scispace - formally typeset
Search or ask a question

Showing papers in "Disease Models & Mechanisms in 2012"


Journal ArticleDOI
TL;DR: Improvements in the understanding of peptidergic signalling of hunger and satiety from the gastrointestinal tract mediated by ghrelin, cholecystokinin, peptide YY, and glucagon-like peptide-1 (GLP-1), and of homeostatic mechanisms related to leptin and its upstream pathways in the hypothalamus have opened up new possibilities.
Abstract: The ideal anti-obesity drug would produce sustained weight loss with minimal side effects. The mechanisms that regulate energy balance have substantial built-in redundancy, overlap considerably with other physiological functions, and are influenced by social, hedonic and psychological factors that limit the effectiveness of pharmacological interventions. It is therefore unsurprising that anti-obesity drug discovery programmes have been littered with false starts, failures in clinical development, and withdrawals due to adverse effects that were not fully appreciated at the time of launch. Drugs that target pathways in metabolic tissues, such as adipocytes, liver and skeletal muscle, have shown potential in preclinical studies but none has yet reached clinical development. Recent improvements in the understanding of peptidergic signalling of hunger and satiety from the gastrointestinal tract mediated by ghrelin, cholecystokinin (CCK), peptide YY (PYY) and glucagon-like peptide-1 (GLP-1), and of homeostatic mechanisms related to leptin and its upstream pathways in the hypothalamus, have opened up new possibilities. Although some have now reached clinical development, it is uncertain whether they will meet the strict regulatory hurdles required for licensing of an anti-obesity drug. However, GLP-1 receptor agonists have already succeeded in diabetes treatment and, owing to their attractive body-weight-lowering effects in humans, will perhaps also pave the way for other anti-obesity agents. To succeed in developing drugs that control body weight to the extent seen following surgical intervention, it seems obvious that a new paradigm is needed. In other therapeutic arenas, such as diabetes and hypertension, lower doses of multiple agents targeting different pathways often yield better results than strategies that modify one pathway alone. Some combination approaches using peptides and small molecules have now reached clinical trials, although recent regulatory experience suggests that large challenges lie ahead. In future, this polytherapeutic strategy could possibly rival surgery in terms of efficacy, safety and sustainability of weight loss.

377 citations


Journal ArticleDOI
TL;DR: Zebrafish immunity is reviewed with a particular focus on recent studies that exploit the unique genetic and in vivo imaging advantages available for this organism, which are driving forward the study of vertebrate immunity in general.
Abstract: Since its first splash 30 years ago, the use of the zebrafish model has been extended from a tool for genetic dissection of early vertebrate development to the functional interrogation of organogenesis and disease processes such as infection and cancer. In particular, there is recent and growing attention in the scientific community directed at the immune systems of zebrafish. This development is based on the ability to image cell movements and organogenesis in an entire vertebrate organism, complemented by increasing recognition that zebrafish and vertebrate immunity have many aspects in common. Here, we review zebrafish immunity with a particular focus on recent studies that exploit the unique genetic and in vivo imaging advantages available for this organism. These unique advantages are driving forward our study of vertebrate immunity in general, with important consequences for the understanding of mammalian immune function and its role in disease pathogenesis.

315 citations


Journal ArticleDOI
TL;DR: An overview of the adipose organ is provided, describing its anatomy, cytology, physiological function and histopathology in obesity, and explaining theories of adipocyte transdifferentiation during chronic cold exposure, physical exercise or lactation, as well as in obesity.
Abstract: The main parenchymal cells of the adipose organ are adipocytes. White adipocytes store energy, whereas brown adipocytes dissipate energy for thermogenesis. These two cell types with opposing functions can both originate from endothelial cells, and co-exist in the multiple fat depots of the adipose organ – a feature that I propose is crucial for this organ’s plasticity. This poster review provides an overview of the adipose organ, describing its anatomy, cytology, physiological function and histopathology in obesity. It also highlights the remarkable plasticity of the adipose organ, explaining theories of adipocyte transdifferentiation during chronic cold exposure, physical exercise or lactation, as well as in obesity. White-to-brown adipocyte transdifferentiation is of particular medical relevance, because animal data indicate that higher amounts of brown adipose tissue are positively associated with resistance to obesity and its co-morbidities, and that ‘browning’ of the adipose organ curbs these disorders.

