scispace - formally typeset
Search or ask a question
JournalISSN: 1359-0286

Current Opinion in Solid State & Materials Science 

Elsevier BV
About: Current Opinion in Solid State & Materials Science is an academic journal published by Elsevier BV. The journal publishes majorly in the area(s): Thin film & Ceramic. It has an ISSN identifier of 1359-0286. Over the lifetime, 1093 publications have been published receiving 76482 citations. The journal is also known as: Current opinion in solid state and materials science.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, molecular theories of flow and deformation may facilitate the design of branched polymers with tailored rheological properties and improved adhesives, and improved theories relating to associating polymers should aid in the development of thickening agents and coatings.
Abstract: Recent years have brought exciting theoretical advances to understanding the behavior of macromolecular systems under nonequilibrium conditions. Developments in diffusion-controlled reactions of polymers are bringing molecular insights to reactive blending technologies, and improved theories relating to associating polymers should aid in the design of thickening agents and coatings. Recent progress in molecular theories of flow and deformation may facilitate the design of branched polymers with tailored rheological properties and improved adhesives.

2,010 citations

Journal ArticleDOI
TL;DR: Magnesium and its alloys have been investigated recently by many authors as a suitable biodegradable biomaterial as mentioned in this paper, and the latest achievements and comment on the selection and use, test methods and the approaches to develop and produce magnesium alloys that are intended to perform clinically with an appropriate host response.
Abstract: Biodegradable metals are breaking the current paradigm in biomaterial science to develop only corrosion resistant metals. In particular, metals which consist of trace elements existing in the human body are promising candidates for temporary implant materials. These implants would be temporarily needed to provide mechanical support during the healing process of the injured or pathological tissue. Magnesium and its alloys have been investigated recently by many authors as a suitable biodegradable biomaterial. In this investigative review we would like to summarize the latest achievements and comment on the selection and use, test methods and the approaches to develop and produce magnesium alloys that are intended to perform clinically with an appropriate host response.

1,569 citations

Journal ArticleDOI
TL;DR: In this article, the challenges of current high-temperature sodium technologies including Na-S and Na-NiCl2 and new molten sodium technology, Na-O2 are summarized.
Abstract: Owing to almost unmatched volumetric energy density, Li-ion batteries have dominated the portable electronics industry and solid state electrochemical literature for the past 20 years. Not only will that continue, but they are also now powering plug-in hybrid electric vehicles and electric vehicles. In light of possible concerns over rising lithium costs in the future, Na and Na-ion batteries have re-emerged as candidates for medium and large-scale stationary energy storage, especially as a result of heightened interest in renewable energy sources that provide intermittent power which needs to be load-levelled. The sodium-ion battery field presents many solid state materials design challenges, and rising to that call in the past couple of years, several reports of new sodium-ion technologies and electrode materials have surfaced. These range from high-temperature air electrodes to new layered oxides, polyanion-based materials, carbons and other insertion materials for sodium-ion batteries, many of which hold promise for future sodium-based energy storage applications. In this article, the challenges of current high-temperature sodium technologies including Na-S and Na-NiCl2 and new molten sodium technology, Na-O2 are summarized. Recent advancements in positive and negative electrode materials suitable for Na-ion and hybrid Na/Li-ion cells are reviewed, along with the prospects for future developments.

1,264 citations

Journal ArticleDOI
TL;DR: In this article, the authors explore the potential use of polymeric nanoparticles as carriers for a wide range of drugs for therapeutic applications, including cancer therapy and controlled delivery of vaccines.
Abstract: Throughout the world today, numerous researchers are exploring the potential use of polymeric nanoparticles as carriers for a wide range of drugs for therapeutic applications. Because of their versatility and wide range of properties, biodegradable polymeric nanoparticles are being used as novel drug delivery systems. In particular, this class of carrier holds tremendous promise in the areas of cancer therapy and controlled delivery of vaccines.

1,245 citations

Journal ArticleDOI
TL;DR: In this article, an overview and review on self-organized TiO2 nanotube layers and other transition metal oxide tubular structures grown by controlled anodic oxidation of a metal substrate is given.
Abstract: The present paper gives an overview and review on self-organized TiO2 nanotube layers and other transition metal oxide tubular structures grown by controlled anodic oxidation of a metal substrate We describe mechanistic aspects of the tube growth and discuss the electrochemical conditions that need to be fulfilled in order to synthesize these layers Key properties of these highly ordered, high aspect ratio tubular layers are discussed In the past few years, a wide range of functional applications of the layers have been explored ranging from photocatalysis, solar energy conversion, electrochromic effects over using the material as a template or catalyst support to applications in the biomedical field A comprehensive view on state of the art is provided

1,242 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
202317
202241
202134
202030
201929
201820