scispace - formally typeset
Search or ask a question

Showing papers in "Critical Reviews in Food Science and Nutrition in 2012"


Journal ArticleDOI
TL;DR: The biochemical bases of associations between polyphenols and macromolecules, that is, proteins and polysaccharides are described to provide a level of understanding that can be used to underpin future research directions and to resolve existing issues that limit organoleptic and nutritional qualities of polyphenol-rich foods and drinks.
Abstract: Non-covalent and covalent associations of polyphenols with food macromolecules are two of the most fundamental factors affecting the quality of polyphenol-rich food products. This review therefore describes the biochemical bases of associations between polyphenols and macromolecules, that is, proteins and polysaccharides. Our intent is to provide a level of understanding that can be used to underpin future research directions. This will help to resolve existing issues that limit organoleptic and nutritional qualities of polyphenol-rich foods and drinks. It will also allow a better understanding of the functional consequences of these interactions on food/biological systems. The methods used to study non-covalent and covalent interactions are described, and the limiting factors of each method are emphasized. The biochemical mechanisms of interaction between polyphenols and macromolecules are also described. In processed food, non-covalent polyphenol/macromolecule interactions are largely due to weak associations, and result from a combination of hydrogen bonds and hydrophobic interactions. The biochemical mechanisms for covalent interactions involve oxidation of phenolic compounds, whether enzymatically mediated or not, with the formation of o-quinones or o-semi-quinones, or the cleavage of procyanidin interflavanic bonds in acid medium with the formation of carbocations. The effects of factors such as polyphenol structure, macromolecule structure, relative concentrations of both polyphenol and macromolecule, solvent composition, ionic strength, temperature, and pH are discussed.

590 citations


Journal ArticleDOI
TL;DR: It is envisaged that hyperspectral imaging can be considered as an alternative technique for conventional methods in realizing inspection automation, leading to the elimination of the occurrence of food safety problems at the utmost.
Abstract: Food safety is a great public concern, and outbreaks of food-borne illnesses can lead to disturbance to the society. Consequently, fast and nondestructive methods are required for sensing the safety situation of produce. As an emerging technology, hyperspectral imaging has been successfully employed in food safety inspection and control. After presenting the fundamentals of hyperspectral imaging, this paper provides a comprehensive review on its application in determination of physical, chemical, and biological contamination on food products. Additionally, other studies, including detecting meat and meat bone in feedstuffs as well as organic residue on food processing equipment, are also reported due to their close relationship with food safety control. With these applications, it can be demonstrated that miscellaneous hyperspectral imaging techniques including near-infrared hyperspectral imaging, fluorescence hyperspectral imaging, and Raman hyperspectral imaging or their combinations are powerful tools for food safety surveillance. Moreover, it is envisaged that hyperspectral imaging can be considered as an alternative technique for conventional methods in realizing inspection automation, leading to the elimination of the occurrence of food safety problems at the utmost.

376 citations


Journal ArticleDOI
TL;DR: The aim of this review is to give detailed outlines about the theory and principles of hyperspectral imaging and to focus primarily on its applications in the field of quality evaluation of agro-food products as well as its future applicability in modern food industries and research.
Abstract: The requirements of reliability, expeditiousness, accuracy, consistency, and simplicity for quality assessment of food products encouraged the development of non-destructive technologies to meet the demands of consumers to obtain superior food qualities. Hyperspectral imaging is one of the most promising techniques currently investigated for quality evaluation purposes in numerous sorts of applications. The main advantage of the hyperspectral imaging system is its aptitude to incorporate both spectroscopy and imaging techniques not only to make a direct assessment of different components simultaneously but also to locate the spatial distribution of such components in the tested products. Associated with multivariate analysis protocols, hyperspectral imaging shows a convinced attitude to be dominated in food authentication and analysis in future. The marvellous potential of the hyperspectral imaging technique as a non-destructive tool has driven the development of more sophisticated hyperspectral imaging systems in food applications. The aim of this review is to give detailed outlines about the theory and principles of hyperspectral imaging and to focus primarily on its applications in the field of quality evaluation of agro-food products as well as its future applicability in modern food industries and research.

