scispace - formally typeset
Search or ask a question

Showing papers in "Current Medicinal Chemistry in 2007"


Journal ArticleDOI
TL;DR: A comprehensive review of recent findings of mechanisms and signaling pathways by which microglial cells are activated in CNS inflammatory diseases and various forms of potential therapeutic options to inhibit the microglia activation which amplifies the inflammation-related neuronal injury in neurodegenerative diseases are summarized.
Abstract: An inflammatory process in the central nervous system (CNS) is believed to play an important role in the pathway leading to neuronal cell death in a number of neurodegenerative diseases including Parkinson's disease, Alzheimer's disease, prion diseases, multiple sclerosis and HIV-dementia. The inflammatory response is mediated by the activated microglia, the resident immune cells of the CNS, which normally respond to neuronal damage and remove the damaged cells by phagocytosis. Activation of microglia is a hallmark of brain pathology. However, it remains controversial whether microglial cells have beneficial or detrimental functions in various neuropathological conditions. The chronic activation of microglia may in turn cause neuronal damage through the release of potentially cytotoxic molecules such as proinflammatory cytokines, reactive oxygen intermediates, proteinases and complement proteins. Therefore, suppression of microglia-mediated inflammation has been considered as an important strategy in neurodegenerative disease therapy. Several anti-inflammatory drugs of various chemical ingredients have been shown to repress the microglial activation and to exert neuroprotective effects in the CNS following different types of injuries. However, the molecular mechanisms by which these effects occur remain unclear. In recent years, several research groups including ours have attempted to explain the potential mechanisms and signaling pathways for the repressive effect of various drugs, on activation of microglial cells in CNS injury. We provide here a comprehensive review of recent findings of mechanisms and signaling pathways by which microglial cells are activated in CNS inflammatory diseases. This review article further summarizes the role of microglial cells in neurodegenerative diseases and various forms of potential therapeutic options to inhibit the microglial activation which amplifies the inflammation-related neuronal injury in neurodegenerative diseases.

869 citations


Journal ArticleDOI
TL;DR: Several examples of different strategies for drug design, discovery and pharmacomodulation focused on new innovative hybrid compounds presenting analgesic,Anti-inflammatory, platelet anti-aggregating, anti-infectious, anticancer, cardio- and neuroactive properties are described.
Abstract: Molecular hybridization is a new concept in drug design and development based on the combination of pharmacophoric moieties of different bioactive substances to produce a new hybrid compound with improved affinity and efficacy, when compared to the parent drugs. Additionally, this strategy can result in compounds presenting modified selectivity profile, different and/or dual modes of action and reduced undesired side effects. So, in this paper, we described several examples of different strategies for drug design, discovery and pharmacomodulation focused on new innovative hybrid compounds presenting analgesic, anti-inflammatory, platelet anti-aggregating, anti-infectious, anticancer, cardio- and neuroactive properties.

859 citations


Journal ArticleDOI
TL;DR: This review summerized the biochemical and pharmacological functions of beta-carboline alkaloids and demonstrated a broad spectrum of pharmacological properties including sedative, anxiolytic, hypnotic, anticonvulsant, antitumor, antiviral, antiparasitic as well as antimicrobial activities.
Abstract: beta-Carboline alkaloids are a large group of natural and synthetic indole alkaloids with different degrees of aromaticity, some of which are widely distributed in nature, including various plants, foodstuffs, marine creatures, insects, mammalians as well as human tissues and body fluids. These compounds are of great interest due to their diverse biological activities. Particularly, these compounds have been shown to intercalate into DNA, to inhibit CDK, Topisomerase, and monoamine oxidase, and to interact with benzodiazepine receptors and 5-hydroxy serotonin receptors. Furthermore, these chemicals also demonstrated a broad spectrum of pharmacological properties including sedative, anxiolytic, hypnotic, anticonvulsant, antitumor, antiviral, antiparasitic as well as antimicrobial activities. In this review, we summerized the biochemical and pharmacological functions of beta-carboline alkaloids.

566 citations


Journal ArticleDOI
TL;DR: This review critically surveys the literature published mainly within this millennium on the new and emerging applications of silybin (pure, chemically defined substance) and silymarin (flavonoid complex from Silybum marianum - milk thistle seeds).
Abstract: This review critically surveys the literature published mainly within this millennium on the new and emerging applications of silybin (pure, chemically defined substance) and silymarin (flavonoid complex from Silybum marianum - milk thistle seeds). These compounds used so far mostly as hepatoprotectants were shown to have other interesting activities, e.g. anticancer and canceroprotective and also hypocholesterolemic activity. These effects were demonstrated in a large variety of illnesses of different organs, e.g. prostate, lungs, CNS, kidneys, pancreas and also in the skin protection. Besides the cytoprotective activity of silybin mediated by its antioxidative and radical-scavenging properties also new functions based on the specific receptor interaction were discovered. These were studied on the molecular level and modulation of various cell-signaling pathways with silybin was disclosed - e.g. NF-κ B, inhibition of EGFR-MAPK/ERK1/2 signaling, activity upon Rb and E2F proteins, IGF-receptor signaling. Proapoptotic activity of silybin in pre- and/or cancerogenic cells and anti-angiogenic activity of silybin are other important findings that bring silymarin preparations closer to respective application in the cancer treatment. Discovery of the inhibition and modulation of drug transporters, Pglycoproteins, estrogenic receptors, nuclear receptors by silybin and some of its new derivatives contribute further to the better understanding of silybin activity on the molecular level. Silymarin application in veterinary medicine is reviewed as well. Recent works using optically pure silybin diastereomers clearly indicate extreme importance of the use of optically active silybin namely in the receptor studies. Significance of silymarin and its components in the medicine is clearly indicated by an exponential growth of publications on this topic - over 800 papers in the last 5 years.

