absent melting will result in a smaller melt fraction, and an increase in the restitic feldspar. Consequently high Rb/Sr and low Sr/Ba ratios are predicted. Vapour-absent melting will also enhance the negative Eu anomaly in the melt. Granites that result from the incongruent melting of biotite in the source will be characterized by higher Rb concentrations than those that result from the incongruent melting of muscovite. The Himalayan leucogranites provide an example of unfractionated, crustally derived eutectic melts that are enriched in Rb but depleted in Sr and Ba relative to their metasedimentary protoliths. These compositions may be generated by the incongruent melting of muscovite as a low melt fraction (F∼0.1) from a pelitic source under vapour-absent conditions.

347 citations


Journal ArticleDOI
TL;DR: Using the updated mixing parameters for the pyrope-almandine asymmetric regular solution as inputs, thermodynamic analysis points to non-ideal mixing in the phlogopite-annite binary in the temperature range of 550°C–950°C.
Abstract: The existing experimental data [Ferry and Spear 1978; Perchuk and Lavrent'eva 1983] on Mg−Fe partitioning between garnet and biotite are disparate. The underlying assumption of ideal Mg−Fe exchange between the minerals has been examined on the basis of recently available thermochemical data. Using the updated mixing parameters for the pyrope-almandine asymmetric regular solution as inputs [Ganguly and Saxena 1984; Hackler and Wood 1984], thermodynamic analysis points to non-ideal mixing in the phlogopite-annite binary in the temperature range of 550°C–950°C. The non-ideality can be approximated by a temperature-independent, one constant Margules parameter. The retrieved values for enthalpy of mixing for Mg−Fe biotites and the standard state enthalpy and entropy changes of the exchange reaction were combined with existing thermochemical data on grossular-pyrope and grossular-almandine binaries to obtain geothermometric expressions for Mg−Fe fractionation between biotite and garnet. [T in K] $$\begin{gathered} {\text{T(HW) = [20286 + 0}}{\text{.0193P - \{ 2080(X}}_{{\text{Mg}}}^{{\text{Gt}}} {\text{)}}^{\text{2}} {\text{ - 6350(X}}_{{\text{Fe}}}^{{\text{Gt}}} {\text{)}}^{\text{2}} \hfill \\ {\text{ - 13807(X}}_{{\text{Ca}}}^{{\text{Gt}}} {\text{)(1 - X}}_{{\text{Mn}}}^{{\text{Gt}}} {\text{) + 8540(X}}_{{\text{Fe}}}^{{\text{Gt}}} {\text{)(X}}_{{\text{Mg}}}^{{\text{Gt}}} {\text{)(1 - X}}_{{\text{Mn}}}^{{\text{Gt}}} {\text{)}} \hfill \\ {\text{ + 4215(X}}_{{\text{Ca}}}^{{\text{Gt}}} {\text{)(X}}_{{\text{Mg}}}^{{\text{Gt}}} {\text{ - X}}_{{\text{Fe}}}^{{\text{Gt}}} {\text{)\} + 4441}}{{{\text{(2X}}_{{\text{Mg}}}^{{\text{Bt}}} {\text{ - 1)]}}} \mathord{\left/ {\vphantom {{{\text{(2X}}_{{\text{Mg}}}^{{\text{Bt}}} {\text{ - 1)]}}} {{\text{[13}}{\text{.138}}}}} \right. \kern- ulldelimiterspace} {{\text{[13}}{\text{.138}}}} \hfill \\ {\text{ + 8}}{\text{.3143 InK}}_{\text{D}} {\text{ + 6}}{\text{.276(X}}_{{\text{Ca}}}^{{\text{Gt}}} ){\text{(1 - X}}_{{\text{Mn}}}^{{\text{Gt}}} )] \hfill \\ {\text{T(GS) = [13538 + 0}}{\text{.0193P - \{ 837(X}}_{{\text{Mg}}}^{{\text{Gt}}} )^{\text{2}} {\text{ - 10460(X}}_{{\text{Fe}}}^{{\text{Gt}}} )^2 \hfill \\ {\text{ - 13807(X}}_{{\text{Ca}}}^{{\text{Gt}}} )(1{\text{ - X}}_{{\text{Mn}}}^{{\text{Gt}}} {\text{) + 19246(X}}_{{\text{Fe}}}^{{\text{Gt}}} ){\text{(X}}_{{\text{Mg}}}^{{\text{Gt}}} ){\text{(1 - X}}_{{\text{Mn}}}^{{\text{Gt}}} ) \hfill \\ {\text{ }}{{{\text{ + 5649(X}}_{{\text{Ca}}}^{{\text{Gt}}} ){\text{(X}}_{{\text{Mg}}}^{{\text{Gt}}} {\text{ - X}}_{{\text{Fe}}}^{{\text{Gt}}} ){\text{\} + 7972(2X}}_{{\text{Mg}}}^{{\text{Bt}}} {\text{ - 1)]}}} \mathord{\left/ {\vphantom {{{\text{ + 5649(X}}_{{\text{Ca}}}^{{\text{Gt}}} ){\text{(X}}_{{\text{Mg}}}^{{\text{Gt}}} {\text{ - X}}_{{\text{Fe}}}^{{\text{Gt}}} ){\text{\} + 7972(2X}}_{{\text{Mg}}}^{{\text{Bt}}} {\text{ - 1)]}}} {{\text{[6}}{\text{.778}}}}} \right. \kern- ulldelimiterspace} {{\text{[6}}{\text{.778}}}} \hfill \\ {\text{ + 8}}{\text{.3143InK}}_{\text{D}} {\text{ + 6}}{\text{.276(X}}_{{\text{Ca}}}^{{\text{Gt}}} )(1{\text{ - X}}_{{\text{Mn}}}^{{\text{Gt}}} )] \hfill \\ \end{gathered} $$ The reformulated geothermometer is an improvement over existing biotite-garnet geothermometers because it reconciles the experimental data sets on Fe−Mg partitioning between the two phases and is based on updated activity-composition relationship in Fe−Mg−Ca garnet solid solutions.

316 citations


Journal ArticleDOI
TL;DR: The 1980-1986 eruption of Mount St. Helens volcano provides an unprecedented opportunity to observe the evolution of a silicic magma system over a short time scale as mentioned in this paper.
Abstract: The 1980–1986 eruption of Mount St. Helens volcano provides an unprecedented opportunity to observe the evolution of a silicic magma system over a short time scale. Groundmass plagioclase size measurements are coupled with measured changes in matrix glass, plagioclase and Fe−Ti oxide chemistry to document increasing groundmass crystallinity, and thus to better constrain proposed physical models of the post-May 18, 1980 magmatic reservoir. Measurements of plagioclase microlite and microphenocryst sizes demonstrate that relatively rapid growth (approximately 10-9 cm/s) of groundmass plagioclase occurred immediately subsequent to May 18. Relatively rapid plagioclase growth continued through the end of 1980 at an average rate of 3x10-11 cm/s; plagioclase growth rates then decreased to <1x10-11 cm/s through 1986. Changes in groundmass crystallinity are reflected in changes in both matrix glass and plagioclase microphenocryst-rim chemistry, although the matrix glass composition appears to have remained approximately constant from 1981–1986 after a rapid compositional change from May 18 until the end of 1980. Plagioclase microphenocrysts show increasingly more complex zoning patterns with time; microphenocryst-core compositions are commonly positively correlated with crystal size. Both of these observations indicate continuous groundmass plagioclase growth through 1986. Magmatic temperatures estimated from Fe−Ti oxide pairs are approximately constant through 1981 at eruption temperatures of ∼ 930°C and at log fO2 of -10.8; by 1985–1986 oxide temperatures decreased to ∼ 870°C. Chemical and textural changes can be explained by: (1) rapid degassing and crystallization in response to the intrusion of magma into a shallow (<4.5 km) reservoir toward the end of the May 18, 1980 eruption; (2) continued crystallization at a much reduced rate through 1986 due to slow cooling of the shallow magma reservoir. Growth rates (and consequent chemical changes) appear to decrease at the end of 1980—this is coincident with the change in eruption style from explosive eruptions, sometimes followed by dome growth, to solely extrusive (dome-building) events, and can be explained by the expected viscosity increase of both degassing and increasing crystallinity. The model of twostage crystallization of magma in a shallow reservoir is consistent with conclusions from gas studies (Casadevall et al. 1983; Gerlach and Casadevall 1986 a, b), patterns of crater deformation (Chadwkck et al. 1988) and post-1980 seismicity (Endo et al. 1990), although it does not explain the experimental data of Hill and Rutherford (1989) on the growth rate of amphibole reaction rims. Textural measurements on Mount St. Helens dacite can also be used to evaluate crystallization kinetics in silicic magmas, systems for which experimental data is almost non-existent. Plagioclase growth rates are 5–10 times slower than estimated plagioclase growth rates in basaltic systems, a result consistent with the higher viscosity of a more silicic melt. Furthermore, patterns of textural change (both average crystal size and number density) are similar to those observed during the 1984 Mauna Loa eruption by Lipman and Banks (1987), suggesting that the only modification to the crystallization behavior of plagioclase required in extrapolation from basaltic systems is a moderate decrease in rates, such that the rate of crystallization scales with the melt viscosity.