360 citations


Journal ArticleDOI
TL;DR: The paper will discuss the various techniques that have been used for developing cost-effective biodegradable packaging materials with optimum mechanical strength and oxygen and moisture barrier properties.
Abstract: Plastic packaging for food and non-food applications is non-biodegradable, and also uses up valuable and scarce non-renewable resources like petroleum. With the current focus on exploring alternatives to petroleum and emphasis on reduced environmental impact, research is increasingly being directed at development of biodegradable food packaging from biopolymer-based materials. The proposed paper will present a review of recent developments in biopolymer-based food packaging materials including natural biopolymers (such as starches and proteins), synthetic biopolymers (such as poly lactic acid), biopolymer blends, and nanocomposites based on natural and synthetic biopolymers. The paper will discuss the various techniques that have been used for developing cost-effective biodegradable packaging materials with optimum mechanical strength and oxygen and moisture barrier properties. This is a timely review as there has been a recent renewed interest in research studies, both in the industry and academia, towards development of a new generation of biopolymer-based food packaging materials with possible applications in other areas.

358 citations


Journal ArticleDOI
TL;DR: The anti-nutrient properties of polyphenols are also discussed in this article, where the presence of phenolic compounds in the diet is beneficial to health due to their antioxidant, anti-inflammatory, vasodilating, and anti-vascular properties.
Abstract: Polyphenols are important constituents of food products of plant origin. Fruits, vegetables, and beverages are the main sources of phenolic compounds in the human diet. These compounds are directly related to sensory characteristics of foods such as flavor, astringency and color. Polyphenols are extensively metabolized both in tissues and by the colonic microbiota. Normally, the circulating polyphenols are glucuronidated and/or sulphated and no free aglycones are found in plasma. The presence of phenolic compounds in the diet is beneficial to health due to their antioxidant, anti-inflammatory, and vasodilating properties. The health effects of polyphenols depend on the amount consumed and their bioavailability. Moreover, polyphenols are able to kill or inhibit the growth of microorganisms such as bacteria, fungi, or protozoans. Some dietary polyphenols may have significant effects on the colonic flora providing a type of prebiotic effect. The anti-nutrient properties of polyphenols are also discussed in this paper. The antioxidant, anti-inflammatory, vasodilating, and prebiotic properties of polyphenols make them potential functional foods.

321 citations


Journal ArticleDOI
TL;DR: Along with a number of beneficial effects of CLA, there are safety considerations for CLA supplementation in humans, which include effects on liver functions, milk fat depression, glucose metabolism, and oxidative stresses.
Abstract: Conjugated linoleic acid (CLA) has drawn significant attention in the last two decades for its variety of biologically beneficial effects. CLA reduces body fat, cardiovascular diseases and cancer, and modulates immune and inflammatory responses as well as improves bone mass. It has been suggested that the overall effects of CLA are the results of interactions between two major isomers, cis-9,trans-11 and trans-10,cis-12. This review will primarily focus on current CLA publications involving humans, which are also summarized in the tables. Along with a number of beneficial effects of CLA, there are safety considerations for CLA supplementation in humans, which include effects on liver functions, milk fat depression, glucose metabolism, and oxidative stresses.

319 citations


Journal ArticleDOI
TL;DR: The different gels and gelling agents, the characterization of gels, and the mechanism of gelation are discussed with an emphasis on mixed or multi-component gels that would have significant commercial applications.
Abstract: Food gels are viscoelastic substances and several gelled products are manufactured throughout the world. The gelling agents in foods are usually polysaccharides and proteins. In food gels, the polymer molecules are not cross-linked by covalent bonds with the exception of disulphide bonds in some protein gels. Instead, the molecules are held together by a combination of weak inter-molecular forces like hydrogen bonds, electrostatic forces, Van der Waals forces, and hydrophobic interactions. Polysaccharides including hydrocolloids are strongly hydrated in aqueous medium but they tend to have less ordered structures. The mechanism of gelation depends on the nature of the gelling agent(s) and on the conditions of gel formation like the temperature, the presence of ions, the pH, and the concentration of gelling agents, etc. Characterization of gels can be performed in several ways of which rheological measurements are frequently practiced. Multi-component or mixed gel system is an important area of interest in which two or more gelling components are simultaneously used to achieve certain specific structural and functional characteristics. We here discuss about the different gels and gelling agents, the characterization of gels, and the mechanism of gelation with an emphasis on mixed or multi-component gels that would have significant commercial applications.