495 citations


Journal ArticleDOI
TL;DR: SAR and QSAR can provide useful tools for revealing the nature of flavonoid antioxidant action and help in the design of new and efficient flavonoids, which could be used as potential therapeutic agents.
Abstract: Flavonoids are a group of naturally occurring phytochemicals abundantly present in fruits, vegetables, and beverages such as wine and tea. In the past two decades, flavonoids have gained enormous interest because of their beneficial health effects such as anti-inflammatory, cardio-protective and anticancer activities. These findings have contributed to the dramatic increase in the consumption and use of dietary supplements containing high concentrations of plant flavonoids. The pharmacological effect of flavonoids is mainly due to their antioxidant activity and their inhibition of certain enzymes. In spite of abundant data, structural requirements and mechanisms underlying these effects have not been fully understood. This review presents the current knowledge about structure-activity relationships (SARs) and quantitative structure-activity relationships (QSARs) of the antioxidant activity of flavonoids. SAR and QSAR can provide useful tools for revealing the nature of flavonoid antioxidant action. They may also help in the design of new and efficient flavonoids, which could be used as potential therapeutic agents.

338 citations


Journal ArticleDOI
TL;DR: The entirety of the signal-transduction system for LPC, its pathophysiological implications, and the vascular abnormalities associated with it are focused on.
Abstract: Lysophosphatidylcholine (LPC) is a bioactive proinflammatory lipid generated by pathological activities. LPC is also a major phospholipid component of oxidized low-density lipoprotein (Ox-LDL) and is implicated as a critical factor in the atherogenic activity of Ox-LDL. LPC is believed to play an important role in atherosclerosis and inflammatory diseases by altering various functions in a number of cell-types, including endothelial cells, smooth muscle cells, monocytes, macrophages, and T-cells. LPC activates several second messengers -- including protein kinase C, extracellular-signal-regulated kinases, protein tyrosine kinases, and Ca(2+) -- implicating the engagement of transduction mechanisms in its observed actions. Moreover, recent evidence suggests that in several cell-types, cloned orphan G-protein-coupled receptors may serve as the specific receptors via which LPC modulates second messenger pathways (although LPC may not be a direct ligand of such receptors). In addition, current evidence suggests that LPC impairs the endothelium-dependent relaxations mediated by endothelium-derived relaxing factors and directly modulates contractile responses in vascular smooth muscle. However, despite all this, and although elevated levels of LPC have been linked to the cardiovascular complications associated with atherosclerosis, ischemia, and diabetes, the precise pathophysiological roles played by LPC in several states remain to be established. In this review, we focus in some detail on the entirety of the signal-transduction system for LPC, its pathophysiological implications, and the vascular abnormalities associated with it.

279 citations


Journal ArticleDOI
TL;DR: The present review describes the current understanding of different drugs against leishmaniasis, their chemistry, mode of action and the mechanism of resistance in the parasite.
Abstract: Leishmaniasis is a parasitic disease caused by hemoflagellate, Leishmania spp. The parasite is transmitted by the bite of an infected female phlebotomine sandfly. The disease is prevalent throughout the world and in at least 88 countries. Nearly 25 compounds are reported to have anti-leishmanial effects but not all are in use. The pentavalent antimony compounds have remained mainstay for nearly 75 years. Pentavalent antimony is a prodrug that is reduced by glutathione to active trivalent species catalyzed by thiol-dependent-reductase. However, emergence of resistance led to the use of other compounds -amphotericin B, pentamidine, paromomycin, allopurinol etc. Amphotericin B, an antifungal macrolide polyene is characterized by the hydrophilic polyhydroxyl and hydrophobic polyene faces on it long axis. Presently, it is the only drug with highest cure rate. It acts on membrane sterols resulting in parasite cell lysis. Its lipid formulations have been developed to minimize side effects. Other anti-fungals like ketoconazole, fluconazole and terbinafine are found less effective. Recently, anticancer alkylphosphocholines have been found most effective oral compounds. These act as membrane synthetic ether-lipid analogues, and consist of alkyl chains in the lipid portions. Most promising of these are miltefosine (hexadecylphosphocholine), edelfosine (ET-18-OCH3) and ilmofosine (BM 41.440). However, the recent focus has been on identifying newer therapeutic targets in the parasite such as DNA topoisomerases. The present review describes the current understanding of different drugs against leishmaniasis, their chemistry, mode of action and the mechanism of resistance in the parasite. Future perspectives in the area of new anti-leishmanial drug targets are also enumerated. However, due to the vastness of the topic main emphasis is given on visceral leishmaniasis.