306 citations


Journal ArticleDOI
TL;DR: The iPSC-derived, disease-specific cardiomyocytes derived from an individual with LQT2 carrying the R176W mutation in the KCNH2 (HERG) gene could serve as an important platform to study pathophysiological mechanisms and drug sensitivity in L QT2.
Abstract: Long QT syndrome (LQTS) is caused by functional alterations in cardiac ion channels and is associated with prolonged cardiac repolarization time and increased risk of ventricular arrhythmias. Inherited type 2 LQTS (LQT2) and drug-induced LQTS both result from altered function of the hERG channel. We investigated whether the electrophysiological characteristics of LQT2 can be recapitulated in vitro using induced pluripotent stem cell (iPSC) technology. Spontaneously beating cardiomyocytes were differentiated from two iPSC lines derived from an individual with LQT2 carrying the R176W mutation in the KCNH2 (HERG) gene. The individual had been asymptomatic except for occasional palpitations, but his sister and father had died suddenly at an early age. Electrophysiological properties of LQT2-specific cardiomyocytes were studied using microelectrode array and patch-clamp, and were compared with those of cardiomyocytes derived from control cells. The action potential duration of LQT2-specific cardiomyocytes was significantly longer than that of control cardiomyocytes, and the rapid delayed potassium channel (I(Kr)) density of the LQT2 cardiomyocytes was significantly reduced. Additionally, LQT2-derived cardiac cells were more sensitive than controls to potentially arrhythmogenic drugs, including sotalol, and demonstrated arrhythmogenic electrical activity. Consistent with clinical observations, the LQT2 cardiomyocytes demonstrated a more pronounced inverse correlation between the beating rate and repolarization time compared with control cells. Prolonged action potential is present in LQT2-specific cardiomyocytes derived from a mutation carrier and arrhythmias can be triggered by a commonly used drug. Thus, the iPSC-derived, disease-specific cardiomyocytes could serve as an important platform to study pathophysiological mechanisms and drug sensitivity in LQT2.

289 citations


Journal ArticleDOI
TL;DR: This Commentary outlines the basic steps of Fe-S cluster biogenesis as they have been defined in model organisms, and draws attention to refinements of the process that might be specific to the subcellular compartmentalization ofFe-S clusters biogenesis proteins in some eukaryotes, including mammals.
Abstract: Iron-sulfur (Fe-S) clusters are ubiquitous cofactors composed of iron and inorganic sulfur. They are required for the function of proteins involved in a wide range of activities, including electron transport in respiratory chain complexes, regulatory sensing, photosynthesis and DNA repair. The proteins involved in the biogenesis of Fe-S clusters are evolutionarily conserved from bacteria to humans, and many insights into the process of Fe-S cluster biogenesis have come from studies of model organisms, including bacteria, fungi and plants. It is now clear that several rare and seemingly dissimilar human diseases are attributable to defects in the basic process of Fe-S cluster biogenesis. Although these diseases –which include Friedreich’s ataxia (FRDA), ISCU myopathy, a rare form of sideroblastic anemia, an encephalomyopathy caused by dysfunction of respiratory chain complex I and multiple mitochondrial dysfunctions syndrome – affect different tissues, a feature common to many of them is that mitochondrial iron overload develops as a secondary consequence of a defect in Fe-S cluster biogenesis. This Commentary outlines the basic steps of Fe-S cluster biogenesis as they have been defined in model organisms. In addition, it draws attention to refinements of the process that might be specific to the subcellular compartmentalization of Fe-S cluster biogenesis proteins in some eukaryotes, including mammals. Finally, it outlines several important unresolved questions in the field that, once addressed, should offer important clues into how mitochondrial iron homeostasis is regulated, and how dysfunction in Fe-S cluster biogenesis can contribute to disease.

287 citations


Journal ArticleDOI
TL;DR: How cholesterol balance in the brain is altered in several neurodegenerative diseases is discussed, and some commonalities and differences among the diseases are discussed.
Abstract: Dysregulation of cholesterol homeostasis in the brain is increasingly being linked to chronic neurodegenerative disorders, including Alzheimer’s disease (AD), Huntington’s disease (HD), Parkinson’s disease (PD), Niemann-Pick type C (NPC) disease and Smith-Lemli Opitz syndrome (SLOS). However, the molecular mechanisms underlying the correlation between altered cholesterol metabolism and the neurological deficits are, for the most part, not clear. NPC disease and SLOS are caused by mutations in genes involved in the biosynthesis or intracellular trafficking of cholesterol, respectively. However, the types of neurological impairments, and the areas of the brain that are most affected, differ between these diseases. Some, but not all, studies indicate that high levels of plasma cholesterol correlate with increased risk of developing AD. Moreover, inheritance of the E4 isoform of apolipoprotein E (APOE), a cholesterol-carrying protein, markedly increases the risk of developing AD. Whether or not treatment of AD with statins is beneficial remains controversial, and any benefit of statin treatment might be due to anti-inflammatory properties of the drug. Cholesterol balance is also altered in HD and PD, although no causal link between dysregulated cholesterol homeostasis and neurodegeneration has been established. Some important considerations for treatment of neurodegenerative diseases are the impermeability of the blood-brain barrier to many therapeutic agents and difficulties in reversing brain damage that has already occurred. This article focuses on how cholesterol balance in the brain is altered in several neurodegenerative diseases, and discusses some commonalities and differences among the diseases.