280 citations


Journal ArticleDOI
TL;DR: In this paper, the authors presented new experimental data on diffusion of divalent cations in almandine-spessartine diffusion couples in graphite capsules in the P-T range of 14-35 kb, 1100-1200° C. The results are in good agreement with geochronological and other independent constraints.
Abstract: We present new experimental data on diffusion of divalent cations in almandine-spessartine diffusion couples in graphite capsules in the P-T range of 14–35 kb, 1100–1200° C. The tracer diffusion coefficients of the major divalent cations, viz. Fe, Mg and Mn, retrieved from the multicomponent diffusion profiles, have been combined with earlier data from our laboratory at 29–43 kb, 1300–1480° C (Loomis et al. 1985) to derive expressions of the P-T dependence of the diffusion coefficients at fO2 approximately corresponding to that defined by equilibrium in the system graphite-O2. We review the conditions, discussed earlier by Cooper, under which the flux of a component in a multicomponent system becomes proportional to its concentration gradient (Fickian diffusion), as if the entire solvent matrix behaves as a single component, and also suggest a method of incorporating the thermodynamic effect on diffusion in the same spirit. Regardless of the magnitude or sign of the off-diagonal terms of the D matrix, it is always possible to define an effective binary diffusion coefficient (EBDC) of a component in a semi-infinite multicomponent diffusion-couple experiment such that it has the property of the Fickian diffusion coefficient, provided that there is no inflection on the diffusion profiles. It is shown that the success of Elphick et al. in fitting the experimental diffusion profiles of all components over a limited concentration range by a single diffusion coefficient is due to fortuitous similarity of the EBDCs of the components (Fe, Mg, Mn and Ca) in their diffusion couple experiments. In common metapelitic garnets showing compositional zoning, the EBDCs of the divalent cations do not differ from each other by more than a factor of 2.5. However, the EBDC of a component changes from core to rim by a factor of 3 to 12, depending on the composition. We suggest a method of volume averaging of the EBDC which should prove useful in approximate calculations of diffusion flux during relaxation of compositional zoning. The EBDC of Mn is found to reduce essentially to DMnMn, the main diagonal term of the D matrix, and consequently can be calculated quite easily. Evaluation of EBDC of Fe, Mg and Mn in garnets from a prograde Barrovian sequence did not reveal any significant dependence on the extent of relaxation of garnet. The diffusion data have been applied to calculate the cooling rate of natural biotite-garnet diffusion couple from eastern Finland and diffusional modification of growth zoning in garnet in early Proterozoic Wopmay orogen, Canada. The results are in good agreement with geochronological and other independent constraints.

277 citations


Journal ArticleDOI
TL;DR: In this article, a series of experiments using several different natural composition lavas, doped with the elements of interest, as starting compositions were conducted to calculate expressions that describe REE partitioning as a function of a variety of system parameters.
Abstract: Our current lack of understanding of the partitioning behavior of Sc, Y and the REE (rare-earth elements) can be attributed directly to the lack of a sufficiently large or chemically diverse experimental data set. To address this problem, we conducted a series of experiments using several different natural composition lavas, doped with the elements of interest, as starting compositions. Microprobe analyses of orthopyroxene, pigeonite, olivine, magnetite, ilmenite and co-existing glasses in the experimental charges were used to calculate expressions that describe REE partitioning as a function of a variety of system parameters. Using expressions that represent mineral-melt reactions (versus element ratio distribution coefficients) it is possible to calculate terms that express low-Ca pyroxene-melt partitioning behavior and are independent of both pyroxene and melt composition. Compositional variations suggest that Sc substitution in olivine involves either a paired substitution with Al or, more commonly, with vacancies. The partitioning of Sc is dependent both on melt composition and temperature. Our experimentally determined olivine-melt REE Ds (partition coefficients) are similar to, but slightly higher than those reported by McKay (1986) and support their conclusions that olivines are strongly LREE depleted. Y and REE mineral/melt partition coefficients for magnetite range from 0.003 for La to 0.02 for Lu. Ilmenite partition coefficients range from 0.007 for La to 0.029 for Lu. These experimental values are two orders of magnitude lower than many of the published values determined by phenocryst/matrix separation techniques.

205 citations


Journal ArticleDOI
TL;DR: In this article, a ternary Fe−Mg−Zn symmetric mixing model for aluminous spinels in equilibrium with garnet was derived to quantify the increase in gahnitic end-member of spinel with increasing pressure and descreasing temperature.
Abstract: The equilibrium (Mg, Fe, Zn)3Al2Si3O12+2Al2SiO5=3(Mg, Fe, Zn)Al2O4+5SiO2 garnet + sillimanite/kyanitc = spinel + quartz was calibrated in the piston-cylinder apparatus between 11 and 30 kbar, and over the temperature range of 950 to 1200°C. Three experimental mixes of Mg no. [100*MgO/(MgO+FeO)] 40, 47 and 60, in the FeO −MgO−Al2O3−SiO2−ZnO (FMASZn) system were used under low oxygen fugacities and anhydrous conditions. We derive a ternary Fe−Mg−Zn symmetric mixing model for aluminous spinels in equilibrium with garnet, to quantify the increase in gahnitic end-member of spinel with increasing pressure and descreasing temperature. Further experiments in the spinel-cordieritequartz-sillimanite field were combined with garnet-cordierite data from the literature to produce a consistent set of equations describing the exchange reactions in FMASHZn relevant to quartz-sillimanite bearing rocks at granulite facies conditions. As spinel is an important mineral participating in many rocks of aluminous composition at granulite-facies conditions, and as zinc contributes to an enlargement of spinel's stability field towards higher pressures and lower temperatures, the thermobarometric calibrations presented here will be most significant in delineating the prograde and retrograde trajectory of P-T paths.

