scispace - formally typeset
Search or ask a question
JournalISSN: 1040-8444

Critical Reviews in Toxicology 

Informa
About: Critical Reviews in Toxicology is an academic journal published by Informa. The journal publishes majorly in the area(s): Environmental exposure & Population. It has an ISSN identifier of 1040-8444. Over the lifetime, 1033 publications have been published receiving 107324 citations. The journal is also known as: CRC Critical Reviews in Toxicology & Crit Rev Toxicol.


Papers
More filters
Journal ArticleDOI
TL;DR: This review covers the toxicology of mercury and its compounds and leads to general discussion of evolutionary aspects of mercury, protective and toxic mechanisms, and ends on a note that mercury is still an “element of mystery.”
Abstract: This review covers the toxicology of mercury and its compounds. Special attention is paid to those forms of mercury of current public health concern. Human exposure to the vapor of metallic mercury dates back to antiquity but continues today in occupational settings and from dental amalgam. Health risks from methylmercury in edible tissues of fish have been the subject of several large epidemiological investigations and continue to be the subject of intense debate. Ethylmercury in the form of a preservative, thimerosal, added to certain vaccines, is the most recent form of mercury that has become a public health concern. The review leads to general discussion of evolutionary aspects of mercury, protective and toxic mechanisms, and ends on a note that mercury is still an "element of mystery."

1,953 citations

Journal ArticleDOI
TL;DR: While the number of grave cases with acute M. d.
Abstract: Minamata disease (M. d.) is methylmercury (MeHg) poisoning that occurred in humans who ingested fish and shellfish contaminated by MeHg discharged in waste water from a chemical plant (Chisso Co. L...

1,792 citations

Journal ArticleDOI
TL;DR: The most toxic halogenated aromatic is 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and based on in vivo and in vitro studies the relative toxicities have been determined relative to TCDD (i.e., toxic equivalents).
Abstract: Halogenated aromatic compounds, typified by the polychlorinated dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs), biphenyls (PCBs), and diphenylethers (PCDEs), are industrial compounds or byproducts which have been widely identified in the environment and in chemical-waste dumpsites. Halogenated aromatics are invariably present in diverse analytes as highly complex mixtures of isomers and congeners and this complicates the hazard and risk assessment of these compounds. Several studies have confirmed the common receptor-mediated mechanism of action of toxic halogenated aromatics and this has resulted in the development of structure-activity relationships for this class of chemicals. The most toxic halogenated aromatic is 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and based on in vivo and in vitro studies the relative toxicities of individual halogenated aromatics have been determined relative to TCDD (i.e., toxic equivalents). The derived toxic equivalents can be used for hazard and risk assessment of halogenated aromatic mixtures; moreover, for more complex mixtures containing congeners for which no standards are available (e.g., bromo/chloro mixtures), several in vitro or in vivo assays can be utilized for hazard or risk assessment.

1,756 citations

Journal ArticleDOI
TL;DR: Analysis of the results of laboratory animal and wildlife studies suggests that the predictive value of TEQs for PCBs may be both species- and response-dependent because both additive and nonadditive (antagonistic) interactions have been observed with PCB mixtures.
Abstract: Commercial polychlorinated biphenyls (PCBs) and environmental extracts contain complex mixtures of congeners that can be unequivocally identified and quantitated. Some PCB mixtures elicit a spectrum of biochemical and toxic responses in humans and laboratory animals and many of these effects resemble those caused by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and related halogenated aromatic hydrocarbons, which act through the aryl hydrocarbon (Ah)-receptor signal transduction pathway. Structure-activity relationships developed for PCB congeners and metabolites have demonstrated that several structural classes of compounds exhibit diverse biochemical and toxic responses. Structure-toxicity studies suggest that the coplanar PCBs, namely, 3,3',4,4'-tetrachlorobiphenyl (tetraCB), 3,3',4,4',5-pentaCB, 3,3',4,4',5,5'-hexaCB, and their monoortho analogs are Ah-receptor agonists and contribute significantly to the toxicity of the PCB mixtures. Previous studies with TCDD and structurally related compounds ...

1,724 citations

Journal ArticleDOI
TL;DR: CCl4 activates tumor necrosis factor (TNF)alpha, nitric oxide (NO), and transforming growth factors (TGF)-alpha and -beta in the cell, processes that appear to direct the cell primarily toward (self-)destruction or fibrosis.
Abstract: (2003). Hepatotoxicity and Mechanism of Action of Haloalkanes: Carbon Tetrachloride as a Toxicological Model. Critical Reviews in Toxicology: Vol. 33, No. 2, pp. 105-136.

1,549 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
20232
202131
202052
201938
201839
201736