272 citations


Journal ArticleDOI
TL;DR: Investigation into the pathophysiology and treatment of preeclampsia continue to move the field forward, albeit at a frustratingly slow pace, but there remains a pressing need for novel approaches, new disease models and innovative investigators to effectively tackle this complex and devastating disorder.
Abstract: Preeclampsia is a pregnancy-specific disorder characterized by hypertension and excess protein excretion in the urine. It is an important cause of maternal and fetal morbidity and mortality worldwide. The disease is almost exclusive to humans and delivery of the pregnancy continues to be the only effective treatment. The disorder is probably multifactorial, although most cases of preeclampsia are characterized by abnormal maternal uterine vascular remodeling by fetally derived placental trophoblast cells. Numerous in vitro and animal models have been used to study aspects of preeclampsia, the most common being models of placental oxygen dysregulation, abnormal trophoblast invasion, inappropriate maternal vascular damage and anomalous maternal-fetal immune interactions. Investigations into the pathophysiology and treatment of preeclampsia continue to move the field forward, albeit at a frustratingly slow pace. There remains a pressing need for novel approaches, new disease models and innovative investigators to effectively tackle this complex and devastating disorder.

271 citations


Journal ArticleDOI
Abstract: Diabetic retinopathy (DR) is the most common microvascular complication of diabetes and one of the major causes of blindness worldwide. The pathogenesis of DR has been investigated using several animal models of diabetes. These models have been generated by pharmacological induction, feeding a galactose diet, and spontaneously by selective inbreeding or genetic modification. Among the available animal models, rodents have been studied most extensively owing to their short generation time and the inherited hyperglycemia and/or obesity that affect certain strains. In particular, mice have proven useful for studying DR and evaluating novel therapies because of their amenability to genetic manipulation. Mouse models suitable for replicating the early, non-proliferative stages of the retinopathy have been characterized, but no animal model has yet been found to demonstrate all of the vascular and neural complications that are associated with the advanced, proliferative stages of DR that occur in humans. In this review, we summarize commonly used animal models of DR, and briefly outline the in vivo imaging techniques used for characterization of DR in these models. Through highlighting the ocular pathological findings, clinical implications, advantages and disadvantages of these models, we provide essential information for planning experimental studies of DR that will lead to new strategies for its prevention and treatment.

245 citations


Journal ArticleDOI
TL;DR: The results suggest that the telENCEphalic VZ contributes to neural tissue recovery following telencephalic injury in the adult zebrafish, and that the adultZebrafish is a useful model for regenerative medicine.
Abstract: Neural stem cells in the subventricular zone (SVZ) of the adult mammalian forebrain are a potential source of neurons for neural tissue repair after brain insults such as ischemic stroke and traumatic brain injury (TBI). Recent studies show that neurogenesis in the ventricular zone (VZ) of the adult zebrafish telencephalon has features in common with neurogenesis in the adult mammalian SVZ. Here, we established a zebrafish model to study injury-induced neurogenesis in the adult brain. We show that the adult zebrafish brain possesses a remarkable capacity for neuronal regeneration. Telencephalon injury prompted the proliferation of neuronal precursor cells (NPCs) in the VZ of the injured hemisphere, compared with in the contralateral hemisphere. The distribution of NPCs, viewed by BrdU labeling and ngn1-promoter-driven GFP, suggested that they migrated laterally and reached the injury site via the subpallium and pallium. The number of NPCs reaching the injury site significantly decreased when the fish were treated with an inhibitor of γ-secretase, a component of the Notch signaling pathway, suggesting that injury-induced neurogenesis mechanisms are at least partly conserved between fish and mammals. The injury-induced NPCs differentiated into mature neurons in the regions surrounding the injury site within a week after the injury. Most of these cells expressed T-box brain protein (Tbr1), suggesting they had adopted the normal neuronal fate in this region. These results suggest that the telencephalic VZ contributes to neural tissue recovery following telencephalic injury in the adult zebrafish, and that the adult zebrafish is a useful model for regenerative medicine.

194 citations


Journal ArticleDOI
TL;DR: A comprehensive summary of the physiological and behavioral phenotypes of RTT mouse models to date and areas in which further phenotypic analyses are required to enhance the utility of these models for translational studies are summarized.
Abstract: In September of 2011, the National Institute of Neurological Disorders and Stroke (NINDS), the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), the International Rett Syndrome Foundation (IRSF) and the Rett Syndrome Research Trust (RSRT) convened a workshop involving a broad cross-section of basic scientists, clinicians and representatives from the National Institutes of Health (NIH), the US Food and Drug Administration (FDA), the pharmaceutical industry and private foundations to assess the state of the art in animal studies of Rett syndrome (RTT). The aim of the workshop was to identify crucial knowledge gaps and to suggest scientific priorities and best practices for the use of animal models in preclinical evaluation of potential new RTT therapeutics. This review summarizes outcomes from the workshop and extensive follow-up discussions among participants, and includes: (1) a comprehensive summary of the physiological and behavioral phenotypes of RTT mouse models to date, and areas in which further phenotypic analyses are required to enhance the utility of these models for translational studies; (2) discussion of the impact of genetic differences among mouse models, and methodological differences among laboratories, on the expression and analysis, respectively, of phenotypic traits; and (3) definitions of the standards that the community of RTT researchers can implement for rigorous preclinical study design and transparent reporting to ensure that decisions to initiate costly clinical trials are grounded in reliable preclinical data.