203 citations


Journal ArticleDOI
TL;DR: The Fast Grain Boundary (FGB) model as mentioned in this paper describes interdiffusion between any number of mineral grains, assuming that local equilibrium and mass balance restrictions apply on the grain boundaries throughout the volume modeled.
Abstract: We formulated a numerical model for stable isotope interdiffusion which predicts the temperatures recorded between two or more minerals, and the intragranular distribution of stable isotopes in each mineral, as functions of mineral grain sizes and shapes, diffusivities, modes, equilibrium isotopic fractionations, and the cooling rate of a rock. One of the principal assumptions of the model is that grain boundaries are regions of rapid transport of stable isotopes. This Fast Grain Boundary (FGB) model describes interdiffusion between any number of mineral grains, assuming that local equilibrium and mass balance restrictions apply on the grain boundaries throughout the volume modeled. The model can be used for a rock containing any number of minerals, and number of grain sizes of each mineral, several grain shapes, and any thermal history or domain size desired. Previous models describing stable isotope interdiffusion upon cooling have been based on Dodson's equation or an equivalent numerical analogue. The closure temperature of Dodson is the average, bulk temperature recorded between a mineral and an infinite reservoir. By using Dodson's equation, these models have treated the closure temperature as an innate characteristic of a given mineral, independent of the amounts and diffusion rates of other minerals. Such models do not accurately describe the mass balance of many stable isotope interdiffusion problems. Existing models for cation interdiffusion could be applied to stable isotopes with some modifications, but only describe exchange between two minerals under specific conditions. The results of FGB calculations differ considerably from the predictions of Dodson's equation in many rock types of interest. Actual calculations using the FGB model indicate that closure temperature and diffusion profiles are as strongly functions of modal abundance and relative differences in diffusion coefficient as they are functions of grain size and cooling rate. Closure temperatures recorded between two minerals which exchanged stable isotopes by diffusion are a function of modal abundance and differences in diffusion coefficient, and may differ from that predicted by Dodson's equation by hundreds of degrees C. Either or both of two minerals may preserve detectable zonation, which may in some instances be larger in the faster diffusing mineral. Rocks containing three or more minerals can record a large span of fractionations resulting from closed system processes alone. The results of FGB diffusion modeling indicate that the effects of diffusive exchange must be evaluated before interpreting mineral fractionations, concordant or discordant, recorded within any rock in which diffusion could have acted over observable scales. The predictions of this model are applicable to thermometry, evaluation of open or closed system retrogression, and determination of cooling rates or diffusion coefficients.

188 citations


Journal ArticleDOI
TL;DR: In this article, major element metasomatism in 5 amphibolite facies ductile fault zones can be explained as the inevitable consequence of aqueous fluid flow along normal temperature gradients under conditions of local chemical equilibrium.
Abstract: Observed major element metasomatism in 5 amphibolite facies ductile fault zones can be explained as the inevitable consequence of aqueous fluid flow along normal temperature gradients under conditions of local chemical equilibrium. The metasomatism does not require the infiltration of chemically exotic fluids. Calculations suggest that metasomatized ductile fault zones are typically infiltrated by ∼105 moles H2O/cm2, fluid flow is in the direction of decreasing temperature, and fluids contain about 1.0 molal total chloride. Where available, stable isotopic alteration data confirm both flow direction and fluid fluxes calculated from major element metasomatism. The fluid fluxes inferred from metasomatism do not require large-scale fluid recirculation or mantle sources if significant lateral fluid flow occurs in the deep crust. Time-integrated fluid fluxes are combined with estimates of flow duration to constrain average flow rates and average permeabilities. Rocks in ductile fault zones are probably much more permeable during metasomatism (average permeabilities of 10-17 to 10-15 m2) than rocks normally are during regional metamorphism (10-21 to 10-18 m2). Estimated average fluid flow rates (3.5×10-3 to 0.35 m/yr) are insufficient, however, to significantly elevate ambient temperatures within ductile faults. Fluid flow in the direction of decreasing temperature may increase the ductility of silicate rocks by adding K to the rocks and thereby driving mica-forming reactions.

187 citations


Journal ArticleDOI
TL;DR: Fluid activity ratios calculated between millimeter-to centimeter-scale layers in banded mafic eclogites from the Tauern Window, Austria, indicate that variations in aH2O existed between layers during equilibration at P approximately equal to 2GPa and T roughly equal to 625°C, whereas aCO2 was nearly constant between the same layers as discussed by the authors.
Abstract: Fluid activity ratios calculated between millimeter- to centimeter-scale layers in banded mafic eclogites from the Tauern Window, Austria, indicate that variations in aH2O existed between layers during equilibration at P approximately equal to 2GPa and T approximately equal to 625°C, whereas aCO2 was nearly constant between the same layers. Model calculations in the system H2O−CO2−NaCl show that these results are consistent with the existence of different saturated saline brines, carbonic fluids, or immiscible pairs of both in different layers. The data cannot be explained by the exisience of water-rich fluids in all layers. The model fluid compositions agree with fluid inclusion compositions from eclogite-stage veins and segregations that contain (1) saline brines (up to 39 equivalent wt. % NaCl) with up to six silicate, oxide, and carbonate daughter phases, and (2) carbonic fluids. The formation of crystalline segregations from fluid-filled pockets or hydrofractures indicates high fluid pressures at 2 GPa; the record of fluid variability in the banded eclogite host rocks, however, implies that fluid transport was limited to local flow along individual layers and that there was no large-scale mixing of fluids during devolatilization at depths of 60–70 km. The lack of evidence for fluid mixing may, in part, reflect variations in wetting behavior of fluids of different composition; nonwetting fluids (water-rich or carbonic) would be confined to intergranular pore spaces and would be essentially immobile, whereas wetting fluids (saline brines) could migrate more easily along an interconnected fluid network. The heterogeneous distribution of chemically distinct fluids may influence chemical transport processes during subduction by affecting mineral-fluid element partitioning and by altering the migration properties of the fluid phase(s) in the downgoing slab.

Journal ArticleDOI
TL;DR: In this paper, the amphibole stability field is defined in the melting range at pressures between 1 atm. and 10 kbar, and the phase relationships suggested by these experiments are discussed in the light of naturally occurring phenocryst and xenolith assemblages from the east Sunda Arc.
Abstract: Experiments in the system high-A1 basalt (HAB)-water have been conducted in the melting range at pressures between 1 atm. and 10 kbar, defining the amphibole stability field and the composition of liquids which coexist with this amphibole. Plagioclase is the anhydrous liquidus phase between 1 atm. and 10 kbar but in the hydrous runs this role is taken by olivine at <7 kbar and then by clinopyroxene at higher pressures. Because amphibole is never on the high-A1 basalt liquidus it is not likely that andesite is derived from primary basalt by pure fractional crystallisation, although as we discuss, other mechanisms including equilibrium crystallisation might implicate amphibole. If primary basaltic magma undergoes closed-system equilibrium crystallisation, then the amphibole field will be intersected at between 50 and 100°C below the liquidus. The compositions of melts coexisting with amphibole alone do not match those of any of the natural andesite or dacitic lavas associated with the particular high-A1 basalt investigated. Like natural andesites, they become rapidly silica enriched, but they also become far more depleted in TiO2 and MgO. However, the compositions of liquids lying directly on the divariant amphibole-out reaction zone, where amphibole +liquid coexist with clinopyroxene or olivine (±plagioclase), do resemble those of naturally occurring low-silica andesites. With increasing temperature pargasitic amphibole breaks down via incongruent melting reactions over a narrow temperature range to form a large volume of relatively low-silica basaltic andesite liquid and a crystalline assemblage dominated by either clinopyroxene or olivine. Our important conclusion is that basaltic andesite liquid will be the product of reaction between cooling, hydrous mafic liquid and anhydrous ferromagnesian phases. The solid reactants could represent earlier cumulates from the same or different magma batches, or they could be peridotite wall-rock material. Because the amphibole-out boundary coexisting with liquid is one of reaction, it will not be traversed so long as the phases on the high temperature side remain. Thus, the assemblage amphibole+clinopyroxene±olivine±plagioclase+liquid is one in which the liquid is buffered (within limits), and results reported here indicate that this buffering generates melts of low-silica andesite composition. When tapped to lower pressures these liquids will rise, eventually to fractionate plagioclase-rich assemblages yielding silicarich andesite and dacite melts. Conversely, the partial melting of hornblende pyroxenite, hornblende peridotite or hornblende gabbro can also yield basaltic andesite liquids. The phase relationships suggested by these experiments are discussed in the light of naturally occurring phenocryst and xenolith assemblages from the east Sunda Arc. Primary magmatic additions to the lithosphere of volcanic arcs are basaltic and voluminous upper crustal andesite in these terranes, complemented by mafic and ultramafic crystalline deposits emplaced in the lower crust or close to the Moho. Together these components constitute total arc growth with a basaltic composition and represent the net accreted contribution to continental growth.

