scispace - formally typeset
Search or ask a question

Showing papers in "Critical Reviews in Biochemistry and Molecular Biology in 2006"


Journal ArticleDOI
TL;DR: These cofactors are capable of repressing basal transcription when activators are absent and stimulating transcription in the presence of activators, with emphasis on the events occurring after the chromatin has been remodeled but prior to the formation of the first phosphodiester bond.
Abstract: In eukaryotes, the core promoter serves as a platform for the assembly of transcription preinitiation complex (PIC) that includes TFIIA, TFIIB, TFIID, TFIIE, TFIIF, TFIIH, and RNA polymerase II (pol II), which function collectively to specify the transcription start site. PIC formation usually begins with TFIID binding to the TATA box, initiator, and/or downstream promoter element (DPE) found in most core promoters, followed by the entry of other general transcription factors (GTFs) and pol II through either a sequential assembly or a preassembled pol II holoenzyme pathway. Formation of this promoter-bound complex is sufficient for a basal level of transcription. However, for activator-dependent (or regulated) transcription, general cofactors are often required to transmit regulatory signals between gene-specific activators and the general transcription machinery. Three classes of general cofactors, including TBP-associated factors (TAFs), Mediator, and upstream stimulatory activity (USA)-derived positive cofactors (PC1/PARP-1, PC2, PC3/DNA topoisomerase I, and PC4) and negative cofactor 1 (NC1/HMGB1), normally function independently or in combination to fine-tune the promoter activity in a gene-specific or cell-type-specific manner. In addition, other cofactors, such as TAF1, BTAF1, and negative cofactor 2 (NC2), can also modulate TBP or TFIID binding to the core promoter. In general, these cofactors are capable of repressing basal transcription when activators are absent and stimulating transcription in the presence of activators. Here we review the roles of these cofactors and GTFs, as well as TBP-related factors (TRFs), TAF-containing complexes (TFTC, SAGA, SLIK/SALSA, STAGA, and PRC1) and TAF variants, in pol II-mediated transcription, with emphasis on the events occurring after the chromatin has been remodeled but prior to the formation of the first phosphodiester bond.

928 citations


Journal ArticleDOI
TL;DR: The ability of extradiol dioxygenases to act on a variety of non-catecholic compounds is consistent with proposed differences in the breakdown of this iron-alkylperoxo intermediate in the two enzymes, involving alkenyl migration in extradiol enzymes and acyl Migration in intradiol enzymes.
Abstract: Ring-cleaving dioxygenases catalyze the oxygenolytic fission of catecholic compounds, a critical step in the aerobic degradation of aromatic compounds by bacteria. Two classes of these enzymes have been identified, based on the mode of ring cleavage: intradiol dioxygenases utilize non-heme Fe(III) to cleave the aromatic nucleus ortho to the hydroxyl substituents; and extradiol dioxygenases utilize non-heme Fe(II) or other divalent metal ions to cleave the aromatic nucleus meta to the hydroxyl substituents. Recent genomic, structural, spectroscopic, and kinetic studies have increased our understanding of the distribution, evolution, and mechanisms of these enzymes. Overall, extradiol dioxygenases appear to be more versatile than their intradiol counterparts. Thus, the former cleave a wider variety of substrates, have evolved on a larger number of structural scaffolds, and occur in a wider variety of pathways, including biosynthetic pathways and pathways that degrade non-aromatic compounds. The catalytic mechanisms of the two enzymes proceed via similar iron-alkylperoxo intermediates. The ability of extradiol enzymes to act on a variety of non-catecholic compounds is consistent with proposed differences in the breakdown of this iron-alkylperoxo intermediate in the two enzymes, involving alkenyl migration in extradiol enzymes and acyl migration in intradiol enzymes. Nevertheless, despite recent advances in our understanding of these fascinating enzymes, the major determinant of the mode of ring cleavage remains unknown.