261 citations


Journal ArticleDOI
TL;DR: The role of myocardial antioxidant enzymes in ischemia-reperfusion injury, particularly the glutathione peroxidase (GPX) and the thioredoxin reductase (TxnRed) systems are summarized.
Abstract: Coronary heart disease (CHD) remains the greatest killer in the Western world, and although the death rate from CHD has been falling, the current increased prevalence of major risk factors including obesity and diabetes, suggests it is likely that CHD incidence will increase over the next 20 years. In conjunction with preventive strategies, major advances in the treatment of acute coronary syndromes and myocardial infarction have occurred over the past 20 years. In particular the ability to rapidly restore blood flow to the myocardium during heart attack, using interventional cardiologic or thrombolytic approaches has been a major step forward. Nevertheless, while 'reperfusion' is a major therapeutic aim, the process of ischemia followed by reperfusion is often followed by the activation of an injurious cascade. While the pathogenesis of ischemia-reperfusion is not completely understood, there is considerable evidence implicating reactive oxygen species (ROS) as an initial cause of the injury. ROS formed during oxidative stress can initiate lipid peroxidation, oxidize proteins to inactive states and cause DNA strand breaks, all potentially damaging to normal cellular function. ROS have been shown to be generated following routine clinical procedures such as coronary bypass surgery and thrombolysis, due to the unavoidable episode of ischemia-reperfusion. Furthermore, they have been associated with poor cardiac recovery post-ischemia, with recent studies supporting a role for them in infarction, necrosis, apoptosis, arrhythmogenesis and endothelial dysfunction following ischemia-reperfusion. In normal physiological condition, ROS production is usually homeostatically controlled by endogenous free radical scavengers such as superoxide dismutase, catalase, and the glutathione peroxidase and thioredoxin reductase systems. Accordingly, targeting the generation of ROS with various antioxidants has been shown to reduce injury following oxidative stress, and improve recovery from ischemia-reperfusion injury. This review summarises the role of myocardial antioxidant enzymes in ischemia-reperfusion injury, particularly the glutathione peroxidase (GPX) and the thioredoxin reductase (TxnRed) systems. GPX and TxnRed are selenocysteine dependent enzymes, and their activity is known to be dependent upon an adequate supply of dietary selenium. Moreover, various studies suggest that the supply of selenium as a cofactor also regulates gene expression of these selenoproteins. As such, dietary selenium supplementation may provide a safe and convenient method for increasing antioxidant protection in aged individuals, particularly those at risk of ischemic heart disease, or in those undergoing clinical procedures involving transient periods of myocardial hypoxia.

248 citations


Journal ArticleDOI
TL;DR: Measurement of F(2)-IsoPs is the most reliable approach to assess oxidative stress status in vivo, providing an important tool to explore the role of oxidative stress in the pathogenesis of human disease.
Abstract: Oxidative stress, characterized by an imbalance between increased exposure to free radicals and antioxidant defenses, is a prominent feature of many acute and chronic diseases and even the normal aging process. However, definitive evidence for this association has often been lacking due to recognized shortcomings with methods previously available to assess oxidant stress status in vivo in humans. Several in vitro markers of oxidative stress are available, but most are of limited value in vivo because thay lack sensitivity and/or specificity or require invasive methods. Isoprostanes (IsoPs) are prostaglandin (PG)-like compounds that are produced in vivo independently of cyclooxygenase enzymes, primarily by free radical-induced peroxidation of arachidonic acid. F(2)-IsoPs are a group of 64 compounds isomeric in structure to cyclooxygenase-derived PGF(2alpha). Other products of the IsoP pathway are also formed in vivo by rearrangement of labile PGH(2)-like IsoP intermediates including E(2)- and D(2)-IsoPs, cyclopentenone-A(2)- and J(2)-IsoPs, and highly reactive acyclic-ketoaldehydes (isoketals). Oxidation of docosahexaenoic acid, an abundant unsaturated fatty acid in the central nervous system, results in the formation of IsoP-like compounds, termed neuroprostanes. Measurement of F(2)-IsoPs is the most reliable approach to assess oxidative stress status in vivo, providing an important tool to explore the role of oxidative stress in the pathogenesis of human disease. Moreover, F(2)-IsoPs and other products of the IsoP pathway exert potent biological actions both via receptor-dependent and independent mechanisms and therefore may be pathophysiological mediators of disease. Measurement of F(2)-IsoPs may provide a uniquely valuable approach to understanding of the clinical pharmacology of antioxidants.

228 citations


Journal ArticleDOI
TL;DR: The most studied ligands for CAMs expressed on cancer cells, sialyl Lewis (a/x) antigens, are shown to be involved in adhesion to endothelial cells by binding to E-selectin, which may partially explain the link between inflammation and tumorigenesis.
Abstract: The role of cell adhesion molecules (CAMs), such as intercellular cell adhesion molecule-1 (ICAM-1), vascular endothelial cell adhesion molecule-1 (VCAM-1), E-selectin, and P-selectin, has been studied extensively in the process of inflammation. These molecules are responsible for recruiting leukocytes onto the vascular endothelium before extravasation to the injured tissues. Some circulating cancer cells have been shown to extravasate to a secondary site using a process similar to inflammatory cells. The most studied ligands for CAMs expressed on cancer cells, sialyl Lewis (a/x) antigens, are shown to be involved in adhesion to endothelial cells by binding to E-selectin. This process, shared by inflammatory cells and cancer cells, may partially explain the link between inflammation and tumorigenesis. Furthermore, this process may elucidate the therapeutic benefit of anti-inflammatory drugs in cancer treatment. The complexity of the tumor microenvironment has been revealed in the past decade. Currently, intense investigation is aimed at various aspects of the tumor microenvironment in addition to the tumor cells themselves. Here, we review the role of CAMs in extravasation of circulating cancer cells, a key step in metastasis.

221 citations


Journal ArticleDOI
TL;DR: The physiological properties, the structure activity relationships of the existing peptide and small molecule modulators and the therapeutic importance of the three small-conductance channels KCa2.1-K Ca2.3-KCa3.1 are reviewed to constitute attractive new targets for several diseases that currently have no effective therapies.
Abstract: Calcium-activated potassium channels modulate calcium signaling cascades and membrane potential in both excitable and non-excitable cells. In this article we will review the physiological properties, the structure activity relationships of the existing peptide and small molecule modulators and the therapeutic importance of the three small-conductance channels KCa2.1-KCa2.3 (a.k.a. SK1-SK3) and the intermediate-conductance channel KCa3.1 (a.k.a. IKCa1). The apamin-sensitive KCa2 channels contribute to the medium afterhyperpolarization and are crucial regulators of neuronal excitability. Based on behavioral studies with apamin and on observations made in several transgenic mouse models, KCa2 channels have been proposed as targets for the treatment of ataxia, epilepsy, memory disorders and possibly schizophrenia and Parkinson's disease. In contrast, KCa3.1 channels are found in lymphocytes, erythrocytes, fibroblasts, proliferating vascular smooth muscle cells, vascular endothelium and intestinal and airway epithelia and are therefore regarded as targets for various diseases involving these tissues. Since two classes of potent and selective small molecule KCa3.1 blocker, triarylmethanes and cyclohexadienes, have been identified, several of these postulates have already been validated in animal models. The triarylmethane ICA-17043 is currently in phase III clinical trials for sickle cell anemia while another triarylmethane, TRAM-34, has been shown to prevent vascular restenosis in rats and experimental autoimmune encephalomyelitis in mice. Experiments showing that a cyclohexadiene KCa3.1 blocker reduces infarct volume in a rat subdural hematoma model further suggest KCa3.1 as a target for the treatment of traumatic and possibly ischemic brain injury. Taken together KCa2 and KCa3.1 channels constitute attractive new targets for several diseases that currently have no effective therapies.