183 citations


Journal ArticleDOI
TL;DR: F Fate mapping studies demonstrated that, following elongation and formation of the primitive axial skeleton, the notochord gives rise to the nucleus pulposus in fully formed intervertebral discs, suggesting that notochORDal cells might serve as tissue-specific progenitor cells within the disc.
Abstract: Back pain related to intervertebral disc degeneration is the most common musculoskeletal problem, with a lifetime prevalence of 82%. The lack of effective treatment for this widespread problem is directly related to our limited understanding of disc development, maintenance and degeneration. The aim of this study was to determine the developmental origins of nucleus pulposus cells within the intervertebral disc using a novel notochord-specific Cre mouse. To trace the fate of notochordal cells within the intervertebral disc, we derived a notochord-specific Cre mouse line by targeting the homeobox gene Noto. Expression of this gene is restricted to the node and the posterior notochord during gastrulation [embryonic day 7.5 (E7.5)-E12.5]. The Noto-cre mice were crossed with a conditional lacZ reporter for visualization of notochord fate in whole-mount embryos. We performed lineage-tracing experiments to examine the contribution of the notochord to spinal development from E12.5 through to skeletally mature mice (9 months). Fate mapping studies demonstrated that, following elongation and formation of the primitive axial skeleton, the notochord gives rise to the nucleus pulposus in fully formed intervertebral discs. Cellular localization of β-galactosidase (encoded by lacZ) and cytokeratin-8 demonstrated that both notochordal cells and chondrocyte-like nucleus pulposus cells are derived from the embryonic notochord. These studies establish conclusively that notochordal cells act as embryonic precursors to all cells found within the nucleus pulposus of the mature intervertebral disc. This suggests that notochordal cells might serve as tissue-specific progenitor cells within the disc and establishes the Noto-cre mouse as a unique tool to interrogate the contribution of notochordal cells to both intervertebral disc development and disc degeneration.

Journal ArticleDOI
TL;DR: It is proposed that FFM (the largest contributor to resting metabolic rate), but not body mass index or FM, is closely associated with self-determined meal size and daily energy intake, which has implications for understanding weight regulation and the management of obesity.
Abstract: A long-running issue in appetite research concerns the influence of energy expenditure on energy intake More than 50 years ago, Otto G Edholm proposed that "the differences between the intakes of food [of individuals] must originate in differences in the expenditure of energy" However, a relationship between energy expenditure and energy intake within any one day could not be found, although there was a correlation over 2 weeks This issue was never resolved before interest in integrative biology was replaced by molecular biochemistry Using a psychobiological approach, we have studied appetite control in an energy balance framework using a multi-level experimental system on a single cohort of overweight and obese human subjects This has disclosed relationships between variables in the domains of body composition [fat-free mass (FFM), fat mass (FM)], metabolism, gastrointestinal hormones, hunger and energy intake In this Commentary, we review our own and other data, and discuss a new formulation whereby appetite control and energy intake are regulated by energy expenditure Specifically, we propose that FFM (the largest contributor to resting metabolic rate), but not body mass index or FM, is closely associated with self-determined meal size and daily energy intake This formulation has implications for understanding weight regulation and the management of obesity

Journal ArticleDOI
TL;DR: It is salutary to reflect that the authors remain remarkably ignorant of the function of most genes in the mammalian genome, clearly illustrated from the outputs of genome-wide.
Abstract: Nearly 10 years after the completion of the human genome project, and the report of a complete sequence of the mouse genome, it is salutary to reflect that we remain remarkably ignorant of the function of most genes in the mammalian genome. This is clearly illustrated from the outputs of genome-wide

Journal ArticleDOI
TL;DR: This mifepristone-inducible and reversible krasV12 transgenic system offers a novel model for understanding hepatocarcinogenesis and a high-throughput screening platform for anti-cancer drugs.
Abstract: Because Ras signaling is frequently activated by major hepatocellular carcinoma etiological factors, a transgenic zebrafish constitutively expressing the kras(V12) oncogene in the liver was previously generated by our laboratory. Although this model depicted and uncovered the conservation between zebrafish and human liver tumorigenesis, the low tumor incidence and early mortality limit its use for further studies of tumor progression and inhibition. Here, we employed a mifepristone-inducible transgenic system to achieve inducible kras(V12) expression in the liver. The system consisted of two transgenic lines: the liver-driver line had a liver-specific fabp10 promoter to produce the LexPR chimeric transactivator, and the Ras-effector line contained a LexA-binding site to control EGFP-kras(V12) expression. In double-transgenic zebrafish (driver-effector) embryos and adults, we demonstrated mifepristone-inducible EGFP-kras(V12) expression in the liver. Robust and homogeneous liver tumors developed in 100% of double-transgenic fish after 1 month of induction and the tumors progressed from hyperplasia by 1 week post-treatment (wpt) to carcinoma by 4 wpt. Strikingly, liver tumorigenesis was found to be 'addicted' to Ras signaling for tumor maintenance, because mifepristone withdrawal led to tumor regression via cell death in transgenic fish. We further demonstrated the potential use of the transparent EGFP-kras(V12) larvae in inhibitor treatments to suppress Ras-driven liver tumorigenesis by targeting its downstream effectors, including the Raf-MEK-ERK and PI3K-AKT-mTOR pathways. Collectively, this mifepristone-inducible and reversible kras(V12) transgenic system offers a novel model for understanding hepatocarcinogenesis and a high-throughput screening platform for anti-cancer drugs.

