scispace - formally typeset

JournalISSN: 1477-9226

Dalton Transactions 

About: Dalton Transactions is an academic journal. The journal publishes majorly in the area(s): Ligand & Catalysis. It has an ISSN identifier of 1477-9226. Over the lifetime, 27354 publication(s) have been published receiving 662838 citation(s). The journal is also known as: Journal of the Chemical Society, Dalton Transactions.
Papers
More filters

Journal ArticleDOI
Christoph Janiak1Institutions (1)
Abstract: The development in the field of coordination polymers or metal-organic coordination networks, MOCNs (metal-organic frameworks, MOFs) is assessed in terms of property investigations in the areas of catalysis, chirality, conductivity, luminescence, magnetism, spin-transition (spin-crossover), non-linear optics (NLO) and porosity or zeolitic behavior upon which potential applications could be based.

3,117 citations


Journal ArticleDOI
TL;DR: A new set of covalent atomic radii has been deduced from crystallographic data for most of the elements with atomic numbers up to 96 and shows a well behaved periodic dependence that allows us to interpolate a few radii for elements for which structural data is lacking.
Abstract: A new set of covalent atomic radii has been deduced from crystallographic data for most of the elements with atomic numbers up to 96. The proposed radii show a well behaved periodic dependence that allows us to interpolate a few radii for elements for which structural data is lacking, notably the noble gases. The proposed set of radii therefore fills most of the gaps and solves some inconsistencies in currently used covalent radii. The transition metal and lanthanide contractions as well as the differences in covalent atomic radii between low spin and high spin configurations in transition metals are illustrated by the proposed radii set.

2,445 citations


Journal ArticleDOI
TL;DR: A new geometric parameter for four-coordinate compounds, tau(4), is proposed as an improved, simple metric for quantitatively evaluating the geometry of four- coordinate complexes and compounds.
Abstract: Four Cu(I) complexes were synthesized with a family of pyridylmethylamide ligands, HLR [HLR = N-(2-pyridylmethyl)acetamide, R = null; 2,2-dimethyl-N-(2-pyridylmethyl)propionamide, R = Me3; 2,2,2-triphenyl-N-(2-pyridylmethyl)acetamide, R = Ph3)]. Complexes 1–3 were synthesized from the respective ligand and [Cu(CH3CN)4]PF6 in a 2 : 1 molar ratio: [Cu(HL)2]PF6 (1), [Cu2(HLMe3)4](PF6)2 (2), [Cu(HLPh3)2]PF6 (3). Complex 4, [Cu(HL)(CH3CN)(PPh3)]PF6, was synthesized from the reaction of HL with [Cu(CH3CN)4]PF6 and PPh3 in a 1 : 1 : 1 molar ratio. X-Ray crystal structures reveal that complexes 1, 3 and 4 are mononuclear Cu(I) species, while complex 2 is a Cu(I) dimer. The copper ions are four-coordinate with geometries ranging from distorted tetrahedral to seesaw in 1, 2, and 4. Complexes 1 and 2 are very air sensitive and they display similar electrochemical properties. The coordination geometry of complex 3 is nearly linear, two-coordinate. Complex 3 is exceptionally stable with respect to oxidation in the air, and its cyclic voltammetry shows no oxidation wave in the range of 0–1.5 V. The unusual inertness of complex 3 towards oxidation is attributed to the protection from bulky triphenyl substituent of the HLPh3 ligand. A new geometric parameter for four-coordinate compounds, τ4, is proposed as an improved, simple metric for quantitatively evaluating the geometry of four-coordinate complexes and compounds.

1,825 citations


Journal ArticleDOI
TL;DR: The status of platinum anticancer drugs currently approved for use, those undergoing clinical trials and those discontinued during clinical trials are updated, and the results in the context of where the field will develop over the next decade are discussed.
Abstract: Since its approval in 1979 cisplatin has become an important component in chemotherapy regimes for the treatment of ovarian, testicular, lung and bladder cancers, as well as lymphomas, myelomas and melanoma. Unfortunately its continued use is greatly limited by severe dose limiting side effects and intrinsic or acquired drug resistance. Over the last 30 years, 23 other platinum-based drugs have entered clinical trials with only two (carboplatin and oxaliplatin) of these gaining international marketing approval, and another three (nedaplatin, lobaplatin and heptaplatin) gaining approval in individual nations. During this time there have been more failures than successes with the development of 14 drugs being halted during clinical trials. Currently there are four drugs in the various phases of clinical trial (satraplatin, picoplatin, Lipoplatin™ and ProLindac™). No new small molecule platinum drug has entered clinical trials since 1999 which is representative of a shift in focus away from drug design and towards drug delivery in the last decade. In this perspective article we update the status of platinum anticancer drugs currently approved for use, those undergoing clinical trials and those discontinued during clinical trials, and discuss the results in the context of where we believe the field will develop over the next decade.

1,241 citations


Journal ArticleDOI
Michele Aresta1, Angela Dibenedetto1Institutions (1)
TL;DR: The utilization of CO(2) as a building block may represent an interesting approach to synthetic methodologies less intensive in carbon and energy.
Abstract: The need to reduce the accumulation of CO2 into the atmosphere requires new technologies able to reduce the CO2 emission. The utilization of CO2 as a building block may represent an interesting approach to synthetic methodologies less intensive in carbon and energy. In this paper the general properties of carbon dioxide and its interaction with metal centres is first considered. The potential of carbon dioxide as a raw material in the synthesis of chemicals such as carboxylates, carbonates, carbamates is then discussed. The utilization of CO2 as source of carbon for the synthesis of fuels or other C1 molecules such as formic acid and methanol is also described and the conditions for its implementation are outlined. A comparison of chemical and biotechnological conversion routes of CO2 is made and the barriers to their exploitation are highlighted.

1,131 citations


Network Information
Related Journals (5)
Inorganic Chemistry

63.9K papers, 2.1M citations

95% related
Chemistry: A European Journal

34.8K papers, 1.2M citations

93% related
Chemical Communications

56.4K papers, 2.2M citations

92% related
Journal of Materials Chemistry

38.5K papers, 1.9M citations

87% related
Chemistry of Materials

22.7K papers, 1.5M citations

87% related
Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
20221
20211,819
20201,814
20191,888
20181,877
20171,820