Journal ArticleDOI
TL;DR: These functions facilitate the modulation of bioactive peptide responses (pain management, vasopressin release) and influence immune functions and major biological events (cell proliferation, secretion, invasion, angiogenesis) thereby providing treatment options for many kinds of diseases.
Abstract: Aminopeptidase N (APN)/CD13 is a type II metalloprotease that belongs to the M1 family of the MA clan, which consists of 967 amino acids with a short N-terminal cytoplasmic domain, a single transmembrane part, and a large cellular ectodomain containing the active site. APN has a molecular weight of 110,000. The APN exists in two forms, namely the membrane aminopeptidase N and the soluble aminopeptidase N. Moreover, it exhibits the presence of various isozymes with different functions. APN is a ubiquitous enzyme present in a wide variety of human organs, tissues and cell types (endothelial, epithelial, fibroblast, leukocyte). It is a multifunctional enzyme, related with tumorigenesis, immune system, pain etc. Furthermore, it also serves as a receptor for coronaviruses and other human viruses. Besides the manifestation of various other functions, APN is also involved in the trimming of antigen and the process of antigen presentation. These functions facilitate the modulation of bioactive peptide responses (pain management, vasopressin release) and influence immune functions and major biological events (cell proliferation, secretion, invasion, angiogenesis) thereby providing treatment options for many kinds of diseases. This review will introduce the structure and main functions of APN briefly.

Journal ArticleDOI
TL;DR: It is concluded that modulations on the oxidant and antioxidant level through ELF-EMF exposure can play a causal role in cancer development.
Abstract: Epidemiologic and experimental research on the potential carcinogenic effects of extremely low frequency electromagnetic fields (ELF-EMF) has been performed for a long time. Epidemiologic studies regarding ELF-EMF-exposure have focused primarily on leukaemia development due to residential sources in children and adults, and from occupational exposure in adults, but also on other kinds of cancer. Genotoxic investigations of EMF have shown contradictory results, a biological mechanism is still lacking that can explain the link between cancer development and ELF-EMF-exposure. Recent laboratory research has attempted to show general biological effects, and such that could be related to cancer development and/or promotion. Metabolic processes which generate oxidants and antioxidants can be influenced by environmental factors, such as ELF-EMF. Increased ELF-EMF exposure can modify the activity of the organism by reactive oxygen species leading to oxidative stress. It is well established that free radicals can interact with DNA resulting in single strand breaks. DNA damage could become a site of mutation, a key step to carcinogenesis. Furthermore, different cell types react differently to the same stimulus, because of their cell type specific redox status. The modulation of cellular redox balance by the enhancement of oxidative intermediates, or the inhibition or reduction of antioxidants, is discussed in this review. An additional aspect of free radicals is their function to influence other illnesses such as Parkinson's and Alzheimer's diseases. On the other hand, modulation of antioxidants by ELF-EMF can lower the intracellular defence activity promoting the development of DNA damage. It has also been demonstrated that low levels of reactive oxygen species trigger intracellular signals that involve the transcription of genes and leading to responses including cell proliferation and apoptosis. In this review, a general overview is given about oxidative stress, as well as experimental studies are reviewed as they are related to changes in oxidant and antioxidant content after ELF-EMF exposure inducing different biological effects. Finally, we conclude from our review that modulations on the oxidant and antioxidant level through ELF-EMF exposure can play a causal role in cancer development.

Journal ArticleDOI
TL;DR: This review presents the main classes of cholinesterase inhibitors developed recently and sum up current research concerned with development of AChEIs which can be more effective in the future treatment of AD.
Abstract: Alzheimer's disease (AD) is a progressive neurodegenerative disorder of the central nervous system (CNS) which is the most common cause of dementia in the elderly. It is characterized by the deficits in the cholinergic system and presence of characteristic hallmarks: neurofibrillary tangles and amyloid plaques. Since the cholinergic system plays an important role in the regulation of learning and memory processes it became a target for the design of anti-alzheimer drugs. Cholinesterase inhibitors enhance cholinergic transmission indirectly, by inhibiting the enzyme which hydrolyses acetylcholine. It has been also demonstrated that acetylcholinesterase (AChE) is involved in the development of amyloid plaques. Therefore, substances which are AChE inhibitors (AChEI) are the only drugs approved for the symptomatic treatment of AD. This review presents the main classes of cholinesterase inhibitors developed recently for the treatment of AD. We have started with the analogues of the existing drugs: tacrine, donepezil, rivastigmine and galantamine which are still of interest for many research groups. Among them there is a very interesting group--dual binding site inhibitors characterized by increased inhibitory potency against AChE and amyloid plaques formation. There is also a group of compounds with additional properties such as: antioxidant activity, affinity to 5-HT(3) receptors, inhibition of N-methyltransferase that metabolize histamine, which can be beneficial for the treatment of AD. Furthermore there are some interesting compounds which belong to different chemical groups also of natural origin. In this review we sum up current research concerned with development of AChEIs which can be more effective in the future treatment of AD.