Journal ArticleDOI
TL;DR: A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis and its role in thermogenesis is described.
Abstract: Summary and comment on a recent Nature paper entitled ‘A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis’ (Bostrom et al., 2012).

Journal ArticleDOI
TL;DR: The pilot screen has revealed that Drosophila tumours are glutamine-dependent, which is an emerging feature of many human cancers, and has validated the platform as a powerful and economical tool for in vivo chemical screening.
Abstract: Anti-cancer drug development involves enormous expenditure and risk. For rapid and economical identification of novel, bioavailable anti-tumour chemicals, the use of appropriate in vivo tumour models suitable for large-scale screening is key. Using a Drosophila Ras-driven tumour model, we demonstrate that tumour overgrowth can be curtailed by feeding larvae with chemicals that have the in vivo pharmacokinetics essential for drug development and known efficacy against human tumour cells. We then develop an in vivo 96-well plate chemical screening platform to carry out large-scale chemical screening with the tumour model. In a proof-of-principle pilot screen of 2000 compounds, we identify the glutamine analogue, acivicin, a chemical with known activity against human tumour cells, as a potent and specific inhibitor of Drosophila tumour formation. RNAi-mediated knockdown of candidate acivicin target genes implicates an enzyme involved in pyrimidine biosynthesis, CTP synthase, as a possible crucial target of acivicin-mediated inhibition. Thus, the pilot screen has revealed that Drosophila tumours are glutamine-dependent, which is an emerging feature of many human cancers, and has validated the platform as a powerful and economical tool for in vivo chemical screening. The platform can also be adapted for use with other disease models, thus offering widespread applications in drug development.

Journal ArticleDOI
TL;DR: 51A expression drives a splicing shift of SORL1 from the synthesis of the canonical long protein variant A to an alternatively spliced protein form, which is associated with impaired processing of amyloid precursor protein (APP), leading to increased Aβ formation.
Abstract: Recent studies indicated that sortilin-related receptor 1 (SORL1) is a risk gene for late-onset Alzheimer's disease (AD), although its role in the aetiology and/or progression of this disorder is not fully understood. Here, we report the finding of a non-coding (nc) RNA (hereafter referred to as 51A) that maps in antisense configuration to intron 1 of the SORL1 gene. 51A expression drives a splicing shift of SORL1 from the synthesis of the canonical long protein variant A to an alternatively spliced protein form. This process, resulting in a decreased synthesis of SORL1 variant A, is associated with impaired processing of amyloid precursor protein (APP), leading to increased Aβ formation. Interestingly, we found that 51A is expressed in human brains, being frequently upregulated in cerebral cortices from individuals with Alzheimer's disease. Altogether, these findings document a novel ncRNA-dependent regulatory pathway that might have relevant implications in neurodegeneration.

Journal ArticleDOI
TL;DR: In situ hybridisation assay for fos transcription in the zebrafish embryonic CNS is a robust, high-throughput in vivo indicator of the neural response to convulsant treatment and lends itself well to chemical screening applications.
Abstract: The availability of animal models of epileptic seizures provides opportunities to identify novel anticonvulsants for the treatment of people with epilepsy. We found that exposure of 2-day-old zebrafish embryos to the convulsant agent pentylenetetrazole (PTZ) rapidly induces the expression of synaptic-activity-regulated genes in the CNS, and elicited vigorous episodes of calcium (Ca2+) flux in muscle cells as well as intense locomotor activity. We then screened a library of ∼2000 known bioactive small molecules and identified 46 compounds that suppressed PTZ-inducedtranscription of the synaptic-activity-regulated gene fos in 2-day-old (2 dpf) zebrafish embryos. Further analysis of a subset of these compounds, which included compounds with known and newly identified anticonvulsant properties, revealed that they exhibited concentration-dependent inhibition of both locomotor activity and PTZ-induced fos transcription, confirming their anticonvulsant characteristics. We conclude that this in situ hybridisation assay for fos transcription in the zebrafish embryonic CNS is a robust, high-throughput in vivo indicator of the neural response to convulsant treatment and lends itself well to chemical screening applications. Moreover, our results demonstrate that suppression of PTZ-induced fos expression provides a sensitive means of identifying compounds with anticonvulsant activities.

