scispace - formally typeset
Search or ask a question
JournalISSN: 1389-2002

Current Drug Metabolism 

Bentham Science Publishers
About: Current Drug Metabolism is an academic journal published by Bentham Science Publishers. The journal publishes majorly in the area(s): Medicine & Pharmacokinetics. It has an ISSN identifier of 1389-2002. Over the lifetime, 1723 publications have been published receiving 70973 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: While human cytochrome p450 databases have swelled with a flood of new human sequence variants, the functional characterization of the corresponding gene products has not kept pace, so researchers have begun to apply the tools of proteomics as well as homology-based and ab initio modeling to salient questions of cyto chrome p450 structure/function.
Abstract: Cytochrome p450s comprise a superfamily of heme-thiolate proteins named for the spectral absorbance peak of their carbon-monoxide-bound species at 450 nm. Having been found in every class of organism, including Archaea, the p450 superfamily is believed to have originated from an ancestral gene that existed over 3 billion years ago. Repeated gene duplications have subsequently given rise to one of the largest of multigene families. These enzymes are notable both for the diversity of reactions that they catalyze and the range of chemically dissimilar substrates upon which they act. Cytochrome p450s support the oxidative, peroxidative and reductive metabolism of such endogenous and xenobiotic substrates as environmental pollutants, agrochemicals, plant allelochemicals, steroids, prostaglandins and fatty acids. In humans, cytochrome p450s are best know for their central role in phase I drug metabolism where they are of critical importance to two of the most significant problems in clinical pharmacology: drug interactions and interindividual variability in drug metabolism. Recent advances in our understanding of cytochrome p450-mediated drug metabolism have been accelerated as a result of an increasing emphasis on functional genomic approaches to p450 research. While human cytochrome p450 databases have swelled with a flood of new human sequence variants, however, the functional characterization of the corresponding gene products has not kept pace. In response researchers have begun to apply the tools of proteomics as well as homology-based and ab initio modeling to salient questions of cytochrome p450 structure/function. This review examines the latest advances in our understanding of human cytochrome p450s.

677 citations

Journal ArticleDOI
TL;DR: Neopterin production provides prognostic information in patients with malignant tumor diseases and in HIV-infected individuals, high levels being associated with poorer survival expectations and the extent of oxidative stress can be estimated by neopterin measurements.
Abstract: Increased amounts of neopterin are produced by human monocytes / macrophages upon stimulation with the cytokine interferon-γ. Therefore, measurement of neopterin concentrations in body fluids like serum, cerebrospinal fluid or urine provides information about activation of T helper cell 1 derived cellular immune activation. Increased neopterin production is found in infections by viruses including human immunodeficiency virus (HIV), infections by intracellular living bacteria and parasites, autoimmune diseases, malignant tumor diseases and in allograft rejection episodes. But also in neurological and in cardiovascular diseases cellular immune activation indicated by increased neopterin production, is found. Major diagnostic applications of neopterin measurements are, e.g. monitoring of allograft recipients to recognize immunological complications early. Neopterin production provides prognostic information in patients with malignant tumor diseases and in HIV-infected individuals, high levels being associated with poorer survival expectations. Neopterin measurements are also useful to monitor therapy in patients with autoimmune disorders and in individuals with HIV infection. Screening of neopterin concentrations in blood donations allows to detect acute infections in a non-specific way and improves safety of blood transfusions. As high neopterin production is associated with increased production of reactive oxygen species and with low serum concentrations of antioxidants like α-tocopherol, neopterin can also be regarded as a marker of reactive oxygen species formed by the activated cellular immune system. Therefore, by neopterin measurements not only the extent of cellular immune activation but also the extent of oxidative stress can be estimated.

664 citations

Journal ArticleDOI
TL;DR: This review aims to serve as a resource describing the structural diversity of functional groups or structural motifs commonly utilized in drug design efforts as well as experimental approaches that could be taken to evaluate whether a "structural alert" in a new drug candidate undergoes bioactivation to reactive metabolites.
Abstract: The occurrence of idiosyncratic adverse drug reactions during late clinical trials or after a drug has been released can lead to a severe restriction in its use and even in its withdrawal. Metabolic activation of relatively inert functional groups to reactive electrophilic intermediates is considered to be an obligatory event in the etiology of many drug-induced adverse reactions. Therefore, a thorough examination of the biochemical reactivity of functional groups/structural motifs in all new drug candidates is essential from a safety standpoint. A major theme attempted in this review is the comprehensive cataloging of all of the known bioactivation pathways of functional groups or structural motifs commonly utilized in drug design efforts. Potential strategies in the detection of reactive intermediates in biochemical systems are also discussed. The intention of this review is not to "black list" functional groups or to immediately discard compounds based on their potential to form reactive metabolites, but rather to serve as a resource describing the structural diversity of these functionalities as well as experimental approaches that could be taken to evaluate whether a "structural alert" in a new drug candidate undergoes bioactivation to reactive metabolites.