365 citations


Journal ArticleDOI
TL;DR: Current information regarding the nuclear RNase P and RNase MRP enzymes in the eukaryotes is reviewed, focusing on the relationship between these enzymes by examining their composition, structure and functions.
Abstract: Ribonuclease P (RNase P) is an ancient and essential endonuclease that catalyses the cleavage of the 5' leader sequence from precursor tRNAs (pre-tRNAs). The enzyme is one of only two ribozymes which can be found in all kingdoms of life (Bacteria, Archaea, and Eukarya). Most forms of RNase P are ribonucleoproteins; the bacterial enzyme possesses a single catalytic RNA and one small protein. However, in archaea and eukarya the enzyme has evolved an increasingly more complex protein composition, whilst retaining a structurally related RNA subunit. The reasons for this additional complexity are not currently understood. Furthermore, the eukaryotic RNase P has evolved into several different enzymes including a nuclear activity, organellar activities, and the evolution of a distinct but closely related enzyme, RNase MRP, which has different substrate specificities, primarily involved in ribosomal RNA biogenesis. Here we examine the relationship between the bacterial and archaeal RNase P with the eukaryotic enzyme, and summarize recent progress in characterizing the archaeal enzyme. We review current information regarding the nuclear RNase P and RNase MRP enzymes in the eukaryotes, focusing on the relationship between these enzymes by examining their composition, structure and functions.

193 citations


Journal ArticleDOI
TL;DR: Some of the general properties of proteins that do not fold well in the absence of GroEL are examined and then how folding of these proteins is enhanced by GroEL and GroES are considered.
Abstract: Protein folding is a spontaneous process that is essential for life, yet the concentrated and complex interior of a cell is an inherently hostile environment for the efficient folding of many proteins. Some proteins-constrained by sequence, topology, size, and function-simply cannot fold by themselves and are instead prone to misfolding and aggregation. This problem is so deeply entrenched that a specialized family of proteins, known as molecular chaperones, evolved to assist in protein folding. Here we examine one essential class of molecular chaperones, the large, oligomeric, and energy utilizing chaperonins or Hsp60s. The bacterial chaperonin GroEL, along with its co-chaperonin GroES, is probably the best-studied example of this family of protein-folding machine. In this review, we examine some of the general properties of proteins that do not fold well in the absence of GroEL and then consider how folding of these proteins is enhanced by GroEL and GroES. Recent experimental and theoretical studies suggest that chaperonins like GroEL and GroES employ a combination of protein isolation, unfolding, and conformational restriction to drive protein folding under conditions where it is otherwise not possible.

172 citations


Journal ArticleDOI
TL;DR: This review focuses on the structural and biochemical aspects of iron binding by the frataxin orthologs and outlines molecular attributes that may help explain the protein's role in different cellular pathways.
Abstract: Frataxin, a highly conserved protein found in prokaryotes and eukaryotes, is required for efficient regulation of cellular iron homeostasis. Humans with a frataxin deficiency have the cardio- and neurodegenerative disorder Friedreich's ataxia, commonly resulting from a GAA trinucleotide repeat expansion in the frataxin gene. While frataxin's specific function remains a point of controversy, the general consensus is that the protein assists in controlling cellular iron homeostasis by directly binding iron. This review focuses on the structural and biochemical aspects of iron binding by the frataxin orthologs and outlines molecular attributes that may help explain the protein's role in different cellular pathways.

158 citations


Journal ArticleDOI
TL;DR: A wide variety of mechanisms have been uncovered in which changes in mRNA structure in response to a regulatory signal are used to modulate gene expression in bacteria.
Abstract: Structural elements in the 5' region of a bacterial mRNA can have major effects on expression of downstream coding sequences. Folding of the nascent RNA into the helix of an intrinsic transcriptional terminator results in premature termination of transcription and in failure to synthesize the full-length transcript. Structure in the translation initiation region of an mRNA blocks access of the translation initiation complex to the ribosome binding site, thereby preventing protein synthesis. RNA structures can also affect the stability of an RNA by altering sensitivity to ribonucleases. A wide variety of mechanisms have been uncovered in which changes in mRNA structure in response to a regulatory signal are used to modulate gene expression in bacteria. These systems allow the cell to recognize an impressive array of signals, and to monitor those signals in many different ways.

144 citations


Journal ArticleDOI
TL;DR: The intricate interplay between the epidermal growth factor receptor (EGFR; Drosophila EGFR/DER) and the Notch signaling pathways as a paradigm for signal integration during development is discussed.
Abstract: Metazoan development relies on a highly regulated network of interactions between conserved signal transduction pathways to coordinate all aspects of cell fate specification, differentiation, and g...