Journal ArticleDOI
TL;DR: In this article, the authors discuss lessons learned about the pathogenesis of psoriasis from mouse and patient-based studies, emphasizing how the outcomes of clinical trials with T-cell-targeted and cytokine-blocking therapies have clarified our understanding of the disease.
Abstract: Psoriasis vulgaris is a chronic, debilitating skin disease that affects millions of people worldwide. There is no mouse model that accurately reproduces all facets of the disease, but the accessibility of skin tissue from patients has facilitated the elucidation of many pathways involved in the pathogenesis of psoriasis and highlighted the importance of the immune system in the disease. The pathophysiological relevance of these findings has been supported by genetic studies that identified polymorphisms in genes associated with NFκB activation, IL-23 signaling and T helper 17 (Th17)-cell adaptive immune responses, and in genes associated with the epidermal barrier. Recently developed biologic agents that selectively target specific components of the immune system are highly effective for treating psoriasis. In particular, emerging therapeutics are focused on targeting the IL-23–Th17-cell axis, and several agents that block IL-17 signaling have shown promising results in early-phase clinical trials. This review discusses lessons learned about the pathogenesis of psoriasis from mouse-and patient-based studies, emphasizing how the outcomes of clinical trials with T-cell-targeted and cytokine-blocking therapies have clarified our understanding of the disease.

Journal ArticleDOI
TL;DR: The FOP knock-in mouse and other models in Drosophila, zebrafish, chickens and mice provide an arsenal of tools for understanding BMP signaling and addressing outstanding questions of disease mechanisms that are relevant not only to FOP but also to a wide variety of disorders associated with regenerative medicine and tissue metamorphosis.
Abstract: Fibrodysplasia ossificans progressiva (FOP; MIM #135100) is a debilitating genetic disorder of connective tissue metamorphosis. It is characterized by malformation of the great (big) toes during embryonic skeletal development and by progressive heterotopic endochondral ossification (HEO) postnatally, which leads to the formation of a second skeleton of heterotopic bone. Individuals with these classic clinical features of FOP have the identical heterozygous activating mutation (c.617G>A; R206H) in the gene encoding ACVR1 (also known as ALK2), a bone morphogenetic protein (BMP) type I receptor. Disease activity caused by this ACVR1 mutation also depends on altered cell and tissue physiology that can be best understood in the context of a high-fidelity animal model. Recently, we developed such a knock-in mouse model for FOP (Acvr1R206H/+) that recapitulates the human disease, and provides a valuable new tool for testing and developing effective therapies. The FOP knock-in mouse and other models in Drosophila, zebrafish, chickens and mice provide an arsenal of tools for understanding BMP signaling and addressing outstanding questions of disease mechanisms that are relevant not only to FOP but also to a wide variety of disorders associated with regenerative medicine and tissue metamorphosis.

Journal ArticleDOI
TL;DR: The aim of this article is to understand how human adipose tissue biology interacts with modern environmental pressures to generate excess weight gain and obesity.
Abstract: Because obesity is associated with diverse chronic diseases, little attention has been directed to the multiple beneficial functions of adipose tissue. Adipose tissue not only provides energy for growth, reproduction and immune function, but also secretes and receives diverse signaling molecules that coordinate energy allocation between these functions in response to ecological conditions. Importantly, many relevant ecological cues act on growth and physique, with adiposity responding as a counterbalancing risk management strategy. The large number of individual alleles associated with adipose tissue illustrates its integration with diverse metabolic pathways. However, phenotypic variation in age, sex, ethnicity and social status is further associated with different strategies for storing and using energy. Adiposity therefore represents a key means of phenotypic flexibility within and across generations, enabling a coherent life-history strategy in the face of ecological stochasticity. The sensitivity of numerous metabolic pathways to ecological cues makes our species vulnerable to manipulative globalized economic forces. The aim of this article is to understand how human adipose tissue biology interacts with modern environmental pressures to generate excess weight gain and obesity. The disease component of obesity might lie not in adipose tissue itself, but in its perturbation by our modern industrialized niche. Efforts to combat obesity could be more effective if they prioritized ‘external’ environmental change rather than attempting to manipulate ‘internal’ biology through pharmaceutical or behavioral means.