537 citations

Journal ArticleDOI
Shu-Feng Zhou1
TL;DR: The study of interactions of newly synthesized compounds with CYP3A4 has been incorporated into drug development and detection of possible CYP 3A4 inhibitors and inducers during the early stages of drug development is critical in preventing potential drug-drug interactions and side effects.
Abstract: Human cytochrome P450 (CYP) 3A4 is the most abundant hepatic and intestinal phase I enzyme that metabolizes approximately 50% marketed drugs. The crystal structure of bound and unbound CYP3A4 has been recently constructed, and a small active site and a peripheral binding site are identified. A recent study indicates that CYP3A4 undergoes dramatic conformational changes upon binding to ketoconazole or erythromycin with a differential but substantial (>80%) increase in the active site volume, providing a structural basis for ligand promiscuity of CYP3A4. A number of important drugs have been identified as substrates, inducers and/or inhibitors of CYP3A4. The ability of drugs to act as inducers, inhibitors, or substrates for CYP3A is predictive of whether concurrent administration of these compounds with a known CYP3A substrate might lead to altered drug disposition, efficacy or toxicity. The substrates of CYP3A4 considerably overlap with those of P-glycoprotein (P-gp). To date, the identified clinically important CYP3A4 inhibitors mainly include macrolide antibiotics (e.g., clarithromycin, and erythromycin), anti-HIV agents (e.g., ritonavir and delavirdine), antidepressants (e.g. fluoxetine and fluvoxamine), calcium channel blockers (e.g. verapamil and diltiazem), steroids and their modulators (e.g., gestodene and mifepristone), and several herbal and dietary components. Many of these drugs are also mechanism-based inhibitors of CYP3A4, which involves formation of reactive metabolites, binding to CYP3A4 and irreversible enzyme inactivation. A small number of drugs such as rifampin, phenytoin and ritonavir are identified as inducers of CYP3A4. The orphan nuclear receptor, pregnane X receptor (PXR), have been found to play a critical role in the induction of CYP3A4. The inhibition or induction of CYP3A4 by drugs often causes unfavorable and long-lasting drug-drug interactions and probably fatal toxicity, depending on many factors associated with the enzyme, drugs and the patients. The study of interactions of newly synthesized compounds with CYP3A4 has been incorporated into drug development and detection of possible CYP3A4 inhibitors and inducers during the early stages of drug development is critical in preventing potential drug-drug interactions and side effects. Clinicians are encouraged to have a sound knowledge on drugs that behave as substrates, inhibitors or inducers of CYP3A4, and take proper cautions and close monitoring for potential drug interactions when using drugs that are CYP3A4 inhibitors or inducers.

524 citations

Journal ArticleDOI
TL;DR: Among the tyrosine kinase inhibitors that are commercially available as yet, the agents that target EGFR, erlotinib and gefitinib, display the broadest spectrum of adverse effects on skin and hair, including folliculitis, paronychia, facial hair growth, facial erythema, and varying forms of frontal alopecia.
Abstract: Tyrosine kinase inhibitors (TKI) are effective in the targeted treatment of various malignancies. Imatinib was the first to be introduced into clinical oncology, and it was followed by drugs such as gefitinib, erlotinib, sorafenib, sunitinib, and dasatinib. Although they share the same mechanism of action, namely competitive ATP inhibition at the catalytic binding site of tyrosine kinase, they differ from each other in the spectrum of targeted kinases, their pharmacokinetics as well as substance-specific adverse effects. With variations from drug to drug, tyrosine kinase inhibitors cause skin toxicity, including folliculitis, in more than 50% of patients. Among the tyrosine kinase inhibitors that are commercially available as yet, the agents that target EGFR, erlotinib and gefitinib, display the broadest spectrum of adverse effects on skin and hair, including folliculitis, paronychia, facial hair growth, facial erythema, and varying forms of frontal alopecia. In contrast, folliculitis is not common during administration of sorafenib and sunitinib, which target VEGFR, PDGFR, FLT3, and others, whereas both agents have been associated with subungual splinter hemorrhages. Periorbital edema is a common adverse effect of imatinib. Besides the haematological side effects of most of TKIs like anemia, thrombopenia and neutropenia, the most common extra-heamatologic adverse effects are edema, nausea, hypothyroidism, vomiting and diarrhea. Regarding possible long term effects, recently cardiac toxicity with congestive heart failure is under debate in patients receiving imatinib and sunitinib therapy; however, this observation was probably relate to patients selection, although, TKIs overall appear to be a very well tolerated drug class.

503 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
202347
202299
202144
2020132
201994
201885