scispace - formally typeset
Search or ask a question
JournalISSN: 1568-0096

Current Cancer Drug Targets 

Bentham Science Publishers
About: Current Cancer Drug Targets is an academic journal published by Bentham Science Publishers. The journal publishes majorly in the area(s): Cancer & Medicine. It has an ISSN identifier of 1568-0096. Over the lifetime, 1469 publications have been published receiving 55405 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the molecular mechanisms that regulate cell death programs including apoptosis, and how resistant forms of cancer evade apoptotic events, may provide novel opportunities for cancer drug development.
Abstract: Killing of tumor cells by anticancer therapies commonly used in the treatment of cancer, e.g. chemotherapy, gamma-irradiation, immunotherapy or suicide gene therapy, is predominantly mediated by triggering apoptosis, the cell's intrinsic death program. Accordingly, defects in apoptosis pathways can result in cancer resistance to current treatment approaches. Understanding the molecular mechanisms that regulate cell death programs including apoptosis, and how resistant forms of cancer evade apoptotic events, may provide novel opportunities for cancer drug development.

831 citations

Journal ArticleDOI
TL;DR: In this review, the progress of recent research on luteolin is summarized, with a particular focus on its anticancer role and molecular mechanisms underlying this property.
Abstract: Luteolin, 3′,4′,5,7-tetrahydroxyflavone, is a common flavonoid that exists in many types of plants including fruits, vegetables, and medicinal herbs. Plants rich in luteolin have been used in Chinese traditional medicine for treating various diseases such as hypertension, inflammatory disorders, and cancer. Having multiple biological effects such as anti-inflammation, anti-allergy and anticancer, luteolin functions as either an antioxidant or a pro-oxidant biochemically. The biological effects of luteolin could be functionally related to each other. For instance, the anti-inflammatory activity may be linked to its anticancer property. Luteolin's anticancer property is associated with the induction of apoptosis, and inhibition of cell proliferation, metastasis and angiogenesis. Furthermore, luteolin sensitizes cancer cells to therapeutic-induced cytotoxicity through suppressing cell survival pathways such as phosphatidylinositol 3′-kinase (PI3K)/Akt, nuclear factor kappa B (NF-κB), and X-linked inhibitor of apoptosis protein (XIAP), and stimulating apoptosis pathways including those that induce the tumor suppressor p53. These observations suggest that luteolin could be an anticancer agent for various cancers. Furthermore, recent epidemiological studies have attributed a cancer prevention property to luteolin. In this review, we summarize the progress of recent research on luteolin, with a particular focus on its anticancer role and molecular mechanisms underlying this property of luteolin.

819 citations

Journal ArticleDOI
TL;DR: The data strongly support the view of the PTEN/PI3K/AKT pathway as an important target for drug discovery.
Abstract: PTEN/PI3K/AKT constitutes an important pathway regulating the signaling of multiple biological processes such as apoptosis, metabolism, cell proliferation and cell growth. PTEN is a dual protein/lipid phosphatase which main substrate is the phosphatidyl-inositol,3,4,5 triphosphate (PIP3), the product of PI3K. Increase in PIP3 recruits AKT to the membrane where it is activated by other kinases also dependent on PIP3. Many components of this pathway have been described as causal forces in cancer. PTEN activity is lost by mutations, deletions or promoter methylation silencing at high frequency in many primary and metastatic human cancers. Germ line mutations of PTEN are found in several familial cancer predisposition syndromes. Activating mutations which have been reported for PI3K and AKT, in tumours are able to confer tumourigenic properties in several cellular systems. Additionally, the binding of PI3K to oncogenic ras is essential for the transforming properties of ras. In summary, the data strongly support the view of the PTEN/PI3K/AKT pathway as an important target for drug discovery.