Journal ArticleDOI
TL;DR: Novel pathways that involve metabotropic receptor signaling, protein-tyrosine phosphatases, Wnt proteins, Akt, GSK-3beta, and forkhead transcription factors may be responsible for the onset and progression of complications form diabetes mellitus.
Abstract: Diabetes mellitus (DM) is a significant healthcare concern worldwide that affects more than 165 million individuals leading to cardiovascular disease, nephropathy, retinopathy, and widespread disease of both the peripheral and central nervous systems. The incidence of undiagnosed diabetes, impaired glucose tolerance, and impaired fasting glucose levels raises future concerns in regards to the financial and patient care resources that will be necessary to care for patients with DM. Interestingly, disease of the nervous system can become one of the most debilitating complications and affect sensitive cognitive regions of the brain, such as the hippocampus that modulates memory function, resulting in significant functional impairment and dementia. Oxidative stress forms the foundation for the induction of multiple cellular pathways that can ultimately lead to both the onset and subsequent complications of DM. In particular, novel pathways that involve metabotropic receptor signaling, protein-tyrosine phosphatases, Wnt proteins, Akt, GSK-3β, and forkhead transcription factors may be responsible for the onset and progression of complications form DM. Further knowledge acquired in understanding the complexity of DM and its ability to impair cellular systems throughout the body will foster new strategies for the treatment of DM and its complications.

Journal ArticleDOI
TL;DR: The role of specific signaling molecules and the function(s) of particular IFN-stimulated genes that have been implicated in determining cell fate in response to IFN are highlighted, as well as the clinical experience of IFN immunotherapy.
Abstract: Interferons (IFNs) are a family of pleiotropic cytokines that typically exhibit antiviral, antiproliferative, antitumor, and immunomodulatory properties. While their complex mechanisms of action remain unclear, IFNs are used clinically in the treatment of viral infections, such as hepatitis B and hepatitis C, and remain the primary treatment for a limited number of malignancies, such as melanoma, hairy cell leukemia, and non-Hodgkin's lymphoma and in autoimmune diseases such as multiple sclerosis. IFNs not only regulate somatic cell growth and division but also influence cell survival through the modulation of apoptosis. Paradoxically, IFNs are described to be both pro- and anti-apoptotic in nature. The biological effects of IFNs are primarily mediated via activation of the JAK/STAT pathway, formation of the ISGF3 and STAT1:STAT1 protein complexes, and the subsequent induction of IFN-stimulated genes. However, the activation of JAK/STAT-independent signal transduction pathways also contribute to IFN-mediated responses. To further demonstrate the complexity of the downstream events following stimulation, oligonucleotide microarray studies have shown that in excess of 300 genes are induced following treatment with IFN, some of which are crucial to the induction of apoptosis and cell growth control. In this review we describe the recent advances made in elucidating the various signaling pathways that are activated by IFNs and how these diverse signals contribute to the regulation of cell growth and apoptosis and inhibition of viral replication. Furthermore, we highlight the role of specific signaling molecules and the function(s) of particular IFN-stimulated genes that have been implicated in determining cell fate in response to IFN, as well as the clinical experience of IFN immunotherapy.

Journal ArticleDOI
TL;DR: The relevance of recent genomic analysis of PLP-dependent enzymes for the selection of drug targets is discussed, and enzymes that have been recently characterized and proposed as drug targets are reported.
Abstract: The vitamin B(6)-derived pyridoxal 5'-phosphate (PLP) is the cofactor of enzymes catalyzing a large variety of chemical reactions mainly involved in amino acid metabolism. These enzymes have been divided in five families and fold types on the basis of evolutionary relationships and protein structural organization. Almost 1.5% of all genes in prokaryotes code for PLP-dependent enzymes, whereas the percentage is substantially lower in eukaryotes. Although about 4% of enzyme-catalyzed reactions catalogued by the Enzyme Commission are PLP-dependent, only a few enzymes are targets of approved drugs and about twenty are recognised as potential targets for drugs or herbicides. PLP-dependent enzymes for which there are already commercially available drugs are DOPA decarboxylase (involved in the Parkinson disease), GABA aminotransferase (epilepsy), serine hydroxymethyltransferase (tumors and malaria), ornithine decarboxylase (African sleeping sickness and, potentially, tumors), alanine racemase (antibacterial agents), and human cytosolic branched-chain aminotransferase (pathological states associated to the GABA/glutamate equilibrium concentrations). Within each family or metabolic pathway, the enzymes for which drugs have been already approved for clinical use are discussed first, reporting the enzyme structure, the catalytic mechanism, the mechanism of enzyme inactivation or modulation by substrate-like or transition state-like drugs, and on-going research for increasing specificity and decreasing side-effects. Then, PLP-dependent enzymes that have been recently characterized and proposed as drug targets are reported. Finally, the relevance of recent genomic analysis of PLP-dependent enzymes for the selection of drug targets is discussed.

Journal ArticleDOI
TL;DR: An overall detailed mechanistic analysis of protein glycation is presented for the first time and the pathways leading to several advanced glycation end products (AGEs) such as (carboxymethyl)lysine, pentosidine, and glucosepane are outlined, whereas other AGEs useful as potential biomarkers of glycation are only briefly mentioned.
Abstract: Protein glycation is a slow natural process involving the chemical modification of the reactive amino and guanidine functions in amino acids by sugars and carbohydrates-derived reactive carbonyls. Its deleterious consequences are obvious in the case of long-lived proteins in aged people and are exacerbated by the high blood concentration of sugars in diabetic patients. The non-enzymatic glycation of proteins occurs through a wide range of concurrent processes comprising condensation, rearrangement, fragmentation, and oxidation reactions. Using a few well established intermediates such as Schiff base, Amadori product and reactive a-dicarbonyls as milestones and the results of in vitro glycation investigations, an overall detailed mechanistic analysis of protein glycation is presented for the first time. The pathways leading to several advanced glycation end products (AGEs) such as (carboxymethyl)lysine, pentosidine, and glucosepane are outlined, whereas other AGEs useful as potential biomarkers of glycation are only briefly mentioned. The current stage of the development of glycation inhibitors has been reviewed with an emphasis on their mechanism of action.

