scispace - formally typeset
Search or ask a question
JournalISSN: 0920-9069

Cytotechnology 

Springer Science+Business Media
About: Cytotechnology is an academic journal published by Springer Science+Business Media. The journal publishes majorly in the area(s): Cell culture & Stem cell. It has an ISSN identifier of 0920-9069. Over the lifetime, 2823 publications have been published receiving 55533 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors highlight contemporary tendencies in application of non-degradable scaffolds and stem cells in regenerative medicine with a particular focus on the pore sizes significantly affecting final recover of diseased organs.
Abstract: During the last decade biomaterial sciences and tissue engineering have become new scientific fields supplying rising demand of regenerative therapy. Tissue engineering requires consolidation of a broad knowledge of cell biology and modern biotechnology investigating biocompatibility of materials and their application for the reconstruction of damaged organs and tissues. Stem cell-based tissue regeneration started from the direct cell transplantation into damaged tissues or blood vessels. However, it is difficult to track transplanted cells and keep them in one particular place of diseased organ. Recently, new technologies such as cultivation of stem cell on the scaffolds and subsequently their implantation into injured tissue have been extensively developed. Successful tissue regeneration requires scaffolds with particular mechanical stability or biodegradability, appropriate size, surface roughness and porosity to provide a suitable microenvironment for the sufficient cell–cell interaction, cell migration, proliferation and differentiation. Further functioning of implanted cells highly depends on the scaffold pore sizes that play an essential role in nutrient and oxygen diffusion and waste removal. In addition, pore sizes strongly influence cell adhesion, cell–cell interaction and cell transmigration across the membrane depending on the various purposes of tissue regeneration. Therefore, this review will highlight contemporary tendencies in application of non-degradable scaffolds and stem cells in regenerative medicine with a particular focus on the pore sizes significantly affecting final recover of diseased organs.

478 citations

Journal ArticleDOI
TL;DR: It is shown that ‘shear sensitivity’ due to agitation and bursting bubbles is no longer considered a major problem and some recommendations for bioreactor configuration and operating strategy are given.
Abstract: This article mainly addresses the issues associated with the engineering of large-scale free suspension culture in agitated bioreactors >10,000 L because they have become the system of choice industrially. It is particularly concerned with problems that become increasingly important as the scale increases. However, very few papers have been written that are actually based on such large-scale studies and the few that do rarely address any of the issues quantitatively. Hence, it is necessary very often to extrapolate from small-scale work and this review tries to pull the two types of study together. It is shown that 'shear sensitivity' due to agitation and bursting bubbles is no longer considered a major problem. Homogeneity becomes increasingly important with respect to pH and nutrients at the largest scale and sub-surface feeding is recommended despite 'cleaning in place' concerns. There are still major questions with cell retention/recycle systems at these scales, either because of fouling, of capacity or of potential and different 'shear sensitivity' questions. Fed-batch operation gives rise to cell densities that have led to the use of oxygen and enriched air to meet oxygen demands. This strategy, in turn, gives rise to a CO(2) evolution rate that impacts on pH control, pCO(2) and osmolality. These interactions are difficult to resolve but if higher sparge and agitation intensities could be used to achieve the necessary oxygen transfer, the problem would largely disappear. Thus, the perception of 'shear sensitivity' is still impacting on the development of animal cell culture at the commercial scale. Microcarrier culture is also briefly addressed. Finally, some recommendations for bioreactor configuration and operating strategy are given.

372 citations

Journal ArticleDOI
TL;DR: Oleuropein or hydroxytyrosol, major phenolic compound of olive oil, was studied for its effects on growth in MCF-7 human breast cancer cells using assays for proliferation, cell viability, inhibited cell proliferation, and induced cell apoptosis.
Abstract: Olive oil intake has been shown to induce significant levels of apoptosis in various cancer cells. These anti-cancer properties are thought to be mediated by phenolic compounds present in olive. These beneficial health effects of olive have been attributed, at least in part, to the presence of oleuropein and hydroxytyrosol. In this study, oleuropein and hydroxytyrosol, major phenolic compound of olive oil, was studied for its effects on growth in MCF-7 human breast cancer cells using assays for proliferation (MTT assay), cell viability (Guava ViaCount assay), cell apoptosis, cellcycle (flow cytometry). Oleuropein or hydroxytyrosol decreased cell viability, inhibited cell proliferation, and induced cell apoptosis in MCF-7 cells. Result of MTT assay showed that 200 μg/mL of oleuropein or 50 μg/mL of hydroxytyrosol remarkably reduced cell viability of MCF-7 cells. Oleuropein or hydroxytyrosol decrease of the number of MCF-7 cells by inhibiting the rate of cell proliferation and inducing cell apoptosis. Also hydroxytyrosol and oleuropein exhibited statistically significant block of G1 to S phase transition manifested by the increase of cell number in G0/G1 phase.

294 citations

Book ChapterDOI
Vijay Singh1
TL;DR: A novel bioreactor system for the cultivation of animal, insect, and plant cells using wave agitation induced by a rocking motion that provides good nutrient distribution, off-bottom suspension, and excellent oxygen transfer without damaging fluid shear or gas bubbles is described.
Abstract: This work describes a novel bioreactor system for the cultivation of animal, insect, and plant cells using wave agitation induced by a rocking motion. This agitation system provides good nutrient distribution, off-bottom suspension, and excellent oxygen transfer without damaging fluid shear or gas bubbles. Unlike other cell culture systems, such as spinners, hollow-fiber bioreactors, and roller bottles, scale-up is simple, and has been demonstrated up to 100 L of culture volume. The bioreactor is disposable, and therefore requires no cleaning or sterilization. Additions and sampling are possible without the need for a laminar flow cabinet. The unit can be placed in an incubator requiring minimal instrumentation. These features dramatically lower the purchase cost, and operating expenses of this laboratory/pilot scale cell cultivation system. Results are presented for various model systems: 1) recombinant NS0 cells in suspension; 2) adenovirus production using human 293 cells in suspension; 3) Sf9 insect cell/baculovirus system; and 4) human 293 cells on microcarrier. These examples show the general suitability of the system for cells in suspension, anchorage-dependent culture, and virus production in research and GMP applications.

292 citations

Journal ArticleDOI
TL;DR: The availability of accurate, sensitive and reliable detection methods and the application of robust and successful elimination methods provide powerful means for overcoming the problem of mycoplasma contamination in cell cultures.
Abstract: The contamination of cell cultures by mycoplasmas remains a major problem in cell culture. Mycoplasmas can produce a virtually unlimited variety of effects in the cultures they infect. These organisms are resistant to most antibiotics commonly employed in cell cultures. Here we provide a concise overview of the current knowledge on: (1) the incidence and sources of mycoplasma contamination in cell cultures, the mycoplasma species most commonly detected in cell cultures, and the effects of mycoplasmas on the function and activities of infected cell cultures; (2) the various techniques available for the detection of mycoplasmas with particular emphasis on the most reliable detection methods; (3) the various methods available for the elimination of mycoplasmas highlighting antibiotic treatment; and (4) the recommended procedures and working protocols for the detection, elimination and prevention of mycoplasma contamination. The availability of accurate, sensitive and reliable detection methods and the application of robust and successful elimination methods provide powerful means for overcoming the problem of mycoplasma contamination in cell cultures.

289 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
202320
202257
202168
202076
201994
2018147