Journal ArticleDOI
TL;DR: In this paper, a petrological and geochemical study of harzburgitic and dunitic xenoliths from the melilititic district of In Teria (Algerian Sahara) shows that the lighospheric mantle of this region has been affected by a multi-stage metasomatism.
Abstract: The petrological and geochemical study of harzburgitic and dunitic xenoliths from the melilititic district of In Teria (Algerian Sahara) shows that the lighospheric mantle of this region has been affected by a multi-stage metasomatism. The first metasomatic event is related to the injection of alkali silicated (basaltic or kimberlitic) melt and was responsible for the crystallization of phlogopite at depths ranging between 80 and 100 km and the crystallization of amphibole at about 60 km. During this first event, carbonate probably precipitated in the garnet stability field. In a second stage, the spinal peridotites suffered strong mineral changes resulting in an extensive formation of high-Cr endiopside and leading to conversion of harzburgite and dunite into lherzolite and wehrlite. These changes are associated with an enrichment in the most incompatible trace elements including light REE (rare-earth elements), Ta, Th and variable values of ratios such as Th/La and Ta/La. This second event is atributed to the injection (under conditions of decarbonatation and release of CO2) of a carbonatitic melt resulting from incipient melting of the garnet peridotites, which were previously carbonated. This interpretation is corroborated by the calculation of a diffusion-percolation model which reproduces well the observed distribution of incompatible trace elements in the spinel peridotites. Given the proposed sequence of events, it appears that most of the specificities of the In Teria xenoliths can be explained by the successive geochemical modifications induced within the lithospheric mantle during reheating.

Journal ArticleDOI
TL;DR: The Coldwell Complex represents the largest alkaline intrusion associated with the Midcontinent Rift System in North America as discussed by the authors, and it contains a plethora of rock types that have previously been subdivided into three intrusive centers.
Abstract: The Coldwell Complex represents the largest alkaline intrusion associated with the Midcontinent Rift System in North America This complex contains a plethora of rock types that have previously been subdivided into three intrusive centers A detailed U-Pb zircon/baddeleyite age study of five samples indicates that the majority of the complex was emplaced into “cold” Archean crust at 1108±1 Ma and likely experienced a rapid cooling history These data, combined with published U-Pb zircon/baddeleyite results for other rift related igneous activity, document the contemporaneous production and emplacement of tholeiitic and alkaline magmas at the onset of rifting The Sr-Nd-Pb isotopic compositions of selected minerals from different phases of the complex display considerable scatter that is best explained by the presence of magmas with different initial isotopic compositions The initial Sr and Nd isotopic compositions for clinopyroxene and plagioclase from one of the earliest gabbro phases (eNd=+05 to +16; eSr=+24 to +31) are identical to published data for primitive olivine tholeiites from the rift and indicate that the majority of magmas, both tholeiitic and alkaline, have a uniform, nearly chondritic isotopic composition This very reproducible isotopic composition for rift magmatism can be explained by the dominance of a well-mixed mantle plume signature in magma genesis The shift in isotopic compositions observed for the more evolved granite and syenite samples (eNd=−46 to −64; eSr=+102 to +138) combined with a less radiogenic Pb isotopic signature is consistent with derivation of these magmas from or interaction with an older granulite facies lower crust The chondritic isotopic signature typical of most MRS volcanic and plutonic rocks is quite distinct from published results on associated carbonatites (eNd=+21 to +45; eSr=−80 to 2212;115) indicating the presence of at least two distinct subcontinental mantle isotopic reservoirs in this region

Journal ArticleDOI
TL;DR: In this paper, the authors used infrared (IR) spectroscopy to analyze the properties of the garnets of dominantly mantle origin and found that the principal structural OH absorption occurs near 3570 cm^(-1), with the appearance of additional absorptions near 3512 cm^(1) and 3650 cm(2) depending on garnet composition or paragenesis.
Abstract: 166 garnets of dominantly mantle origin were analyzed for OH content by infrared (IR) spectroscopy. IR spectra in the 3400–3700 cm^(-1) region display consistent absorption patterns attributable to OH structurally bound within the garnet crystal, occasionally contaminated by low intensity OH absorptions from microscopic inclusions. The principal structural OH absorption occurs near 3570 cm^(-1), with the appearance of additional absorptions near 3512 cm^(-1) and 3650 cm^(-1) dependent on garnet composition or paragenesis. Samples derive from a wide variety of rock types occurring as xenoliths in kimberlites of southern Africa. OH abundances, using the best currently available calibration, range from less than 1 up to 135 ppm H_2O, and increase in the general order as follows: on-craton eclogites Group 1 (basaltic) kimberlite>alnoite>alkali basalt. The OH contents of common lithospheric granets from coarse peridotites, including several phlogopite-bearing samples are typically less than 20 ppm H_2O, for tectonic settings of kimberlites both on and off the Archaean Kaapvaal craton. Ti-rich garnets from deformed peridotites are richer in OH, supporting previous suggestions of association of these xenoliths with putative megacryst magmas. Subcalcic Cr-rich xenocrysts, diamond inclusion garnets and garnets from diamondiferous eclogites have very low OH contents, similar to eclogites and depleted peridotites without macroscopic diamonds. The OH content of southern African peridotite and eclogite garnets are significantly lower on average than those previously examined from the Colorado Plateau diatremes. While details of emplacement-related H mobility in garnets remain to be established, our results suggest that garnets record useful information on the role of water or other hydrous volatile species in petrological processes at their source regions in the mantle. Although garnets do not appear to constitute a large reservoir of mantle hydrogen, the large stability range of OH-bearing garnet in the crust and mantle implies wide applicability as a qualitative hydrobarometer.