270 citations


Journal ArticleDOI
TL;DR: The phytochemical composition, nutritional significance, and potential health benefits of date fruit consumption are summarized and its great potential as a medicinal food for a number of diseases inflicting human beings is discussed.
Abstract: Date palm is one of the oldest trees cultivated by man. In the folk-lore, date fruits have been ascribed to have many medicinal properties when consumed either alone or in combination with other herbs. Although, fruit of the date palm served as the staple food for millions of people around the world for several centuries, studies on the health benefits are inadequate and hardly recognized as a healthy food by the health professionals and the public. In recent years, an explosion of interest in the numerous health benefits of dates had led to many in vitro and animal studies as well as the identification and quantification of various classes of phytochemicals. On the basis of available documentation in the literature on the nutritional and phytochemical composition, it is apparent that the date fruits are highly nutritious and may have several potential health benefits. Although dates are sugar-packed, many date varieties are low GI diet and refutes the dogma that dates are similar to candies and regular consumption would develop chronic diseases. More investigations in these areas would validate its beneficial effects, mechanisms of actions, and fully appreciate as a potential medicinal food for humans all around the world. Therefore, in this review we summarize the phytochemical composition, nutritional significance, and potential health benefits of date fruit consumption and discuss its great potential as a medicinal food for a number of diseases inflicting human beings.

266 citations


Journal ArticleDOI
TL;DR: In this article, a review of various modes of action of NSPs as a therapeutic agent have been proposed in the present review and even the recommendation on the dose of different dietary NSP intake among different age groups needs to be studied.
Abstract: Nonstarch polysaccharides (NSPs) occur naturally in many foods. The physiochemical and biological properties of these compounds correspond to dietary fiber. Nonstarch polysaccharides show various physiological effects in the small and large intestine and therefore have important health implications for humans. The remarkable properties of dietary NSPs are water dispersibility, viscosity effect, bulk, and fermentibility into short chain fatty acids (SCFAs). These features may lead to diminished risk of serious diet related diseases which are major problems in Western countries and are emerging in developing countries with greater affluence. These conditions include coronary heart disease, colo-rectal cancer, inflammatory bowel disease, breast cancer, tumor formation, mineral related abnormalities, and disordered laxation. Insoluble NSPs (cellulose and hemicellulose) are effective laxatives whereas soluble NSPs (especially mixed-link β-glucans) lower plasma cholesterol levels and help to normalize blood glucose and insulin levels, making these kinds of polysaccharides a part of dietary plans to treat cardiovascular diseases and Type 2 diabetes. Moreover, a major proportion of dietary NSPs escapes the small intestine nearly intact, and is fermented into SCFAs by commensal microflora present in the colon and cecum and promotes normal laxation. Short chain fatty acids have a number of health promoting effects and are particularly effective in promoting large bowel function. Certain NSPs through their fermented products may promote the growth of specific beneficial colonic bacteria which offer a prebiotic effect. Various modes of action of NSPs as therapeutic agent have been proposed in the present review. In addition, NSPs based films and coatings for packaging and wrapping are of commercial interest because they are compatible with several types of food products. However, much of the physiological and nutritional impact of NSPs and the mechanism involved is not fully understood and even the recommendation on the dose of different dietary NSPs intake among different age groups needs to be studied.

251 citations


Journal ArticleDOI
TL;DR: The use of the exponential model or similar empirical alternative would eliminate the confusing temperature axis inversion, the unnecessary compression of the temperature scale, and the need for kinetic assumptions that are hard to affirm in food systems.
Abstract: The Arrhenius equation has been widely used as a model of the temperature effect on the rate of chemical reactions and biological processes in foods. Since the model requires that the rate increase monotonically with temperature, its applicability to enzymatic reactions and microbial growth, which have optimal temperature, is obviously limited. This is also true for microbial inactivation and chemical reactions that only start at an elevated temperature, and for complex processes and reactions that do not follow fixed order kinetics, that is, where the isothermal rate constant, however defined, is a function of both temperature and time. The linearity of the Arrhenius plot, that is, Ln[k(T)] vs. 1/T where T is in °K has been traditionally considered evidence of the model's validity. Consequently, the slope of the plot has been used to calculate the reaction or processes’ “energy of activation,” usually without independent verification. Many experimental and simulated rate constant vs. temperature relation...

229 citations


Journal ArticleDOI
TL;DR: A critical overview of the current approaches regarding the microencapsulation of probiotic cells for food applications is given and a report on emerging developments is reported on.
Abstract: The addition of microencapsulated probiotic cells to food products is a relatively new functional food concept. Most of the published scientific research in this field is not older than ten years. However, the technological background reaches back to the 1980s, where lactic acid bacteria were microencapsulated within the concept of the so-called immobilized cell technology (ICT). Target applications of ICT were continuous fermentation processes and improved biomass production. The methods adopted from immobilized cell technology were applied for the microencapsulation of probiotics, often optimized towards specific requirements associated with the protection of probiotic cells in food applications. However, there are still significant hurdles with respect to currently available methods for probiotic cell microencapsulation. This is mainly due to the fact that important characteristics of microcapsules based on ICT appear to be in conflict with the requirements arising from an application of probiotic microcapsules in food products, with particle size and inappropriate matrix characteristics being the most prominent ones. Based on this situation the aim of this review is to give a critical overview of the current approaches regarding the microencapsulation of probiotic cells for food applications and to report on emerging developments.