Journal ArticleDOI
TL;DR: Evidence points to involvement of leptin in RA and OA and indicates that adiponectin and/or resistin mediate inflammation in arthritis, suggesting fat tissue is an active organ whose products contribute to inflammatory and degenerative processes underlying common joint diseases.
Abstract: Adipokines are proteins produced by white adipose tissue, which is an active secretory organ. Regulation of immune and inflammatory responses is among the multiple physiological processes involving adipokines. Leptin, adiponectin and resistin are the most extensively studied adipokines. Leptin may promote inflammation by inducing Th1 phenotype development, whereas adiponectin may combat inflammation by reducing the production of pro-inflammatory cytokines. Resistin belongs to a family of proteins found in foci of inflammation, where they contribute to the inflammatory response. All three adipokines have been detected in synovial fluid from joints affected with the inflammatory disease rheumatoid arthritis (RA) or the degenerative disease osteoarthritis (OA). Recent evidence points to involvement of leptin in RA and OA and indicates that adiponectin and/or resistin mediate inflammation in arthritis. Thus, fat tissue is an active organ whose products contribute to inflammatory and degenerative processes underlying common joint diseases.

Journal ArticleDOI
TL;DR: The aim of this review is to present the actual state of the development of phthalocyanines covalently conjugated with biomolecules that possess a marked selectivity towards cancer cells; for some of them their photophysical properties and photodynamic activity will be presented.
Abstract: Photodynamic therapy (PDT) is a relatively new cytotoxic treatment, predominantly used in anticancer approaches, that depends on the retention of photosensitizers in tumor and their activation after light exposure. This technology is based on the light excitation of a photosensitizer which induces very localized oxidative damages within the cells by formation of highly reactive oxygen species, the most important being singlet oxygen. Many photo-activable molecules have been synthesized such as porphyrins, chlorins and more recently phthalocyanines which present a strong light absorption at wavelengths around 670 nm and are therefore well-adapted to the optical window required for PDT application. However, the lack of selective accumulation of these photo-activable molecules within tumor tissue is a major problem in PDT, and one research area of importance is developing targeted photosensitizers. Indeed, targeted photodynamic therapy offers the advantage to enhance photodynamic efficiency by directly targeting diseased cells or tissues. Many attempts have been made to either increase the uptake of the dye by the target cells and tissues or to improve subcellular localization so as to deliver the dye to photosensitive sites within the cells. The aim of this review is to present the actual state of the development of phthalocyanines covalently conjugated with biomolecules that possess a marked selectivity towards cancer cells; for some of them their photophysical properties and photodynamic activity will be presented.

Journal ArticleDOI
TL;DR: Porphycene derivatives show higher absorption than porphyrins in the red spectral region, fast uptake and diverse subcellular localizations, and photophysical and photobiological properties of porphycenes make them excellent candidates as PSs, very useful for PDT of cancer and other biomedical applications.
Abstract: The photodynamic process induces cell damage and death by the combined effect of a photosensitizer (PS), visible light, and molecular oxygen, which generate singlet oxygen (1O2) and other reactive oxygen species that are responsible for cytotoxicity. The most important application of this process with increasing biomedical interest is the photodynamic therapy (PDT) of cancer. In addition to hematoporphyrin-based drugs, 2nd generation PSs with better photochemical properties are now studied using cell cultures, experimental tumors and clinical trials. Porphycene is a structural isomer of porphyrin and constitutes an interesting new class of PS. Porphycene derivatives show higher absorption than porphyrins in the red spectral region (lλ > 600 nm, η > 50000 M-1·cm-1) owing to the lower molecular symmetry. Photophysical and photobiological properties of porphycenes make them excellent candidates as PSs, showing fast uptake and diverse subcellular localizations (mainly membranous organelles). Several tetraalkylporphycenes and the tetraphenyl derivative (TPPo) induce photodamage and cell death in vitro. Photodynamic treatments of cultured tumor cells with TPPo and its palladium(II) complex induce cytoskeletal changes, mitotic blockage, and dose-dependent apoptotic or necrotic cell death. Some pharmacokinetic and phototherapeutic studies on experimental tumors after intravenous or topical application of lipophilic alkylsubstituted porphycene derivatives are known. Taking into account all these features, porphycene PSs should be very useful for PDT of cancer and other biomedical applications.

Journal ArticleDOI
TL;DR: A wider investigation of the HTR2A gene is suggested to better understand its role in psychiatric disorders, preferably complemented with the use of proteomic or metabolomic approaches.
Abstract: Variants at the gene encoding for the 5-hydrosytryptamine (serotonin) receptor 2A (HTR2A) have been associated with many psychiatric disorders such as schizophrenia, mood disorders, attention deficit hyperactivity disorder, suicide, anxiety disorders, obsessive-compulsive disorder, eating disorders, and Alzheimer's disease. The studied SNPs differ across studies, in the present review we focused on available evidence with the aim of identifying the overall phenotypic profile of HTR2A variant carriers. We then extensively analyzed all SNPs of the HTR2A gene with criteria of frequency, haplotype blocks, previous evidence, functionality in order to obtain a list of suitable SNPs for future studies that properly cover all possible genetic control of the HTR2A gene. Genetic association studies report conflicting and generally negative results. Most replicated data suggest C allele of the 102 T/C and Tyr452 variants as risk factor for psychosis and antipsychotic response, but the number of not replicating studies does not allow to draw any definite conclusion. Moreover their impact as risk factors is very small. In the other investigated psychiatric fields, evidence shows no involvement or at least a small and not replicated role for HTR2A gene variants. Conflicting and negative results could be due to a real marginal role of this receptor gene variants, or it could be caused by a lack of gene coverage of investigated SNPs. We suggest a wider investigation of the HTR2A gene to better understand its role in psychiatric disorders, preferably complemented with the use of proteomic or metabolomic approaches.