Journal ArticleDOI
TL;DR: It is suggested that haem, released from lysed red blood cells in the subarachnoid space, acts as a danger-associated molecular pattern (DAMP) driving IL-1-dependent inflammation.
Abstract: Subarachnoid haemorrhage (SAH) is a major contributor to the burden of stroke on society. Treatment options are limited and animal models of SAH do not always mimic key pathophysiological hallmarks of the disease, thus hindering development of new therapeutics. Inflammation is strongly associated with brain injury after SAH in animals and patients, and inhibition of the pro-inflammatory cytokine interleukin-1 (IL-1) represents a possible therapeutic target. Here we report that a rupture of the middle cerebral artery in the rat produces heterogeneous infarct patterns similar to those observed in human SAH. Administration of the IL-1 receptor antagonist (IL-1Ra) reduced blood-brain barrier breakdown, and the extent of breakdown correlated with brain injury. After SAH, haem oxygenase-1 (HO-1) was strongly expressed around the bleed site and in the cortex and striatum, indicating the presence of free haem, a breakdown product of haemoglobin. HO-1 expression was also found in the same regions as microglial/macrophage expression of IL-1α. The direct effect of haem on IL-1α expression was confirmed in vitro using organotypic slice culture (OSC). Haem-induced cell death was dependent on IL-1 signalling, with IL-1Ra completely blocking cellular injury. Furthermore, stimulation of mouse primary mixed glial cells with haem induced the release of IL-1α, but not IL-1β. Thus, we suggest that haem, released from lysed red blood cells (RBCs) in the subarachnoid space, acts as a danger-associated molecular pattern (DAMP) driving IL-1-dependent inflammation. These data provide new insights into inflammation after SAH-induced brain injury and suggest IL-1Ra as a candidate therapeutic for the disease.

Journal ArticleDOI
TL;DR: These serial pulmonary function variables are sensitive outcomes to detect emphysema progression in a nose-only cigarette-smoke-exposed animal model of COPD, and became apparent only after 6 months, particularly in muscles with a mixed fiber-type composition.
Abstract: Mouse models of chronic obstructive pulmonary disease (COPD) focus on airway inflammation and lung histology, but their use has been hampered by the lack of pulmonary function data in their assessment. Systemic effects such as muscle dysfunction are also poorly modeled in emphysematous mice. We aimed to develop a cigarette-smoke-induced emphysema mouse model in which serial lung function and muscular dysfunction could be assessed, allowing the disease to be monitored more appropriately. C57Bl6 mice were nose-only exposed to cigarette smoke or filtered air for 3-6 months. Lung function tests were repeated in the same mice after 3 and 6 months of cigarette smoke or air exposure and compared with lung histological changes. Contractile properties of skeletal muscles and muscle histology were also determined at similar time points in separate groups of mice. Serial lung function measurements documented hyperinflation after 3 and 6 months of cigarette smoke exposure, with a significant 31-37% increase in total lung capacity (TLC) and a significant 26-35% increase in compliance (Cchord) when compared with animals exposed to filtered air only (P<0.001 after 3 and after 6 months). These functional changes preceded the changes in mean linear intercept, which became only significant after 6 months of cigarette smoke exposure and which correlated very well with TLC (r=0.74, P=0.004) and Cchord (r=0.79, P=0.001). After 6 months of cigarette smoke exposure, a significant fiber-type shift from IIa to IIx/b was also observed in the soleus muscle (P<0.05), whereas a 20% reduction of force was present at high stimulation frequencies (80 Hz; P=0.09). The extensor digitorum longus (EDL) muscle was not affected by cigarette smoke exposure. These serial pulmonary function variables are sensitive outcomes to detect emphysema progression in a nose-only cigarette-smoke-exposed animal model of COPD. In this model, muscular changes became apparent only after 6 months, particularly in muscles with a mixed fiber-type composition.

Journal ArticleDOI
TL;DR: It is concluded that preclinical stroke research requires appropriate modeling of the disorder, appropriate modeled of the care of stroke patients and an approach to preclinical testing that is similar to clinical testing, including Phase 3 randomized controlled preclinical trials as necessary additional steps before new therapies enter clinical testing.
Abstract: Stroke is one of the leading causes of death worldwide and the biggest reason for long-term disability. Basic research has formed the modern understanding of stroke pathophysiology, and has revealed important molecular, cellular and systemic mechanisms. However, despite decades of research, most translational stroke trials that aim to introduce basic research findings into clinical treatment strategies – most notably in the field of neuroprotection – have failed. Among other obstacles, poor methodological and statistical standards, negative publication bias, and incomplete preclinical testing have been proposed as ‘translational roadblocks’. In this article, we introduce the models commonly used in preclinical stroke research, discuss some of the causes of failed translational success and review potential remedies. We further introduce the concept of modeling ‘care’ of stroke patients, because current preclinical research models the disorder but does not model care or state-of-the-art clinical testing. Stringent statistical methods and controlled preclinical trials have been suggested to counteract weaknesses in preclinical research. We conclude that preclinical stroke research requires (1) appropriate modeling of the disorder, (2) appropriate modeling of the care of stroke patients and (3) an approach to preclinical testing that is similar to clinical testing, including Phase 3 randomized controlled preclinical trials as necessary additional steps before new therapies enter clinical testing.