Journal ArticleDOI
TL;DR: In this paper, Nabelek et al. examined the Proterozoic Harney Peak Granite, Black Hills, South Dakota, in view of experimentally determined phase equilibria applicable to granitic systems in order to place constraints on the progenesis of peraluminous leucogranites and commonly associated rare-element pegmatites.
Abstract: The mineralogy, petrology and geochemistry of the Proterozoic Harney Peak Granite, Black Hills, South Dakota, were examined in view of experimentally determined phase equilibria applicable to granitic systems in order to place constraints on the progenesis of peraluminous leucogranites and commonly associated rare-element pegmatites. The granite was emplaced at 3–4 kbar as multiple sills and dikes into quartz-mica schists at the culmination of a regional high-temperature, low-pressure metamorphic event. Principally along the periphery of the main pluton and in satellite intrusions, the sills segregated into granite-pegmatite couplets. The major minerals include quartz, K-feldspar, sodic plagioclase and muscovite. Biotite-{Mg No. [Molar MgO/(MgO+FeO)]=0.32-0.38} is the predominant ferromagnesian mineral in the granite's core, whereas at the periphery of the main pluton and in the satellite intrusions tourmaline (Mg No.=0.18–0.48) is the dominant ferromagnesian phase. Almandine-spessartine garnet is also found in the outer intrusions. There is virtually a complete overlap in the wide concentration ranges of SiO2, CaO, MgO, FeO, Sr, Zr, W of the biotite- and tourmaline-bearing granite suites with no discernable differentiation trends on Harker diagrams, precluding the derivation of one suite from the other by differentiation following emplacement. This is consistent with the oxygen isotope compositions which are 11.5 ± 0.6‰ for the biotite granites and 13.2 ± 0.8‰ for the tourmaline granites, suggesting derivation from different sources. The concentrations of TiO2 and possibly Ba are higher and of MnO and B are lower in the biotite granites. The normative Orthoclase/Albite ratio is extremely variable ranging from 0.26 to 1.65 in the biotite granites to 0.01–1.75 in the tourmaline granites. Very few sample compositions fall near the high-pressure, watersaturated haplogranite minima-eutectic trend, indicating that the granites for the most part are not minimum melts generated under conditions with \(a_{{\text{H}}_{\text{2}} {\text{O}}}\)=1. Instead, most biotite granites are more potassic than the water-saturated minima and eutectics and in analogy with experimentally produced granitic melts, they are best explained by melting at ∼6 kbar, \(a_{{\text{H}}_{\text{2}} {\text{O}}}\)<1 and temperatures ∼800°C. Such high temperatures are also indicated by oxygen isotope equilibration among the constituent minerals (Nabelek et al. 1992). Several of the tourmaline granite samples contain virtually no K-feldspar and have oxygen isotope equilibration temperatures 716–775°C. Therefore, they must represent high-temperature accumulations of liquidus minerals crystallized under equilibrium conditions from melts more sodic than the water-saturated haplogranite minima or during fractionation of intruded melts into granite-pegmatite couplets accompanied by volatile-aided differentiation of the alkali elements. The indicated high temperatures, \(a_{{\text{H}}_{\text{2}} {\text{O}}}\)<1, the relatively high TiO2 and Ba concentrations and the relatively low \(\partial ^{18} {\text{O}}\) values of the biotite granites suggest that they were generated by high-extent, biotite-dehydration melting of an immature Archean metasedimentary source. The ascent of the hot melts may have triggered low-extent, muscovite-dehydration melting of schists higher in the crust producing the high-B, low-Ti melts comprising the periphery of the main pluton and the satellite intrusions. Alternatively, the different granite types may be the result of melting of a vertical section of the crust in response to the ascent of a thermal pulse, with the low-\(\partial ^{18} {\text{O}}\) biotite granites generated at a deeper, hotter region and the high-\(\partial ^{18} {\text{O}}\) tourmaline granites at a higher, cooler region of the crust. The low-Ti and high-B concentrations in the high-\(\partial ^{18} {\text{O}}\) melts resulted in the crystallization of tourmaline rather than biotite, which promoted the observed differentiation of the melts into the granitic and pegmatitic layers found along the periphery of the main pluton and the satellite intrusions.

Journal ArticleDOI
TL;DR: In this article, the authors proposed a model that basaltic magmas rise in the Icelandic crust and cause partial melting of metabasic rocks, leading to the formation of a dacitic melt.
Abstract: 238U−230Th disequilibria and Sr and O isotope ratios have been measured in a suite of samples from most of the known prehistoric and historic eruptions of Hekla volcano, Iceland. They cover the compositional range from basaltic andesite to rhyolite. Recent basalts erupted in the vicinity of the volcano and a few Pleistocene basalts have also been studied. Geochemical data indicate that the best tracers of magmatic processes in Hekla are the (230Th/232Th) and Th/U ratios. Whereas most geochemical parameters, including Sr, Nd and O isotopes, could be compatible with crystal fractionation, (230Th/232Th) and Th/U ratios differ in the basalts and basaltic andesites (1.05 and 3.2, respectively) and in the silicic rocks, dacites and rhyolites (0.98 and 3.4–3.7, respectively). This observation precludes fractional crystallization as the main differentiation process in Hekla. On the basis of these results, the following model is proposed: basaltic magmas rise in the Icelandic crust and cause partial melting of metabasic rocks, leading to the formation of a dacitic melt. The basaltic magma itself evolves by crystal fractionation and produces a basaltic andesite magma. The latter can mix with the dacitic liquid to form andesites. At higher levels in the magma chamber, the dacitic melt sometimes undergoes further differentiation by crystal fractionation and produces subordinate volumes of rhyolites. Together all these processes lead to a zoned magma chamber. However, complete zoning is achieved only when the repose time between eruptions is long enough to allow the production of significant volumes of dacitic magma by crustal melting. This situation corresponds to the large plinian eruptions. Between these eruptions, the so-called intra-cyclic activity is characterized by the eruption of andesites and basaltic andesites, with little crustal melting. The magmatic system beneath Hekla most probably was established during the Holocene. The shape and the size of the magma chamber may be inferred from the relationships between the composition of the lavas and the location of the eruption sites. In a cross-section perpendicular to Hekla's ridge, a bell-shaped reservoir 5 km wide and 7 km deep appears the most likely; its top could be at depth of 8 km according to geophysical data.

Journal ArticleDOI
TL;DR: In this article, spinel peridotite xenoliths from Pliocene alkali basaltic tuffs and lavas of the western Pannonian Basin (Hungary) have been analysed for bulk rock major and trace elements, electron probe mineral compositions, and REE and Sr, Nd isotopes on separated and leached clinopyroxenes.
Abstract: Twenty spinel peridotite xenoliths from Pliocene alkali basaltic tuffs and lavas of the western Pannonian Basin (Hungary) have been analysed for bulk rock major and trace elements, electron probe mineral compositions, and REE and Sr, Nd isotopes on separated and leached clinopyroxenes. The xenoliths are texturally diverse, including protogranular, porphyroclastic, equigranular and poikilitic textures which can generally be correlated with geochemical features. Protogranular xenoliths are relatively undepleted in Ca, Al, Ti and Na, whereas poikilitic xenoliths are more refractory. LREE-depleted patterns. and MORB-like eNd and eSr values are associated with protogranular peridotites. In contrast, xenoliths with complex textures are generally LREE-enriched. Much of the isotopic variation in the suite (eSr=−20.4 to +10.4, +Nd=+1.8 to +13.7) can be related to interaction between protogranular mantle and melts resembling the host alkali basalts, but a third (high eSr) component may be due to Miocene subduction beneath the region.

Journal ArticleDOI
TL;DR: In this article, the provenance and petrogenetic history of low grade clastic metasedimentary rocks were investigated using detrital tourmaline grains and their associated overgrowths, which were found in a lithic wacke metamorphosed to chlorite zone conditions.
Abstract: Detrital tourmaline grains and their associated tourmaline overgrowths provide a means to unravel the provenance and petrogenetic history of low grade clastic metasedimentary rocks. Evidence derives from tourmaline grains found in a lithic wacke metamorphosed to chlorite zone conditions. The detrital tourmaline cores are diagnostic indicators of the source rocks of the sediment whereas the overgrowths record both diagenetic and metamorphic reactions in the rock. Tourmaline grains consist of a detrital core surrounded by asymmetric overgrowths comprised of inner and outer rims. Abrupt chemical discontinuities between each of these zones implies that volume diffusion within tourmaline was minor under the conditions of formation. Compositions of the detrital cores vary widely, yet can be correlated with source rock types that are consistent with lithic fragments recognizable in the metawacke. At either the analogous or antilogous pole, inner rim compositions proximal to the detrital cores converge, despite the substrate tourmaline composition, indicating an approach to chemical equilibrium. However, significant dufferences in Al and X-site vacancies at the expense of Mg, Na and Ti between the analogous and antilogous poles of the inner rims demonstrate the presence of significant amounts of compositional polarity. Outer rim compositions at either pole also converge but compositional polarity between the analogous and antilogous poles persists. The presence of the inner and outer rims separated by a compositional discontinuity suggests punctuated evolution of the overgrowth. This implies that boron was sporadically available during diagenesis and metamorphism. Based on boron contents of minerals, this may correspond to a mechanism such as boron release due to polytypic change of illite or consumption of illite and/or muscovite. As such, tourmaline growth stages may serve as a monitor of chemical reactions in low grade metamorphic rocks.