Journal ArticleDOI
TL;DR: The present review will emphasize the molecular mechanisms underlying the effects of statins on endothelial function and oxidative stress, and inhibition of small GTP-binding proteins, Rho, Ras and Rac, seems to play an important role in mediating the pleiotropic effects ofstatins.
Abstract: Atherosclerosis and its complications represent the major cause of death in developed countries. Statins are inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A [HMGCoA] reductase and consequently inhibitors of cholesterol biosynthesis. Statins have been described as the most potent class of drugs to reduce serum cholesterol levels. In clinical trials, statins are beneficial in primary and secondary prevention of coronary heart disease. Statins, were initially designed as cholesterol-lowering drugs. However, these drugs, besides their lipid-lowering properties, exert a number of protective effects on the cardiovascular system that emerged over the past years. The benefits observed with statin treatment appear to be greater than that might be expected from reduction in lipid levels alone, suggesting effects beyond cholesterol lowering. These cholesterol-independent effects have been called "pleiotropic". The cholesterol-independent or "pleiotropic" effects of statins involve improvement of endothelial function, stability of atherosclerotic plaques, decrease of oxidative stress and inflammation, and inhibition of thrombogenic response. These pleiotropic effects of statins have been proposed as key properties of these drugs to reduce cardiovascular morbidity and mortality. The present review will emphasize the molecular mechanisms underlying the effects of statins on endothelial function and oxidative stress. In particular, inhibition of small GTP-binding proteins, Rho, Ras and Rac, which are regulated by isoprenoids [farnesyl pyrophosphate and geranylgeranyl pyrophosphate], seems to play an important role in mediating the pleiotropic effects of statins.

Journal ArticleDOI
TL;DR: Some cell cycle kinases may be of interest as targets to abrogate checkpoints and favor apoptotic cell death in tumor cells as well as new opportunities to improve cancer therapy.
Abstract: Many tumor-associated mutations result in the abnormal regulation of protein kinases involved in the progression throughout the cell division cycle. The cyclin-dependent kinase (CDK) family has received special attention due to their function as sensors of the mitogenic signals and their central role in cell proliferation. These kinases are frequently upregulated in human cancer most frequently due to overexpression of their cyclin partners or inactivation of the CDK inhibitors. A plethora of small-molecule CDK inhibitors have been characterized in the last years and some of them are currently under clinical development. Other serine-threonine protein kinases such as the Aurora proteins (mostly Aurora A and B) or Polo-like kinases (PLK1) are receiving increased attention as putative cancer targets. Other less studied mitotic kinases such TTK (MPS1), BUB and NEK proteins might also be relevant candidates as new targets of interest in cancer therapy since they play relevant roles on mitotic progression and the spindle checkpoint. Although targeting cell cycle kinases is an efficient procedure to arrest cell proliferation, the best strategy to potently and specifically inhibit tumor cell proliferation is not obvious yet. Thus, some cell cycle kinases may be of interest as targets to abrogate checkpoints and favor apoptotic cell death in tumor cells. New biochemical and genetic studies are required to clarify the use of these kinases as targets in new opportunities to improve cancer therapy.

Journal ArticleDOI
TL;DR: The present article focuses on the recent discoveries of specific cellular targets and receptors for fibrinogen within tissues that have extended the role of fibr inogen from a coagulation factor to a regulator of inflammation and immunity.
Abstract: The blood protein fibrinogen as a ligand for integrin and non-integrin receptors functions as the molecular nexus of coagulation, inflammation and immunity. Studies in animal models and in human disease have demonstrated that extravascular fibrinogen that is deposited in tissues upon vascular rupture is not merely a marker, but a mediator of diseases with an inflammatory component, such as rheumatoid arthritis, multiple sclerosis, sepsis, myocardial infarction and bacterial infection. The present article focuses on the recent discoveries of specific cellular targets and receptors for fibrinogen within tissues that have extended the role of fibrinogen from a coagulation factor to a regulator of inflammation and immunity. Fibrinogen has the potential for selective drug targeting that would target its proinflammatory properties without affecting its beneficial effects in hemostasis, since it interacts with different receptors to mediate blood coagulation and inflammation. Strategies to target receptors for fibrinogen and fibrin within the tissue microenvironment could reveal selective and disease-specific agents for therapeutic intervention in a variety of human diseases associated with fibrin deposition.

Journal ArticleDOI
TL;DR: Recent progress in the identification of druggable components of the NF- κB signaling system and the development and potential use of novel NF-κB inhibitors are discussed.
Abstract: The NF-kappaB/Rel signaling system is a paradigm for gene activation in response to inflammatory and menacing stimuli. Given the growing body of evidence showing an important involvement of NF-kappaB for the onset of autoimmune diseases and different types of cancer, NF-kappaB is an important drug target for the adjuvant therapy of these diseases. Great efforts have been made for the development of highly specific NF-kappaB inhibitors, some of them being currently tested in phase II clinical trials. Here we discuss recent progress in the identification of druggable components of the NF-kappaB signaling system and the development and potential use of novel NF-kappaB inhibitors.