Journal ArticleDOI
TL;DR: A detailed overview of the recently developed approaches and latest research efforts exerted in hyperspectral imaging technology developed for evaluating the quality of different meat products and the possibility of its widespread deployment is provided.
Abstract: During the last two decades, a number of methods have been developed to objectively measure meat quality attributes. Hyperspectral imaging technique as one of these methods has been regarded as a smart and promising analytical tool for analyses conducted in research and industries. Recently there has been a renewed interest in using hyperspectral imaging in quality evaluation of different food products. The main inducement for developing the hyperspectral imaging system is to integrate both spectroscopy and imaging techniques in one system to make direct identification of different components and their spatial distribution in the tested product. By combining spatial and spectral details together, hyperspectral imaging has proved to be a promising technology for objective meat quality evaluation. The literature presented in this paper clearly reveals that hyperspectral imaging approaches have a huge potential for gaining rapid information about the chemical structure and related physical properties of all types of meat. In addition to its ability for effectively quantifying and characterizing quality attributes of some important visual features of meat such as color, quality grade, marbling, maturity, and texture, it is able to measure multiple chemical constituents simultaneously without monotonous sample preparation. Although this technology has not yet been sufficiently exploited in meat process and quality assessment, its potential is promising. Developing a quality evaluation system based on hyperspectral imaging technology to assess the meat quality parameters and to ensure its authentication would bring economical benefits to the meat industry by increasing consumer confidence in the quality of the meat products. This paper provides a detailed overview of the recently developed approaches and latest research efforts exerted in hyperspectral imaging technology developed for evaluating the quality of different meat products and the possibility of its widespread deployment.

Journal ArticleDOI
TL;DR: This review will present current knowledge of AMPK and mTOR pathways in regulating energy balance and demonstrate the convergence between these two pathways.
Abstract: Energy balance is maintained by a complex homeostatic system involving some signaling pathways and “nutrient sensors” in multiple tissues and organs. Any defect associated with the pathways can lead to metabolic disorders including obesity, type 2 diabetes, and the metabolic syndrome. The 5’-adenosine monophosphate-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) appear to play a significant role in the intermediary metabolism of these diseases. AMPK is involved in the fundamental regulation of energy balance at the whole body level by responding to hormonal and nutrient signals in the central nervous system and peripheral tissues that modulate food intake and energy expenditure. Mammalian target of rapamycin (mTOR),is one of the downstream targets of AMPK functions as an intracellular nutrient sensor to control protein synthesis, cell growth, and metabolism. Recent research demonstrated the possible interplay between mTOR and AMPK signaling pathways. In this review, we will presen...

Journal ArticleDOI
TL;DR: An overview of the research reports on the characterization, influence on the bioactivity, and the structure-affinity relationship for studying the affinities between polyphenols and plasma proteins is given.
Abstract: The interactions between polyphenols, especially flavonoids and plasma proteins, have attracted great interest among researchers. Few papers, however, have focused on the structure-affinity relationship of polyphenols on their affinities for plasma proteins. The aim of this review is to give an overview of the research reports on the characterization, influence on the bioactivity, and the structure-affinity relationship for studying the affinities between polyphenols and plasma proteins. The molecular properties that influence the affinities of polyphenols for plasma proteins are the following: 1) One or more hydroxyl groups in the B-ring (e.g., 3',4' dihydroxylated B ring catechol group) of flavonoids enhanced the binding affinities to proteins. However, the hydroxyl group in the C-ring will weaken the binding interaction. 2) The presence of an unsaturated 2,3-bond in conjugation with a 4-carbonyl group, characteristic of flavonols structure, has been associated with stronger binding affinity with plasma proteins; 3) The glycosylation of flavonoids decreases the affinities for plasma proteins by 1-3 orders of magnitude depending on the conjugation site and the class of sugar moiety; 4) The methylation of hydroxyl groups in flavonoids slightly enhanced the affinities for plasma proteins by 2-16 times; 5) The galloylated catechins have higher binding affinities for plasma proteins than do non-galloylated catechins and the pyrogallol-type catechins have higher affinities than do the catechol-type catechins. The affinity of the catechin with 2,3-trans structure was lower than those of the catechin with 2,3-cis structure; 6) The gallotannins with more gallol groups presented a much higher percentage of binding to plasma proteins. α-D-Gallotannin showed a greater affinity for plasma proteins than does the natural stereoisomer, β-D-gallotannin; 7) The binding degree of chlorogenic acid with only one caffeoyl group was lower than the binding degrees of caffeoyl quinic acids with more caffeoyl groups. The methylation of phenolic acid decreased the affinity for BSA.