Journal ArticleDOI
TL;DR: In this article, the authors used a setaram HT1500 calorimeter in step-scanning mode to measure the heat capacity of six compositions in the Na2O-FeO- Fe2O3-SiO2 system and four natural compositions (basanite, andesite, dacite and peralkaline rhyolite).
Abstract: Direct measurements of liquid heat capacity, using a Setaram HT1500 calorimeter in step-scanning mode, have been made in air on six compositions in the Na2O-FeO-Fe2O3-SiO2 system, two in the CaO-FeO-Fe2O3-SiO2 system and four of natural composition (basanite, andesite, dacite, and peralkaline rhyolite). The fitted standard deviations on our heat capacity measurements range from 0.6 to 3.6%. Step-scanning calorimetry is particularly useful when applied to iron-bearing silicate liquids because: (1) measurements are made over a small temperature interval (10K) through which the ferric-ferrous ratio of the liquid remains essentially constant during a single measurement; (2) the sample is held in equilibrium with an atmosphere that can be controlled; (3) heat capacity is measured directly and not derived from the slope of enthalpy measurements with temperature. Liquid compositions in the sodic and calcic systems were chosen because they contain large concentrations of Fe2O3 (up to 19 mol%), and their equilibrium ferric-ferrous ratios were known at every temperature of measurement. These measurement have been combined with heat capacity (Cp) data in the literature on iron-free silicate liquids to fit Cp as a function of composition. A model assuming no excess heat capacity (linear combination of partial molar heat capacities of oxide components) reproduces the liquid data within error (±2.2% on average). The derived partial molar heat capacity of the Fe2O3 component is 240.9 ±7.9 J/g.f.w.-K, with a standard error reduced by more than a factor of two from that in earlier studies. The model equation, based primarily on simple, synthetic compositions, predicts the heat capacity of the four magmatic liquids within 1.8% on average.

Journal ArticleDOI
TL;DR: In this paper, anhydrous 1 atm and piston-cylinder experiments on ID16, an Aleutian high-magnesia basalt (HMB), designed to investigate potential petrogenetic links between arc high-alumina basalts (HABs) and less common HMBs, were conducted.
Abstract: We report results of anhydrous 1 atm and piston-cylinder experiments on ID16, an Aleutian high-magnesia basalt (HMB), designed to investigate potential petrogenetic links between arc high-alumina basalts (HABs) and less common HMBs. ID16 is multiply saturated with a plagioclase/spinel iherzolite mineral assemblage (olivine, plagioclase, clinopyroxene, orthopyroxene, spinel) immediately beneath the 12 kbar liquidus. Derivative liquids produced at high temperatures in the 10–20 kbar melting interval of ID16 have compositions resembling those published of many moderate-CaO HABs, although lower-temperature liquids are poorer in CaO and richer in alkalies than are typical HABs. Isomolar pseudoternary projections and numerical mass-balance modeling suggest that derivative melts of ID16 enter into a complex reaction relationship with olivine at 10 kbar and 1,200° C–1,150° C. We sought to test such a mechanism to explain the lack of liquidus olivine in anhydrous experiments on mafic high-alumina basalts such as SSS. 1.4 (Johnston 1986). These derivative liquids, however, do not resemble typical arc high-alumina basalts, suggesting that olivine-liquid reaction does not account for Johnston's (1986) observations. Instead, we suggest that olivine can be brought onto the liquidus of such compositions only through the involvement of H2O, which will affect the influence of bulk CaO, MgO, and Al2O3 contents on the identity of HAB liquidus phases (olivine or plagioclase) at pressures less than ∼12 kbar.

Journal ArticleDOI
TL;DR: In this paper, the partitioning of stable carbon isotopes between calcite, graphite and CO2 was experimentally determined at temperatures from 500 to 1200 °C and 1 to 15 kbar pressure.
Abstract: The partitioning of stable carbon isotopes between calcite, graphite and CO2 was experimentally determined at temperatures from 500 to 1200 °C and 1 to 15 kbar pressure. Attainment of carbon isotope equilibrium in CO2-calcite runs was proven by achieving the same fractionation from isotopically opposite directions. The resultant CO2-calcite fractionation curve for carbon differs from Bottinga's calculation by 1.2‰ and confirms recent experiments of Chacko et al. and Mattey et al. In CO2-graphite experiments equilibrium fractions were extrapolated by applying the partial-exchange technique of Northrop and Clayton and by optimizing the contribution of surface reaction in graphite. CO2-graphite fractionations at temperatures up to 800 °C are in fair agreement with Bottinga's calculation, but yield a surprisingly high fractionation of ≈5‰ at upper mantle temperatures. The combination of CO2-calcite (carbon) and CO2-graphite fractionation results in a new experimentally determined calcite-grapite fractionation curve, expressed by the equation: $$\begin{gathered} 10^3 {\text{ ln }}\alpha _{{\text{cc - gr}}} = 7.99 \times 10^6 /T^2 - 9.58 \times 10^3 / + 5.76 \hfill \\ {\text{ (873 - 1473 Kelvin)}} \hfill \\ \end{gathered} $$ Applying the experimentally determined fractionation curve on graphite-bearing metacarbonates yields metamorphic temperatures distinctly higher than those obtained by Valley and O'Neil.

Journal ArticleDOI
TL;DR: In this article, the solubility of water in melts in the NaAlSi3O8−H2O system at high P and T was deduced from the appearance of quenched products and from water concentrations measured by ion probe, calibrated by hydrogen manometry.
Abstract: The solubility of water in melts in the NaAlSi3O8−H2O system at high P and T was deduced from the appearance of quenched products and from water concentrations in the quenched glasses measured by ion probe, calibrated by hydrogen manometry. Starting materials were gels with sufficient water added to ensure saturation of the melts under the run conditions. Experiments were carried out for 10–30 h in an internally heated argon pressure vessel (eight at 1400° C and 0.2–0.73 GPa and three at 0.5 GPa and 900–1200° C) and for 1 h in a piston-cylinder apparatus (three at 1200° C, 1–1.3 GPa). No bubbles were observed in the glasses quenched at P ∼30 wt% at 1.3 GPa and 1200° C) and critical behaviour is approached at ∼1.3 GPa and 1200° C. The critical curve rises to slightly higher P at lower T and intersects the three-phase or melting curve at a critical end point near 670° C and 1.5 GPa, above which albite coexists only with a supercritical fluid.