Journal ArticleDOI
TL;DR: This review will discuss this different and often paradoxical approaches in cancer therapy based on the dual role of Hsps, protective/tumorigenic versus immunogenic.
Abstract: Stress or heat shock proteins (Hsps) Hsp90, Hsp70 and Hsp27 are chaperones that assist the proteins in their folding, stability, assembly into multi-protein complexes and transport across cellular membranes. The expression of some of them is highly induced in response to a wide variety of physiological and environmental insults. Hsps have a dual function depending on their intracellular or extracellular location. Intracellular Hsps have a protective function. They allow the cells to survive to lethal conditions. The cytoprotective functions of Hsps can largely explain by their anti-apoptotic properties. Hsp90, Hsp70 and Hsp27 can directly interact with different proteins of the tightly regulated programmed cell death machinery and thereby block the apoptotic process at distinct key points. In cancer cells, where the expression of Hsp27, Hsp70 and/or Hsp90 is frequently abnormally high, they participate in oncogenesis and in resistance to chemotherapy. Therefore, the inhibition of Hsps has become an interesting strategy in cancer therapy. In contrast to intracellular Hsps, extracellular located or membrane-bound Hsps mediate immunological functions. They can elicit an immune response modulated either by the adaptive or innate immune system. In cancer, most immunotherapeutical approaches based on extracellular Hsps exploit their carrier function for immunogenic peptides. This review will discuss this different and often paradoxical approaches in cancer therapy based on the dual role of Hsps, protective/tumorigenic versus immunogenic.

Journal ArticleDOI
TL;DR: The synthesis and potential use of high affinity M6P analogues able to target this receptor are highlighted and their potential applications in preventing clinical disorders, which are associated with the activities of other M 6P-proteins involved in wound healing, cell growth or viral infection, are discussed.
Abstract: The cation-independent mannose 6-phosphate receptor is a multifunctional protein which binds at the cell surface to two distinct classes of ligands, the mannose 6-phosphate (M6P) bearing proteins and IGF-II. Its major function is to bind and transport M6P-enzymes to lysosomes, but it can also modulate the activity of a variety of extracellular M6P-glycoproteins (i.e., latent TGFbeta precursor, urokinase-type plasminogen activator receptor, Granzyme B, growth factors, Herpes virus). The purpose of this review is to highlight the synthesis and potential use of high affinity M6P analogues able to target this receptor. Several M6P analogues with phosphonate, carboxylate or malonate groups display a higher affinity and a stronger stability in human serum than M6P itself. These derivatives could be used to favour the delivery of specific therapeutic compounds to lysosomes, notably in enzyme replacement therapies of lysosomal diseases or in neoplastic drug targeting. In addition, their potential applications in preventing clinical disorders, which are associated with the activities of other M6P-proteins involved in wound healing, cell growth or viral infection, will be discussed.

Journal ArticleDOI
TL;DR: This review gives a brief overview of the expression patterns, molecular pharmacology and physiological role of the cannabinoid 2 receptor (CB2) in pain, and hypothesize the mechanism of action by which the CB2 receptor could be involved in these processes.
Abstract: This review gives a brief overview of the expression patterns, molecular pharmacology and physiological role of the cannabinoid 2 receptor (CB2) in pain. Particular emphasis is given to the therapeutic utility of CB2 receptor agonists. Through studies utilizing selective CB2 receptor agonists, non-selective cannabinoid agonists in conjunction with selective CB1 and CB2 receptor antagonists, or CB2 receptor knockout mice, it is now clear that this receptor plays a critical role in nociception. To this end, CB2 receptors have been shown to modulate acute pain, chronic inflammatory pain, post-surgical pain, cancer pain and pain associated with nerve injury. Here we review these studies and the compounds that were utilized. We hypothesize the mechanism of action by which the CB2 receptor could be involved in these processes. Finally we summarize the most recent novel chemical scaffolds that are being investigated towards advancing selective CB2 receptor agonists into the clinic. Many new pharmacological agents have been identified by high throughput screening and small molecule lead discovery and optimization in the past 10 years. It is anticipated that at least some of these agents may ultimately constitute effective new pain therapeutics that lack the side effects associated with traditional cannabinoid ligands.

Journal ArticleDOI
TL;DR: The interaction between glucocorticoids and sex steroids and their influence on adipocyte metabolism is summarized and discussed.
Abstract: Women have a higher percentage of body fat than men, and there is a gender-specific difference in fat distribution: Females tend to accumulate fat around the hips, buttocks, and thighs while men have a larger intra-abdominal (visceral) fat mass. After menopause, there is a redistribution of fat depots, and post-menopausal women develop increased amounts of visceral fat. The risk of developing obesity-related diseases is significantly lower in pre-menopausal women compared to men, a difference that is abolished after menopause, suggesting that the female sex steroid estrogen influences adipogenesis and adipose metabolism. Experimentally, estrogen increases the size and number of subcutaneous adipocytes and attenuates lipolysis. Post-menopausal women also develop a more atherogenic lipid pattern and decreased levels of the prothrombotic protein plasminogen activator inhibitor-1, which attenuates fibrinolysis. Pathologically increased circulating cortisol concentration is associated with dysmetabolic features e.g., central obesity, elevated blood pressure, insulin resistance, and dyslipidemia. In "simple obesity," glucocorticoid production is elevated. Peak levels of circulating cortisol are however low or normal, possibly because of increased clearance and/or tissue-specific changes in cortisol production. In addition to the adrenal production of cortisol, cortisol is also generated in adipose tissue by the enzyme 11beta-hydroxysteroid dehydrogenase type 1 (11betaHSD1) which converts inactive cortisone to active cortisol. The enzyme activity in subcutaneous fat increases with increasing body weight. Estrogen seems to have a tissue-specific influence on 11betaHSD1 enzyme activity, attenuating it in liver, kidney, and testis but upregulating 11betaHSD1 mRNA expression in preadipocytes from women. In the present review, we summarize and discuss the interaction between glucocorticoids and sex steroids and their influence on adipocyte metabolism.