Journal ArticleDOI
TL;DR: The quality of fresh-cut fruit and vegetable products includes a combination of attributes, such as appearance, texture, and flavor, as well as nutritional and safety aspects that determine their value to the consumer.
Abstract: The quality of fresh-cut fruit and vegetable products includes a combination of attributes, such as appearance, texture, and flavor, as well as nutritional and safety aspects that determine their value to the consumer. Nutritionally, fruit and vegetables represent a good source of vitamins, minerals, and dietary fiber, and fresh-cut produce satisfies consumer demand for freshly prepared, convenient, healthy food. However, fresh-cut produce deteriorates faster than corresponding intact produce, as a result of damage caused by minimal processing, which accelerates many physiological changes that lead to a reduction in produce quality and shelf-life. The symptoms of produce deterioration include discoloration, increased oxidative browning at cut surfaces, flaccidity as a result of loss of water, and decreased nutritional value. Damaged plant tissues also represent a better substrate for growth of microorganisms, including spoilage microorganisms and foodborne pathogens. The risk of pathogen contamination and growth is one of the main safety concerns associated with fresh-cut produce, as highlighted by the increasing number of produce-linked foodborne outbreaks in recent years. The pathogens of major concern in fresh-cut produce are Listeria monocytogenes, pathogenic Escherichia coli mainly O157:H7, and Salmonella spp. This article describes the quality of fresh-cut produce, factors affecting quality, and various techniques for evaluating quality. In addition, the microbiological safety of fresh-cut produce and factors affecting pathogen survival and growth on fresh-cut produce are discussed in detail.

Journal ArticleDOI
TL;DR: The present review highlights available data on aleurone isolation, composition, intestinal physiology, and its metabolism and potential health benefits as well as its use in food.
Abstract: Over the last three decades substantial attention has been given to the role of dietary fiber in health and disease, in particular diabetes, cardiovascular disease, intestinal health, and some types of cancer. As a result the food industry started to add back fiber to refined foods and develop fiber rich foods. Scientists suggested that whole grain foods are superior to foods enriched with fibers obtained/synthesized using enzyme treatment, and thermal or chemical processing because the content of bioactive components and micronutrients in whole grain is more abundant. This triggered interest in how to isolate the micronutrient rich aleurone fiber fraction from wheat. Aleurone is a single cell layer at the inner site of the bran. It contains most of the minerals, vitamins, phenolic antioxidants, and lignans of the wheat grain. Novel milling and dry-fractionation techniques have recently allowed for full-scale separation of aleurone cells from the other layers of wheat bran, yielding a fiber rich concentrate which potentially contains many of the "whole grain kernel bioactives," which recently have been used in a variety of studies. The present review highlights available data on aleurone isolation, composition, intestinal physiology, and its metabolism and potential health benefits as well as its use in food.

Journal ArticleDOI
TL;DR: The aim of this review is to give an overview of research on the oxygen barrier properties of EVOH from the perspective of structure-barrier property relationships and the consequences of food processing conditions.
Abstract: Ethylene vinyl alcohol (EVOH) is one of the best known flexible thermoplastic oxygen barrier materials in use today. It is especially important for refrigerated and shelf-stable foods where oxygen deteriorates the quality of packaged products and reduces their shelf life. EVOH accounts for a majority of thermoplastic barrier materials used for rigid or semi-rigid retortable food containers. However. it is of limited use in flexible packages or lid films for rigid trays used for packaging thermally processed shelf-stable low acid foods due to its moisture sensitivity. Nevertheless, current use of other oxygen barrier materials such as polyvinylidene chloride and aluminum foil creates environmental concerns. Innovations in food processing technologies provide opportunities for increased use of EVOH in food packaging. The aim of this review is to give an overview of research on the oxygen barrier properties of EVOH from the perspective of structure-barrier property relationships and the consequences of food processing conditions.

Journal ArticleDOI
TL;DR: This review focuses on the extraction, synthesis, structure, molecular weight, and rheology of β-glucan and its implications in human health.
Abstract: β-Glucan is a valuable functional ingredient and various extraction techniques are available for its extraction. Choice of an appropriate extraction technique is important as it may affect the quality, structure, rheological properties, molecular weight, and other functional properties of the extracted β-glucan. These properties lead to the use of β-glucan into various food systems and have important implications in human health. This review focuses on the extraction, synthesis, structure, molecular weight, and rheology of β-glucan. Furthermore, health implications and utilization of β-glucan in food products is also discussed.