139 citations


Journal ArticleDOI
TL;DR: It is clear that PITPs are integral parts of a highly conserved signal transduction strategy in eukaryotes, and some of the open questions that remain are discussed.
Abstract: Phosphatidylinositol/phosphatidylcholine transfer proteins (PITPs) remain largely functionally uncharacterized, despite the fact that they are highly conserved and are found in all eukaryotic cells thus far examined by biochemical or sequence analysis approaches. The available data indicate a role for PITPs in regulating specific interfaces between lipid-signaling and cellular function. In this regard, a role for PITPs in controlling specific membrane trafficking events is emerging as a common functional theme. However, the mechanisms by which PITPs regulate lipid-signaling and membrane-trafficking functions remain unresolved. Specific PITP dysfunctions are now linked to neurodegenerative and intestinal malabsorbtion diseases in mammals, to stress response and developmental regulation in higher plants, and to previously uncharacterized pathways for regulating membrane trafficking in yeast and higher eukaryotes, making it clear that PITPs are integral parts of a highly conserved signal transduction...

100 citations


Journal ArticleDOI
TL;DR: In yeast, animals, and plants, CKIs share many functional similarities, but their functions are adapted toward the specific needs of the eukaryote.
Abstract: The cell cycle is remarkably conserved in yeast, animals, and plants and is controlled by cyclin-dependent kinases (CDKs). CDK activity can be inhibited by binding of CDK inhibitory proteins, designated CKIs. Numerous studies show that CKIs are essential in orchestrating eukaryotic cell proliferation and differentiation. In yeast, animals, and plants, CKIs act as regulators of the G1 checkpoint in response to environmental and developmental cues and assist during mitotic cell cycles by inhibiting CDK activity required to arrest mitosis. Furthermore, CKIs play an important role in regulating cell cycle exit that precedes differentiation and in promoting differentiation in cooperation with transcription factors. Moreover, CKIs are essential to control CDK activity in endocycling cells. So, in yeast, animals, and plants, CKIs share many functional similarities, but their functions are adapted toward the specific needs of the eukaryote.

56 citations


Journal ArticleDOI
TL;DR: This review focuses on the path of the DNA within the Mu transpososome, as uncovered by recent topological analyses, and discusses why Mu topology cannot be analyzed by standard methods and how knowledge of the geometry of site alignment during Flp and Cre site-specific recombination was harnessed to design a new methodology called ‘difference topology.’
Abstract: Phage Mu is the most efficient transposable element known, its high efficiency being conferred by an enhancer DNA element. Transposition is the end result of a series of well choreographed steps that juxtapose the enhancer and the two Mu ends within a nucleoprotein complex called the 'transpososome.' The particular arrangement of DNA and protein components lends extraordinary stability to the transpososome and regulates the frequency, precision, directionality, and mechanism of transposition. The structure of the transpososome, therefore, holds the key to understanding all of these attributes, and ultimately to explaining the runaway genetic success of transposable elements throughout the biological world. This review focuses on the path of the DNA within the Mu transpososome, as uncovered by recent topological analyses. It discusses why Mu topology cannot be analyzed by standard methods, and how knowledge of the geometry of site alignment during Flp and Cre site-specific recombination was harnessed to design a new methodology called 'difference topology.' This methodology has also revealed the order and dynamics of association of the three interacting DNA sites, as well as the role of the enhancer in assembly of the Mu transpososome.

43 citations


Journal ArticleDOI
TL;DR: The current review focuses on the roles of both IHF and H-NS on Tn10 transposition, a mode of DNA transposition widely used in bacteria and used by “DNA-based” transposons in eukaryotes.
Abstract: Tn10 is a bacterial transposon that transposes through a non-replicative mechanism. This mode of DNA transposition is widely used in bacteria and is also used by "DNA-based" transposons in eukaryotes. Tn10 has served as a paradigm for this mode of transposition and continues to provide novel insights into how steps in transposition reactions occur and how these steps are regulated. A common feature of transposition reactions is that they require the formation of a higher order protein-DNA complex called a transpososome. A major objective in the last few years has been to better understand the dynamics of transpososome assembly and progression through the course of transposition reactions. This problem is particularly interesting in the Tn10 system because two important host proteins, IHF and H-NS, have been implicated in regulating transpososome assembly and/or function. Interestingly, H-NS is an integral part of stress response pathways in bacteria, and its function is known to be sensitive to changes in environmental conditions. Consequently, H-NS may provide a means of allowing Tn10 to responed to changing environmental conditions. The current review focuses on the roles of both IHF and H-NS on Tn10 transposition.

