scispace - formally typeset
Search or ask a question
JournalISSN: 0278-0240

Disease Markers 

Hindawi Publishing Corporation
About: Disease Markers is an academic journal published by Hindawi Publishing Corporation. The journal publishes majorly in the area(s): Medicine & Cancer. It has an ISSN identifier of 0278-0240. It is also open access. Over the lifetime, 3889 publications have been published receiving 62814 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The present update of the database of DNA mismatch repair gene mutations of INSiGHT includes 448 mutations that primarily involve MLH1, MSH2, and MSH6 and occur in 748 families from different parts of the world.
Abstract: In 1994, the International Collaborative Group on Hereditary Nonpolyposis Colorectal Cancer (ICG-HNPCC) established an international database of mutations identified in families with Lynch (HNPCC) syndrome. The data are publicly available at http://www.nfdht.nl. The information stored in the database was systematically analyzed in 1997, and at that time, 126 different predisposing mutations were reported affecting the DNA mismatch repair genes MSH2 and MLH1 and occurring in 202 families. In 2003, the ICG-HNPCC and the Leeds Castle Polyposis Group (LCPG) merged into a new group, INSiGHT (International Society for Gastrointestinal Hereditary Tumors). The present update of the database of DNA mismatch repair gene mutations of INSiGHT includes 448 mutations that primarily involve MLH1 (50%), MSH2 (39%), and MSH6 (7%) and occur in 748 families from different parts of the world.

445 citations

Journal ArticleDOI
TL;DR: This review focuses on the molecular mechanisms of the suPAR fragments and the link to the inflammatory process, as this could lead to medical applications in infectious and pathological conditions.
Abstract: soluble urokinase Plasminogen Activator Receptor (suPAR) levels reflect inflammation and elevated suPAR levels are found in several infectious diseases and cancer. suPAR exists in three forms; suPARI-III, suPARII-III and suPARI which show different properties due to structural differences. Studies suggest that full-length suPAR is a regulator of uPAR/uPA by acting as uPA-scavenger, whereas the cleaved suPARII-III act as a chemotactic agent promoting the immune response via the SRSRY sequence in the linker-region. This review focus on the various suPAR fragments and their involvement in inflammation and pathogenic processes. We focus on the molecular mechanisms of the suPAR fragments and the link to the inflammatory process, as this could lead to medical applications in infectious and pathological conditions.

431 citations

Journal ArticleDOI
TL;DR: Women exposed to the Human Immunodeficiency Virus (HIV) are at high risk for HPV infection, HPV DNA persistency and progression of HPV lesions to cervical cancer.
Abstract: Cervical cancer has been recognized as a rare outcome of a common Sexually Transmitted Infection (STI). The etiologic association is restricted to a limited number of viral types of the family of the Human Papillomaviruses (HPVs). The association is causal in nature and under optimal testing systems, HPV DNA can be identified in all specimens of invasive cervical cancer. As a consequence, it has been claimed that HPV infection is a necessary cause of cervical cancer. The evidence is consistent worldwide and implies both the Squamous Cell Carcinomas (SCC), the adenocarcinomas and the vast majority (i.e. > 95%) of the immediate precursors, namely High Grade Squamous Intraepithelial Lesions (HSIL)/Cervical Intraepithelial Neoplasia 3 (CIN3)/Carcinoma in situ. Co-factors that modify the risk among HPV DNA positive women include the use of oral contraceptives (OC) for five or more years, smoking, high parity (five or more full term pregnancies) and previous exposure to other sexually transmitted diseases such as Chlamydia Trachomatis (CT) and Herpes Simplex Virus type 2 (HSV-2). Women exposed to the Human Immunodeficiency Virus (HIV) are at high risk for HPV infection, HPV DNA persistency and progression of HPV lesions to cervical cancer.

306 citations

Journal ArticleDOI
TL;DR: Levels of GSH, GSSG, GPx, GSH and GR were assessed in the caudate region of postmortem brains from schizophrenic patients and control subjects and positive correlations suggest a dynamic state is kept in check during the redox coupling under normal conditions.
Abstract: Altered antioxidant status has been reported in schizophrenia. The glutathione (GSH) redox system is important for reducing oxidative stress. GSH, a radical scavenger, is converted to oxidized glutathione (GSSG) through glutathione peroxidase (GPx), and converted back to GSH by glutathione reductase (GR). Measurements of GSH, GSSG and its related enzymatic reactions are thus important for evaluating the redox and antioxidant status. In the present study, levels of GSH, GSSG, GPx and GR were assessed in the caudate region of postmortem brains from schizophrenic patients and control subjects (with and without other psychiatric disorders). Significantly lower levels of GSH, GPx, and GR were found in schizophrenic group than in control groups without any psychiatric disorders. Concomitantly, a decreased GSH:GSSG ratio was also found in schizophrenic group. Moreover, both GSSG and GR levels were significantly and inversely correlated to age of schizophrenic patients, but not control subjects. No significant differences were found in any GSH redox measures between control subjects and individuals with other types of psychiatric disorders. There were, however, positive correlations between GSH and GPx, GSH and GR, as well as GPx and GR levels in control subjects without psychiatric disorders. These positive correlations suggest a dynamic state is kept in check during the redox coupling under normal conditions. By contrast, lack of such correlations in schizophrenia point to a disturbance of redox coupling mechanisms in the antioxidant defense system, possibly resulting from a decreased level of GSH as well as age-related decreases of GSSG and GR activities.

305 citations

Journal ArticleDOI
TL;DR: Advances in the ability to quantitate differences between samples and to detect for an array of post-translational modifications allow for the discovery of classes of protein biomarkers that were previously unassailable.
Abstract: Coupling large-scale sequencing projects with the amino acid sequence information that can be gleaned from tandem mass spectrometry (MS/MS) has made it much easier to analyze complex mixtures of proteins. The limits of this "shotgun" approach, in which the protein mixture is proteolytically digested before separation, can be further expanded by separating the resulting mixture of peptides prior to MS/MS analysis. Both single dimensional high pressure liquid chromatography (LC) and multidimensional LC (LC/LC) can be directly interfaced with the mass spectrometer to allow for automated collection of tremendous quantities of data. While there is no single technique that addresses all proteomic challenges, the shotgun approaches, especially LC/LC-MS/MS-based techniques such as MudPIT (multidimensional protein identification technology), show advantages over gel-based techniques in speed, sensitivity, scope of analysis, and dynamic range. Advances in the ability to quantitate differences between samples and to detect for an array of post-translational modifications allow for the discovery of classes of protein biomarkers that were previously unassailable.

299 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
2023158
2022836
2021273
2020244
2019313
2018207