Journal ArticleDOI
TL;DR: In this paper, the concentrations of titanium and rare earth elements (REE) in olivines, orthopyroxenes, clinopyroxene and spinels from four anhydrous, spinel-bearing peridotite xenoliths have been determined.
Abstract: The concentrations of titanium and rare earth elements (REE) in olivines, orthopyroxenes, clinopyroxenes and spinels from four anhydrous, spinel-bearing peridotite xenoliths have been determined. The distribution of titanium (used as an analogue for the high field strength elements: HFSE) relative to the REE between clinopyroxenes and orthopyroxenes varies as a function of the whole rock composition and modal mineralogy. The distribution coefficients for titanium and the REE in these peridotites do not reflect mineral-melt equilibria. It is believed that subsolidus distribution coefficients for HFSE relative to REE vary with temperature. Ratios of various incompatible elements (e.g., Ti/Eu, Zr/Sm, Hf/Sm and P/Nd) in peridotite minerals differ from those in most primary basalts. However, the abundance ratios of incompatible elements in the bulk peridotite are comparable to those found in modern basalts. Given this and the differing contribution of melt from each phase during melting, near constant ratios of such incompatible elements in primary and primitive basalts and komatiites reflect the “buffering” of the melt by its residue. These ratios are fixed in the magma during the initial stages of melting because of similar and low distribution coefficients between melt and bulk residue for these element pairs. Differences in the relative abundances of titanium and REE in clinopyroxenes and orthopyroxenes demonstrate that mantle normalized abundance patterns for clinopyroxene are not equivalent to those of the whole rock. Therefore, claims of a widespread HFSE-depleted reservoir in the upper mantle base solely on the relative abundances of incompatible elements in peridotitic clinopyroxenes are invalid.

Journal ArticleDOI
TL;DR: The oxygen fugacity of 48 mantle xenoliths from 5 localities in southern Siberia (USSR) and Mongolia have been determined by 57Fe Mossbauer spectroscopy and oxygen fugacities calculated from spinel-olivineorthopyroxene equilibrium as mentioned in this paper.
Abstract: The oxygen fugacities of 48 mantle xenoliths from 5 localities in southern Siberia (USSR) and Mongolia have been determined. Ferric iron contents of spinels were measured by 57Fe Mossbauer spectroscopy and oxygen fugacities calculated from spinel-olivineorthopyroxene equilibrium. The samples studied represent the major types of upper mantle lithologies including spinel and garnet peridotites and pyroxenites, fertile and depleted peridotites and anhydrous and metasomatized samples which come from diverse tectonic settings. Extensive geochemical and isotope data are also available for these samples. Oxygen fugacity values for most central Asian xenoliths fall within the range observed in peridotite xenoliths from other continental regions at or slightly below the FMQ buffer. However, xenoliths from the Baikal rift zone are the most reduced among xenoliths for which Mossbauer data on spinels are available. They yield fO2 values similar to those in oceanic peridotites and MORBs, while xenoliths in other occurrences have higher fO2s. In general, the continental lithosperic mantle is more oxidized than MORB-like oceanic mantle. This difference seems to be due to incorporation of oxidized material into some parts of the subcontinental mantle as a result of subduction of oceanic crust. Garnet- and garnet-spinel lherzolites from the Baikal rift area have slightly higher oxygen fugacities than shallower spinel lherzolites. Oxygen fugacity does not appear to be correlated with the degree of depletion of peridotites, and its values in peridotites and pyroxenites are very much alike, suggesting that partial melting (at least at moderate degrees) takes place at essentially the same fO2s that are now recorded by the residual material. Modally (amphibole- and phlogopitebearing) and cryptically metasomatized xenoliths from the Baikal rift zone give the same fO2 values as depleted anhydrous peridotites, suggesting that solid-melt-fluid reactions in the continental rift mantle also take place without substantial change in redox state. This is in contrast to other tectonic environments where metasomatism appears to be associated with oxidation.

Journal ArticleDOI
TL;DR: In this paper, the authors focus on the petrology of the mid-Pleistocene, 1.07-07 Ma, Turf Point Formation (TPF) which is dominated by an unusual suite of porphyritic basalt and basaltic andesite lavas with subordinate phenocryst-poor andesitic to rhyodacite lava, and they show that removal of ∼80 wt% cumulate (61% Plag, 17% Cpx, 12% Opx, 7% Ol, and 3% Mt) can produce 20 wt
Abstract: In contrast to adjacent volcanic centers of the modern central Aleutian arc, Seguam Island developed on strongly extended arc crust. K-Ar dates indicate that mid-Pleistocene, late-Pleistocene, and Holocene eruptive phases constitute Seguam. This study focuses on the petrology of the mid-Pleistocene, 1.07–07 Ma, Turf Point Formation (TPF) which is dominated by an unusual suite of porphyritic basalt and basaltic andesite lavas with subordinate phenocryst-poor andesite to rhyodacite lavas. Increasing whole-rock FeO*/MgO from basalt to dacite, the anhydrous Plag+Ol+Cpx±Opx±Mt phenocryst assemblage, groundmass pigeonite, and the reaction Ol+Liq=Opx preserved in the mafic lavas indicate a tholeiitic affinity. Thermometry and comparison to published phase equilibria suggests that most TPF basalts crystallized Plag+Ol+Cpx±Mt at ≥1160°C between about 3–5 kb (±1–2% H2O), andesites crystallized Plag+Cpx+Opx±Mt at ≥1000°C between 3–4 kb with 3–5% H2O, and dacites crystallized Plag +Cpx±Opx±Mt at 1000°C between 1–2 kb with 2–3% H2O. All lavas crystallized at f o 2 close to the NNO buffer. Mineral compositions and textures indicate equilibrium crystallization of the evolved lavas; petrographic evidence of open-system mixing or assimilation is rare. MgO, CaO, Al2O3, Cr, Ni, and Sr abundances decrease and K2O, Na2O, Rb, Ba, Zr, and Pb increase with increasing SiO2 (50–71%). LREE enrichment [(Ce/Yb)n=1.7±0.2] characterizes most TPF lavas; total REE contents increase and Eu anomalies become more negative with increasing SiO2. Relative to other Aleutian volcanic centers, TPF basalts and basaltic andesites have lower K2O, Na2O, TiO2, Rb, Ba, Sr, Zr, Y, and LREE abundances. 87Sr/86Sr ratios (0.70361–0.70375) and ratios of 206Pb/204Pb (18.88–18.97), 207Pb/204Pb (15.58–15.62), 208Pb/204Pb (38.46–38.55) are the highest measured for any suite of lavas in the oceanic portion of the Aleutian arc. Conversely, eNd values (+5.8 to+6.7) are among the lowest from the Aleutians. Sr, Nd, and Pb ratios are virtually constant from basalt through rhyodacite, whereas detectable isotopic heterogenity is observed at most other Aleutian volcanic centers. Major and trace element, REE, and Sr, Nd, and Pb isotopic compositions are consistent with the basaltic andesitic, andesitic, dacitic, and rhyodacitic liquids evolving from TPF basaltic magma via closed-system fractional crystallization alone. Fractionation models suggest that removal of ∼80 wt% cumulate (61% Plag, 17% Cpx, 12% Opx, 7% Ol, and 3% Mt) can produce 20 wt% rhyodacitic residual liquid per unit mass of parental basaltic liquid. Petrologic and physical constraints favor segregation of small batches of basalt from a larger mid-crustal reservoir trapped below a low-density upper crustal lid. In these small magma batches, the degree of cooling, crystallization, and fractionation are functions of the initial mass of basaltic magma segregated, the thermal state of the upper crust, and the magnitude of extension. Tholeiitic magmas erupted at Seguam evolved by substantially different mechanisms than did calc-alkaline lavas erupted at the adjacent volcanic centers of Kanaga and Adak on unextended arc crust. These variable differentiation mechanisms and liquid lines of descent reflect contrasting thermal and mechanical conditions imposed by the different tectonic environments in which these centers grew. At Seguam, intra-arc extension promoted eruption of voluminous basalt and its differentiates, unmodified by interaction with lower crustal or upper mantle wallrocks.