Journal ArticleDOI
TL;DR: The measurement of dynamic and transient interactions required to assemble the Escherichia coli sliding clamp on DNA are measurements that allow the clamp loader to keep pace with replication fork movement.
Abstract: Sliding clamps and clamp loaders are processivity factors required for efficient DNA replication. Sliding clamps are ring-shaped complexes that tether DNA polymerases to DNA to increase the processivity of synthesis. Clamp loaders assemble these ring-shaped clamps onto DNA in an ATP-dependent reaction. The overall process of clamp loading is dynamic in that protein-protein and protein-DNA interactions must actively change in a coordinated fashion to complete the mechanical clamp-loading reaction cycle. The clamp loader must initially have a high affinity for both the clamp and DNA to bring these macromolecules together, but then must release the clamp on DNA for synthesis to begin. Evidence is presented for a mechanism in which the clamp-loading reaction comprises a series of binding reactions to ATP, the clamp, DNA, and ADP, each of which promotes some change in the conformation of the clamp loader that alters interactions with the next component of the pathway. These changes in interactions must be rapid enough to allow the clamp loader to keep pace with replication fork movement. This review focuses on the measurement of dynamic and transient interactions required to assemble the Escherichia coli sliding clamp on DNA.

Journal ArticleDOI
TL;DR: Data that support or argue against nucleus/cytoplasm bidirectional movement for each category of small RNA and the possible roles that such movement may serve are discussed.
Abstract: This review highlights the unexpectedly complicated nuclear egress and nuclear import of small RNAs. Although nucleus/cytoplasm trafficking was thought to be restricted to snRNAs of many, but not all, eukaryotes, recent data indicate that such traffic may be more common than previously appreciated. First, in conflict with numerous previous reports, new information indicates that Saccharomyces cerevisiae snRNAs may cycle between the nucleus and the cytoplasm. Second, recent studies also provide evidence that other small RNAs that function exclusively in the nucleus—the budding yeast telomerase RNA and possibly small nucleolar RNAs—may exit to the cytoplasm, only to return to the nucleus. Third, nucleus/cytoplasm cycling of RNAs also occurs for RNAs that function solely in the cytoplasm, as it has been discovered that cytoplasmic tRNAs of budding yeast travel “retrograde” to the nucleus and, perhaps, back again to the cytoplasm to function in protein synthesis. Fourth, there is at least one example ...


Journal ArticleDOI
TL;DR: This article will review literature on stimulation of N-linked glycosylation by ER stress responses, focusing on metazoan systems, and the mechanisms involved will be contrasted with those mediating stimulation of EMTs by cytoplasmic stress responses.
Abstract: Endoplasmic reticulum (ER) stress responses comprising the unfolded protein response (UPR) are activated by conditions that disrupt folding and assembly of proteins inside the ER lumenal compartment. Conditions known to be proximal triggers of the UPR include saturation of chaperones with misfolded protein, redox imbalance, disruption of Ca2+ levels, interference with N-linked glycosylation, and failure to dispose of terminally misfolded proteins. Potentially, ER stress responses can reprogram cells to correct all of these problems and thereby restore ER function to normal. This article will review literature on stimulation of N-linked glycosylation by ER stress responses, focusing on metazoan systems. The mechanisms involved will be contrasted with those mediating stimulation of N-linked glycosylation by cytoplasmic stress responses. This information will interest readers who study the biological roles of stress responses, the functions of N-linked glycans, and potential strategies for treatment ...

Journal ArticleDOI
TL;DR: A number of methods that have been developed to analyze various biochemical properties of the proteins, with attention to the methodology and the limitations of the approaches, are described.
Abstract: During the last 10 years, there has been a large increase in the number of genome sequences available for study, altering the way that the biology of organisms is studied In particular, scientific attention has increasingly focused on the proteome, and specifically on the role of all the proteins encoded by the genome We focus here on several aspects of this problem We describe several technologies in widespread use to clone genes on a genome-wide scale, and to express and purify the proteins encoded by these genes We also describe a number of methods that have been developed to analyze various biochemical properties of the proteins, with attention to the methodology and the limitations of the approaches, followed by a look at possible developments in the next decade