scispace - formally typeset
Search or ask a question
JournalISSN: 1568-0266

Current Topics in Medicinal Chemistry 

Bentham Science Publishers
About: Current Topics in Medicinal Chemistry is an academic journal published by Bentham Science Publishers. The journal publishes majorly in the area(s): Medicine & Drug discovery. It has an ISSN identifier of 1568-0266. Over the lifetime, 3757 publications have been published receiving 124494 citations. The journal is also known as: Curr Top Med Chem.


Papers
More filters
Journal ArticleDOI
TL;DR: It is suggested that metal-induced oxidative stress in cells can be partially responsible for the toxic effects of heavy metals, suggesting the importance of using antioxidants in heavy metal poisoning.
Abstract: Toxic metals (lead, cadmium, mercury and arsenic) are widely found in our environment. Humans are exposed to these metals from numerous sources, including contaminated air, water, soil and food. Recent studies indicate that transition metals act as catalysts in the oxidative reactions of biological macromolecules therefore the toxicities associated with these metals might be due to oxidative tissue damage. Redox-active metals, such as iron, copper and chromium, undergo redox cycling whereas redox-inactive metals, such as lead, cadmium, mercury and others deplete cells major antioxidants, particularly thiol-containing antioxidants and enzymes. Either redox-active or redox-inactive metals may cause an increase in production of reactive oxygen species (ROS) such as hydroxyl radical (HO.), superoxide radical (O2.-) or hydrogen peroxide (H2O2). Enhanced generation of ROS can overwhelm cells intrinsic antioxidant defenses, and result in a condition known as “oxidative stress”. Cells under oxidative stress display various dysfunctions due to lesions caused by ROS to lipids, proteins and DNA. Consequently, it is suggested that metal-induced oxidative stress in cells can be partially responsible for the toxic effects of heavy metals. Several studies are underway to determine the effect of antioxidant supplementation following heavy metal exposure. Data suggest that antioxidants may play an important role in abating some hazards of heavy metals. In order to prove the importance of using antioxidants in heavy metal poisoning, pertinent biochemical mechanisms for metal-induced oxidative stress should be reviewed.

1,754 citations

Journal ArticleDOI
TL;DR: Sulfonamides, thioethers, sulfones and Penicillin are the most common scaffolds in sulfur containing drugs, which are well studied both on synthesis and application during the past decades.
Abstract: The impact of the development of sulfur therapeutics is instrumental to the evolution of the pharmaceutical industry. Sulfur-derived functional groups can be found in a broad range of pharmaceuticals and natural products. For centuries, sulfur continues to maintain its status as the dominating heteroatom integrated into a set of 362 sulfur-containing FDA approved drugs (besides oxygen or nitrogen) through the present. Sulfonamides, thioethers, sulfones and Penicillin are the most common scaffolds in sulfur containing drugs, which are well studied both on synthesis and application during the past decades. In this review, these four moieties in pharmaceuticals and recent advances in the synthesis of the corresponding core scaffolds are presented.