Journal ArticleDOI
TL;DR: Viable edible films and coatings have been successfully produced from whey proteins; their ability to serve other functions, viz. carrier of antimicrobials, antioxidants, or other nutraceuticals, without significantly compromising the desirable primary barrier and mechanical properties as packaging films, will add value for eventual commercial applications.
Abstract: The latest decade has witnessed joint efforts by the packaging and the food industries to reduce the amount of residues and wastes associated with food consumption. The recent increase in environmental awareness has also contributed toward development of edible packaging materials. Viable edible films and coatings have been successfully produced from whey proteins; their ability to serve other functions, viz. carrier of antimicrobials, antioxidants, or other nutraceuticals, without significantly compromising the desirable primary barrier and mechanical properties as packaging films, will add value for eventual commercial applications. These points are tackled in this review, in a critical manner. The supply of whey protein-based films and coatings, formulated to specifically address end-user needs, is also considered.

Journal ArticleDOI
TL;DR: The effect of salt reduction during bread production and the resulting problems, both technological and qualitative, are described, as well as evaluating some techniques commonly used to replace sodium chloride.
Abstract: The dietary intake of sodium chloride has increased considerably over the last few decades due to changes in the human diet. This higher intake has been linked to a number of diseases including hypertension and other cardiovascular diseases. Numerous international health agencies, as well as the food industry, have now recommended a salt intake level of about 5-6 g daily, approximately half the average current daily intake level. Cereal products, and in particular bread, are a major source of salt in the diet. Therefore, any reduction in the level of salt in bread would have a major impact on global health. However, salt is a critical ingredient in bread production, and its reduction can have a deleterious effect on the production process. This includes an impact on dough handling, as well as final bread quality characteristics, including shelf-life, bread volume, and sensory characteristics, all deviating from the expectations of bakers and consumers. This review describes the effect of salt reduction during bread production and the resulting problems, both technological and qualitative, as well as evaluating some techniques commonly used to replace sodium chloride.

Journal ArticleDOI
TL;DR: It is concluded that 200 mg per day is the optimum dietary intake of vitamin C for the majority of the adult population to maximize the vitamin's potential health benefits with the least risk of inadequacy or adverse health effects.
Abstract: The recommended dietary allowance (RDA) of vitamin C has traditionally been based on the prevention of the vitamin C deficiency disease, scurvy. While higher intakes of vitamin C may exert additional health benefits, the limited Phase III randomized placebo-controlled trials (RCTs) of vitamin C supplementation have not found consistent benefit with respect to chronic disease prevention. To date, this has precluded upward adjustments of the current RDA. Here we argue that Phase III RCTs-designed principally to test the safety and efficacy of pharmaceutical drugs-are ill suited to assess the health benefits of essential nutrients; and the currently available scientific evidence is sufficient to determine the optimum intake of vitamin C in humans. This evidence establishes biological plausibility and mechanisms of action for vitamin C in the primary prevention of coronary heart disease, stroke, and cancer; and is buttressed by consistent data from prospective cohort studies based on blood analysis or dietary intake and well-designed Phase II RCTs. These RCTs show that vitamin C supplementation lowers hypertension, endothelial dysfunction, chronic inflammation, and Helicobacter pylori infection, which are independent risk factors of cardiovascular diseases and certain cancers. Furthermore, vitamin C acts as a biological antioxidant that can lower elevated levels of oxidative stress, which also may contribute to chronic disease prevention. Based on the combined evidence from human metabolic, pharmacokinetic, and observational studies and Phase II RCTs, we conclude that 200 mg per day is the optimum dietary intake of vitamin C for the majority of the adult population to maximize the vitamin's potential health benefits with the least risk of inadequacy or adverse health effects.

Journal ArticleDOI
TL;DR: SGs have made Stevia an important part of the medicinal world as well as the food and beverage industry and its role against diabetes is most important.
Abstract: Stevia rebaudiana, a perennial herb from the Asteraceae family, is known to the scientific world for its sweetness and steviol glycosides (SGs). SGs are the secondary metabolites responsible for the sweetness of Stevia. They are synthesized by SG biosynthesis pathway operating in the leaves. Most of the genes encoding the enzymes of this pathway have been cloned and characterized from Stevia. Out of various SGs, stevioside and rebaudioside A are the major metabolites. SGs including stevioside have also been synthesized by enzymes and microbial agents. These are non-mutagenic, non-toxic, antimicrobial, and do not show any remarkable side-effects upon consumption. Stevioside has many medical applications and its role against diabetes is most important. SGs have made Stevia an important part of the medicinal world as well as the food and beverage industry. This article presents an overview on Stevia and the importance of SGs.