Journal ArticleDOI
TL;DR: In this paper, a group of eclogites from three localities in the Moldanubian Zone of the Bohemian Massif are interpreted to have formed in the mantle and to have been transported into the crust by their enclosing garnet peridotites during Variscan orogenesis.
Abstract: High-temperature (HT), Group A eclogites from three localities in the Moldanubian Zone of the Bohemian Massif are interpreted to have formed in the mantle and to have been transported into the crust by their enclosing garnet peridotites during Variscan orogenesis. Garnet and omphacite are compositionally zoned and contain homogeneous cores and retrograde rims. Cores of minerals yield minimum temperatures and pressures of 850 to 985°C and 16.0 to 22.5 kb, based on Fe−Mg exchange between garnet and clinopyroxene and the jadeite content of clinopyroxene. Sugh high temperatures indicate equilibration in, and derivation from, the upper mantle. Trace element compositions, including the REEs, high MgO contents, and high Mg numbers suggest that the rocks formed by high pressure accumulation of garnet and clinopyroxene and variable amounts of trapped melt. Sm-Nd ages determined on four garnet-clinopyroxene pairs from the three localities are 377±20, 342±9, 336±16, and 323±7 Ma. ɛNd and initial 87Sr/86Sr are negatively correlated, varying from +6.7 to -0.1 and 0.7027 to 0.7057, respectively. Field, compositional, and isotopic data indicate that the eclogites were derived from heterogeneous mantle that included depleted and enriched compositions; this heterogeneity may have resulted from subduction processes that occurred prior to the late Variscan collision of Gondwana and Baltica.

Journal ArticleDOI
TL;DR: In this paper, the parageneses of phyllosilicates were studied using transmission and analytical electron microscopy using DSDP Hole 504B, Leg 83, and the approach to textural equilibrium was controlled largely by the availability of fluid or permeability.
Abstract: Phyllosilicates occurring as replacements of olivine, clinopyroxene and interstitial materials and as veins or fracture-fillings in hydrothermally altered basalts from DSDP Hole 504B, Leg 83 have been studied using transmission and analytical electron microscopy. The parageneses of phyllosilicates generally change systematically with depth and with the degree of alteration, which in turn is related to permeability of basalts. Saponite and some mixed-layer chlorite/smectite are the dominant phyllosilicates at the top of the transition zone. Chlorite, corrensite, and mixed-layer chlorite/corrensite occur mainly in the lower transition zone and upper levels of the sheeted dike zone. Chlorite, talc, and mixed-layer talc/chlorite are the major phyllosilicates in the sheeted dike zone, although replacement of talc or ohvine by saponite is observed. The phyllosilicates consist of parallel or subparallel discrete packets of coherent layers with packet thicknesses generally ranging from< 100 A to a few hundred A. The packets of saponite layers are much smaller or less well defined than those of chlorite, corrensite and talc, indicating poorer crystal-linity of saponite. by contrast, chlorite and talc from the lower transition zone and the sheeted dike zone occur in packets up to thousands of A thick. The Si/(Si+Al) ratio of these trioctahedral phyllosilicates increases and Fe/(Fe+Mg) decreases in the order chlorite, corrensite, saponite, and talc. These relations reflect optimal solid solution consistent with minimum misfit of articulated octahedral and tetrahedral sheets. Variations in composition of hydrothermal fluids and precursor minerals, especially in Si/(Si+Al) and Fe/(Fe+Mg) ratios, are thus important factors in controlling the parageneses of phyllosilicates. The phyllosilicates are generally well crystallized discrete phases, rather than mixed-layered phases, where they have been affected by relatively high fluid/rock ratios as in high-permeability basalts, in veins, or areas adjacent to veins. Intense alteration in basalts with high permeability (indicating high fluid/rock ratios) is characterized by pervasive albitization and zeolitization. Minimal alteration in the basalts without significant albitization and zeolitization is characterized by the occurrence of saponite±mixed-layer chlorite/smectite in the low-temperature alteration zone, and mixed-layer chlorite/corrensite or mixed-layer talc/chlorite in the high-temperature alteration zone. Textural non-equilibrium for phyllosilicates is represented by mixed layering and poorly defined packets of partially incoherent layers. The approach to textural equilibrium was controlled largely by the availability of fluid or permeability.

Journal ArticleDOI
TL;DR: In this article, the ages for zircon, titanite, allanite, epidote, and apatite are presented, with initial Hf isotopic compositions ranging from ǫHf=−8 to +3.5.
Abstract: This study presents U−Pb ages for zircon, titanite, allanite and epidote, and initial Hf isotopic compositions for zircon of Upper Carboniferous granites, diorites and syenites from the Aar massif, central Alps. The rocks were emplaced during three magmatic pulses after Hercynian collisional tectonics: (A) a shoshonitic-ultrapotassic series at 334±2.5 Ma; (B) scattered diorites and granites at 308–310 Ma; and (C) a high-K cale-alkaline granite batholith at 298±2 Ma. Inheritance of old zircons is negligible among all three groups. The Southern Aar granite, in contrast, is a syn-tectonic, probably ca. 350 Ma old granite that contains large amounts of inherited Precambrian zircons. Alpine metamorphism caused weak lead loss in many analyzed zircon fractions, but left the titanite U−Pb system undisturbed: thorites were almost completely reset by Alpine and recent lead loss. Mineral isochrons defined by titanite, allanite, epidote and apatite yield initial Pb isotopic compositions that are in agreement with the model values of Stacey and Kramers. Initial Hf isotopic compositions range from ɛHf=−8 to +3.5. The data follow a trend of increasing ɛHf with decreasing age. The ɛHf versus element concentration relationships suggest mixing between a mantle and a crustal component. These relationships can be explained in terms of generation of the melts from a subcontinental mantle that had been enriched during subduction events at about 1 Ga and by 300 Ma had developed an isotopic signature distinct from that of MORB-type mantle. Further contamination of the melts occurred during ascent and differentiation in the crust. This late Hercynian magmatism can be related to post-collisional strike-slip tectonics.

Journal ArticleDOI
TL;DR: The most magnesian olivine phenocrysts [Mg no.=100 Mg/(Mg+Fe)=90.5] in Hawaiian tholeiites provide evidence for the earliest stages of differentiation of Hawaiian magmas.
Abstract: The most magnesian olivine phenocrysts [Mg no.=100 Mg/(Mg+Fe)=90.5] in Hawaiian tholeiites provide evidence for the earliest stages of differentiation of Hawaiian magmas. Based on the correction of olivine fractionation effects, the primitive melt compositions which have crystallised these olivines are picritic with ≈16 wt% MgO. They are excellent primary-melt candidates. An experimental study on a new Hawaiian picritic primary-melt estimate demonstrates multiple saturation with peridotite (harzburgite) at 2.0 GPa and 1450° C. Garnet is not a liquidus phase at pressures below ≈3.5 GPa, and garnet peridotite is not a liquidus phase assemblage at any pressure or temperature. This result confirms previous experimental studies on Hawaiian primary-melt estimates and conflicts with trace-elementgeochemistry-based interpretations, which claim that melt generation occurs in the presence of residual garnet. If Hawaiian tholeiite primary magmas are picritic and have equilibrated with garnet-absent peridotite residues, the geochemical and isotopic characteristics of Hawaiian tholeiites (i.e. Sm/Nd chondrites and eNd>0) are consistent with their source recently having been enriched in incompatible elements. Previous modelling shows that such characteristics are consistent with source enrichment through the migration of small melt fractions generated at depth in the presence of garnet. This may be effected either at the time of Hawaiian magma genesis through dynamic melt segregation processes or, by melting of a previously enriched mantle source; possibly oceanic lithospheric mantle which has been infiltrated by melt fractions from the underlying asthenosphere prior to Hawaiian magmatism. Alternatively, if Hawaiian primary magmas are ultramafic in composition (≥20 wt% MgO) they may be generated in the presence of garnet peridotite at pressures ≥3.0 GPa.