1,049 citations

Journal ArticleDOI
TL;DR: Under in vivo conditions, melatonin is often several times more potent than vitamin C and E in protecting tissues from oxidative injury when compared at an equivalent dosage (micromol/kg).
Abstract: Melatonin was found to be a potent free radical scavenger in 1993. Since then over 800 publications have directly or indirectly confirmed this observation. Melatonin scavenges a variety of reactive oxygen and nitrogen species including hydroxyl radical, hydrogen peroxide, singlet oxygen, nitric oxide and peroxynitrite anion. Based on the analyses of structure-activity relationships, the indole moiety of the melatonin molecule is the reactive center of interaction with oxidants due to its high resonance stability and very low activation energy barrier towards the free radical reactions. However, the methoxy and amide side chains also contribute significantly to melatonins antioxidant capacity. The N-C=O structure in the C3 amide side chain is the functional group. The carbonyl group in the structure of N-C=O is key for melatonin to scavenge the second reactive species and the nitrogen in the N-C=O structure is necessary for melatonin to form the new five membered ring after melatonins interaction with a reactive species. The methoxy group in C5 appears to keep melatonin from exhibiting prooxidative activity. If the methoxy group is replaced by a hydroxyl group, under some in vitro conditions, the antioxidant capacity of this molecule may be enhanced. However, the cost of this change are decreased lipophility and increased prooxidative potential. Therefore, in in vivo studies the antioxidant efficacy of melatonin appears to be superior to its hydroxylated counterpart. The mechanisms of melatonins interaction with reactive species probably involves donation of an electron to form the melatoninyl cation radical or through an radical addition at the site C3. Other possibilities include hydrogen donation from the nitrogen atom or substitution at position C2, C4 and C7 and nitrosation. Melatonin also has the ability to repair damaged biomolecules as shown by the fact that it converts the guanosine radical to guanosine by electron transfer. Unlike the classical antioxidants, melatonin is devoid of prooxid ative activity and all known intermediates generated by the interaction of melatonin with reactive species are also free radical scavengers. This phenomenon is defined as the free radical scavenging cascade reaction of the melatonin family. Due to this cascade, one melatonin molecule has the potential to scavenge up to 4 or more reactive species. This makes melatonin very effective as an antioxidant. Under in vivo conditions, melatonin is often several times more potent than vitamin C and E in protecting tissues from oxidative injury when compared at an equivalent dosage (mmol / kg). Future research in the field of melatonin as a free radical scavenger might be focused on: 1), signal transduction and antioxidant enzyme gene expression induced by melatonin and its metabolites, 2), melatonin levels in tissues and in cells, 3), melatonin structure modifications, 4), melatonin and its metabolites in plants and, 5), clinical trials using melatonin to treat free radical related diseases such as Alzheimers, Parkin sons, stroke and heart disease.

982 citations

Journal ArticleDOI
TL;DR: Together, these results should cause a revival of GABA(A) receptor research and strongly stimulate the development of drugs with a higher selectivity for alpha2-, alpha3-, or alpha5-subunit-containing receptor subtypes.
Abstract: GABA(A) receptors are the major inhibitory neurotransmitter receptors in the brain and are the site of action of many clinically important drugs. These receptors are composed of five subunits that can belong to eight different subunit classes. Depending on their subunit composition, these receptors exhibit distinct pharmacological and electrophysiological properties. Recent studies on recombinant and native GABA(A) receptors suggest the existence of far more receptor subtypes than previously assumed. Thus, receptors composed of one, two, three, four, or five different subunits might exist in the brain. Studies on the regional, cellular and subcellular distribution of GABA(A) receptor subunits, and on the co-localization of these subunits at the light and electron microscopic level for the first time provide information on the distribution of GABA(A) receptor subtypes in the brain. These studies will have to be complemented by electrophysiological and pharmacological studies on the respective recombinant and native receptors to finally identify the receptor subtypes present in the brain. The distinct cellular and subcellular location of individual receptor subtypes suggests that they exhibit specific functions in the brain that can be selectively modulated by subtype specific drugs. This conclusion is supported by the recent demonstration that different GABA(A) receptor subtypes mediate different effects of benzodiazepines. Together, these results should cause a revival of GABA(A) receptor research and strongly stimulate the development of drugs with a higher selectivity for alpha2-, alpha3-, or alpha5-subunit-containing receptor subtypes. Such drugs might exhibit quite selective clinical effects.

893 citations

Journal ArticleDOI
TL;DR: This work provides a brief description of a series of studies implemented in the software MOE (Molecular Operating Environment) with particular attention to the medicinal chemistry aspects.
Abstract: The search for new compounds with a given biological activity requires enormous effort in terms of manpower and cost. This effort arises from the large number of compounds that need to be synthesized and subsequently biologically evaluated. For this reason the pharmaceutical industry has shown great interest in theoretical methods that enable the rational design of pharmaceutical agents. In the last years bioinformatics has experienced a great evolution due to the development of specialized software and to the increasing computer power. The codification of the structural information of molecules through molecular descriptors and the subsequent data analysis allow establishing QSAR models (Quantitative Structure-Activity Relationship) that can be applied to the design and the virtual screening of new drugs. The development of sophisticated Docking methodologies also allows a more accurate predict of the biological activity of molecules. Moreover, through this type of computational techniques and theoretical approaches, it is possible to develop explanatory hypothesis on the mechanism of action of drugs. This work provides a brief description of a series of studies implemented in the software MOE (Molecular Operating Environment) with particular attention to the medicinal chemistry aspects.

693 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
2023114
2022199
202170
2020249
2019278
2018154