695 citations

Journal ArticleDOI
Di Chen1, M. Frezza, S. Schmitt, Jagat R. Kanwar, Q. P. Dou 
TL;DR: Findings could help guide physicians in refining the clinical use of bortezomib, and encourage basic scientists to generate next generation proteasome inhibitors that broaden the spectrum of efficacy and produce a more durable clinical response in cancer patients.
Abstract: Targeting the ubiquitin-proteasome pathway has emerged as a rational approach in the treatment of human cancer. Based on positive preclinical and clinical studies, bortezomib was subsequently approved for the clinical use as a front-line treatment for newly diagnosed multiple myeloma patients and for the treatment of relapsed/refractory multiple myeloma and mantle cell lymphoma, for which this drug has become the staple of treatment. The approval of bortezomib by the US Food and Drug Administration (FDA) represented a significant milestone as the first proteasome inhibitor to be implemented in the treatment of malignant disease. Bortezomib has shown a positive clinical benefit either alone or as a part of combination therapy to induce chemo-/radio-sensitization or overcome drug resistance. One of the major mechanisms of bortezomib associated with its anticancer activity is through upregulation of NOXA, which is a proapoptotic protein, and NOXA may interact with the anti-apoptotic proteins of Bcl-2 subfamily Bcl-XL and Bcl-2, and result in apoptotic cell death in malignant cells. Another important mechanism of bortezomib is through suppression of the NF-κB signaling pathway resulting in the down-regulation of its anti-apoptotic target genes. Although the majority of success achieved with bortezomib has been in hematological malignancies, its effect toward solid tumors has been less than encouraging. Additionally, the widespread clinical use of bortezomib continues to be hampered by the appearance of dose-limiting toxicities, drug-resistance and interference by some natural compounds. These findings could help guide physicians in refining the clinical use of bortezomib, and encourage basic scientists to generate next generation proteasome inhibitors that broaden the spectrum of efficacy and produce a more durable clinical response in cancer patients. Other desirable applications for the use of proteasome inhibitors include the development of inhibitors against specific E3 ligases, which act at an early step in the ubiquitin-proteasome pathway, and the discovery of less toxic and novel proteasome inhibitors from natural products and traditional medicines, which may provide more viable drug candidates for cancer chemoprevention and the treatment of cancer patients in the future.

671 citations

Journal ArticleDOI
Yifan Wang1, Jian Shi1, Kequn Chai, Xuhua Ying, Binhua P. Zhou1 
TL;DR: Emerging evidences indicate that Snail causes a metabolic reprogramming, bestows tumor cells with cancer stem cell-like traits, and additionally, promotes drug resistance, tumor recurrence and metastasis.
Abstract: Epithelial-mesenchymal transition (EMT) is a highly conserved process in which polarized, immobile epithelial cells lose tight junctions, associated adherence, and become migratory mesenchymal cells. Several transcription factors, including the Snail/Slug family, Twist, δEF1/ZEB1, SIP1/ZEB2 and E12/E47 respond to microenvironmental stimuli and function as molecular switches for the EMT program. Snail is a zinc-finger transcriptional repressor controlling EMT during embryogenesis and tumor progression. Through its N-terminal SNAG domain, Snail interacts with several corepressors and epigenetic remodeling complexes to repress specific target genes, such as the E-cadherin gene (CDH1). An integrated and complex signaling network, including the RTKs, TGF-β, Notch, Wnt, TNF-α, and BMPs pathways, activates Snail, thereby inducing EMT. Snail expression correlates with the tumor grade, nodal metastasis of many types of tumor and predicts a poor outcome in patients with metastatic cancer. Emerging evidences indicate that Snail causes a metabolic reprogramming, bestows tumor cells with cancer stem cell-like traits, and additionally, promotes drug resistance, tumor recurrence and metastasis. Despite many new and exciting developments, several challenges remain to be addressed in order to understand more thoroughly the role of Snail in metastasis. Additional investigations are required to disclose the contribution of microenvironmental factors on tumor progression. This information will lead to a comprehensive understanding of Snail in cancer and will provide us with novel approaches for preventing and treating metastatic cancers.

651 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
202360
2022104
202139
202073
201973
201846