Journal ArticleDOI
TL;DR: Gingerol, the major gingerol in ginger rhizomes, has been found to possess many interesting pharmacological and physiological activities, such as anti-inflammatory, analgesic, and cardiotonic effects.
Abstract: Ginger rhizome (Zingiber officinale Roscoe) is widely cultivated as a spice for its aromatic and pungent components. The essential oil and oleoresins from ginger are valuable products responsible for the characteristic flavor and pungency. Both are used in several food products such as soft beverages and also in many types of pharmaceutical formulations. More than 100 compounds have been reported from ginger, some of which are isolated and characterized, others are tentatively identified by GC-MS and / or LC-MS. [6]-Gingerol, the major gingerol in ginger rhizomes, has been found to possess many interesting pharmacological and physiological activities, such as anti-inflammatory, analgesic, and cardiotonic effects. Ginger is considered as “generally recognized as safe” (GRAS) by Food and Drug Administration (FDA), USA. Due to all these properties, ginger has gained considerable attention in developed countries in recent years, especially for its use in the treatment of inflammatory conditions. The present r...

Journal ArticleDOI
TL;DR: The use of mathematical models for the probiotics fermentation will help in reducing the time and effort involved in the optimization of the probiotic fermentation process.
Abstract: Functional foods are claimed to have several health-specific advantages. In addition to their basic nutritive value, they contain a proper balance of ingredients which help in the prevention and treatment of illnesses and diseases. Within this category, products containing lactic acid bacteria or probiotics are increasingly gaining importance. The recognition of the beneficial effects of dairy products containing probiotics has been well established. The allergy to dairy products, lactose intolerance, and cholesterol content are the major drawbacks related to the use of fermented dairy products for a large percentage of consumers. Modern consumers are increasingly interested in their personal health, and expect the food that they eat to be healthy or even capable of preventing illness. Because of this, probiotic food products made out of fermentation of cereals and fruits and vegetables is receiving attention from the scientific world as well as consumers and constitutes the major part of this review. The use of mathematical models for the probiotic fermentation will help in reducing the time and effort involved in the optimization of the probiotic fermentation process. We have tried to summarize the developments in the use of mathematical models for probiotic fermentation. Future technological prospects exist in innovations which represent solutions for the stability and viability problems of probiotics in new food environments. Current research on novel probiotic formulations and microencapsulation technologies exploiting biological carrier and barrier materials has also been discussed.

Journal ArticleDOI
TL;DR: Infrared (IR) heating offers many advantages over conventional heating under similar conditions, which include reduced heating time, uniform heating, reduced quality losses, versatile, simple and compact equipment, and significant energy saving.
Abstract: Fruit processing and preservation technologies must keep fresh-like characteristics while providing an acceptable and convenient shelf life as well as assuring safety and nutritional value. Processing technologies include a wide range of methodologies to inactivate microorganisms, improve quality and stability, and preserve and minimize changes of fruit fresh-like characteristics. Infrared (IR) heating offers many advantages over conventional heating under similar conditions, which include reduced heating time, uniform heating, reduced quality losses, versatile, simple and compact equipment, and significant energy saving. The integration of IR with other matured processing operations such as blanching, dehydration, freeze-dehydration, thawing, roasting, baking, cooking has been shown to open up new processing options. Combinations of IR heating with microwave heating and other common conductive and convective modes of heating have been gaining momentum because of increased energy throughput. A number of publications and patents have demonstrated novel and diverse uses of this technology. This review aims at identifying the opportunities and challenges associated with this technology. The effect of IR on food quality attributes is also discussed. The types of equipment commonly used for IR processing have also been summarized.

Journal ArticleDOI
TL;DR: These rapid and simple methods could be used for the analysis of the ability to form tyramine by bacteria in order to evaluate the potential risk of tyramsine biosynthesis in food products.
Abstract: Tyramine poisoning is caused by the ingestion of food containing high levels of tyramine, a biogenic amine. Any foods containing free tyrosine are subject to tyramine formation if poor sanitation and low quality foods are used or if the food is subject to temperature abuse or extended storage time. Tyramine is generated by decarboxylation of the tyrosine through tyrosine decarboxylase (TDC) enzymes derived from the bacteria present in the food. Bacterial TDC have been only unequivocally identified and characterized in Gram-positive bacteria, especially in lactic acid bacteria. Pyridoxal phosphate (PLP)-dependent TDC encoding genes (tyrDC) appeared flanked by a similar genetic organization in several species of lactic acid bacteria, suggesting a common origin by a single mobile genetic element. Bacterial TDC are also able to decarboxylate phenylalanine to produce phenylethylamine (PEA), another biogenic amine. The molecular knowledge of the genes involved in tyramine production has led to the development of molecular methods for the detection of bacteria able to produce tyramine and PEA. These rapid and simple methods could be used for the analysis of the ability to form tyramine by bacteria in order to evaluate the potential risk of tyramine biosynthesis in food products.

Journal ArticleDOI
TL;DR: A careful review of the current literature indicates that in a given situation it may not be prudent to use L. innocua as a surrogate for L. monocytogenes without prior confirmation of their similar phenotypes, as an increasing number of studies have arisen demonstrating differences.
Abstract: Listeria monocytogenes is a Gram-positive foodborne pathogen responsible for a severe disease occurring in immuno-compromised populations. Foodborne illness caused by L. monocytogenes is a serious public health concern because of the high associated mortality. Study of the closely related, but nonpathogenic Listeria innocua has accounted for a better understanding of the behavior of L. monocytogenes in environments beyond the laboratory. Traditionally, the ecological co-habitation, genomic synteny, and physiological similarity of the two species have supported use of L. innocua for predicting the behavior of L. monocytogenes in farm and food processing environments. However, a careful review of the current literature indicates that in a given situation it may not be prudent to use L. innocua as a surrogate for L. monocytogenes without prior confirmation of their similar phenotypes, as an increasing number of studies have arisen demonstrating differences in L. monocytogenes and L. innocua stress response, ...

Journal ArticleDOI
TL;DR: During germination, total amino acid analysis revealed an increase in essential amino acids like lysine and tryptophan, which leads to an increased nutritional value of germinated oats.
Abstract: Oats (Avena sativa L.) are distinct among cereals due to their considerably higher protein concentration. At the same time oats possess a protein quality of high nutritional value and a special protein composition. Most cereals like wheat, barley, and rye have a high percentage of prolamins, the alcohol-soluble fraction, which usually contains most of the storage proteins, but oats are an exception. Their major storage proteins belong to the salt-water soluble globulin fraction, whereas oats prolamins are a minor component. During oats groat development, most obvious is the fairly linear increase in the globulin fraction. Oats globulins share structural features with the 11 S globulins of legumes and other dicots. Amino acid composition of oats is superior to that of other cereals due to the higher amount of limiting amino acids like lysine and threonine. During germination, total amino acid analysis revealed an increase in essential amino acids like lysine and tryptophan, which leads to an increased nutr...

Journal ArticleDOI
TL;DR: This article summarizes recent advances in vibrational spectroscopy and chemometrics and applications of these methods for antioxidant detection in foods.
Abstract: Developing rapid analytical methods for bioactive components and predicting both the concentration and biological availability of nutraceutical components in foods is a topic of growing interest. Here, analysis of bioactive components and total antioxidant activity in food matrices using infrared spectroscopy coupled with chemometric predictive models is described. Infrared spectroscopy offers an alternative to wet chemistry, chromatographic determination of antioxidants, and in vitro biochemical assays for assessment of antioxidant activity. Spectroscopic methods provide a technique that can be used with biological tissues without extraction, which can often lead to degradation of the antioxidant components. Sample preparation time greatly decreases and analysis time is very short once a predictive model has been developed. Spectroscopic methods can have a high degree of precision when applied to analysis of nutraceutical compound concentration and antioxidant activity in foods. This article summarizes recent advances in vibrational spectroscopy and chemometrics and applications of these methods for antioxidant detection in foods.

Journal ArticleDOI
TL;DR: This review presents a global view of the current situation of the scientific knowledge about aspects of wine with possible repercussions (positive or negative) on consumer health and wine safety, focusing on two types of compounds that have been related to the positive effects of moderate wine consumption, such as phenolic compounds and bioactive peptides.
Abstract: This review presents a global view of the current situation of the scientific knowledge about aspects of wine with possible repercussions (positive or negative) on consumer health and wine safety. The presence in wine of some potential harmful compounds such as phytosanitary products, trace metal compounds, sulfites, and some toxics of microbial origin, such as ochratoxin A, ethyl carbamate, and biogenic amines, is discussed. The different strategies and alternative methodologies that are being carried out to reduce or to avoid the presence of these substances in wines are also discussed. In recent years much work has focused on establishing the scientific explanations for the positive biological effects of some wine compounds. In this review, we also examine the latest knowledge regarding wine and health, focusing on two types of compounds that have been related to the positive effects of moderate wine consumption, such as phenolic compounds and bioactive peptides.