Journal ArticleDOI
TL;DR: The range and consistency of functional and metabolic impairments in C-26-tumor-bearing mice confirm their suitability as a preclinical model for cancer cachexia and recommend the use of these comprehensive functional assessments to maximize the translation of findings.
Abstract: Cancer cachexia describes the progressive skeletal muscle wasting and weakness that is associated with many cancers. It impairs quality of life and accounts for >20% of all cancer-related deaths. The main outcome that affects quality of life and mortality is loss of skeletal muscle function and so preclinical models should exhibit similar functional impairments in order to maximize translational outcomes. Mice bearing colon-26 (C-26) tumors are commonly used in cancer cachexia studies but few studies have provided comprehensive assessments of physiological and metabolic impairment, especially those factors that impact quality of life. Our aim was to characterize functional impairments in mildly and severely affected cachectic mice, and determine the suitability of these mice as a preclinical model. Metabolic abnormalities are also evident in cachectic patients and we investigated whether C-26-tumor-bearing mice had similar metabolic aberrations. Twelve-week-old CD2F1 mice received a subcutaneous injection of PBS (control) or C-26 tumor cells. After 18-20 days, assessments were made of grip strength, rotarod performance, locomotor activity, whole body metabolism, and contractile properties of tibialis anterior (TA) muscles (in situ) and diaphragm muscle strips (in vitro). Injection of C-26 cells reduced body and muscle mass, and epididymal fat mass. C-26-tumor-bearing mice exhibited lower grip strength and rotarod performance. Locomotor activity was impaired following C-26 injection, with reductions in movement distance, duration and speed compared with controls. TA muscles from C-26-tumor-bearing mice had lower maximum force (-27%) and were more susceptible to fatigue. Maximum specific (normalized) force of diaphragm muscle strips was reduced (-10%) with C-26 injection, and force during fatiguing stimulation was also lower. C-26-tumor-bearing mice had reduced carbohydrate oxidation and increased fat oxidation compared with controls. The range and consistency of functional and metabolic impairments in C-26-tumor-bearing mice confirm their suitability as a preclinical model for cancer cachexia. We recommend the use of these comprehensive functional assessments to maximize the translation of findings to more accurately identify effective treatments for cancer cachexia.

Journal ArticleDOI
TL;DR: A novel Paneth cell ablation model produces NEC-like pathology that is consistent with other currently used animal models, but this technique is simpler to use, can be used in older animals that have been dam fed, and represents a novel line of investigation to study NEC pathogenesis and treatment.
Abstract: Necrotizing enterocolitis (NEC) is a leading cause of morbidity and mortality in premature infants. During NEC pathogenesis, bacteria are able to penetrate innate immune defenses and invade the intestinal epithelial layer, causing subsequent inflammation and tissue necrosis. Normally, Paneth cells appear in the intestinal crypts during the first trimester of human pregnancy. Paneth cells constitute a major component of the innate immune system by producing multiple antimicrobial peptides and proinflammatory mediators. To better understand the possible role of Paneth cell disruption in NEC, we quantified the number of Paneth cells present in infants with NEC and found that they were significantly decreased compared with age-matched controls. We were able to model this loss in the intestine of postnatal day (P)14-P16 (immature) mice by treating them with the zinc chelator dithizone. Intestines from dithizone-treated animals retained approximately half the number of Paneth cells compared with controls. Furthermore, by combining dithizone treatment with exposure to Klebsiella pneumoniae, we were able to induce intestinal injury and inflammatory induction that resembles human NEC. Additionally, this novel Paneth cell ablation model produces NEC-like pathology that is consistent with other currently used animal models, but this technique is simpler to use, can be used in older animals that have been dam fed, and represents a novel line of investigation to study NEC pathogenesis and treatment.

Journal ArticleDOI
TL;DR: The first major finding is that the 16p11.2 region comprises a highly active set of genes, which could present a large genetic target and might explain why multiple brain function, and other, phenotypes are associated with this interval.
Abstract: Summary Deletion or duplication of one copy of the human 16p11.2 interval is tightly associated with impaired brain function, including autism spectrum disorders (ASD), intellectual disability disorder (IDD), and other phenotypes, indicating the importance of gene dosage in this copy number variant region (CNV). The core of this CNV includes 25 genes, however, the number of genes that contribute to these phenotypes is not known. Further, genes whose functional levels change with deletion or duplication (termed 9dosage sensors9), which may associate the CNV with pathologies, have not been identified. Using the zebrafish as a tool, a set of 16p11.2 homologs was identified, primarily on chromosomes 3 and 12. Use of eleven phenotypic assays, spanning the first five days of development, demonstrates that this set of genes is highly active, such that 21 out of 22 homologs tested show loss of function phenotypes. Most genes are required for nervous system development − impacting brain morphology, eye development, axonal density or organization, and motor response. In general, human genes can substitute for the fish homolog, demonstrating orthology, and consistent with conserved molecular pathways. In a screen for 16p11.2 genes whose function is sensitive to hemizygosity, the aldolase a ( aldoa) and kinesin family member 22 (kif22) genes were identified as giving clear phenotypes when RNA levels are reduced by ~50%, suggesting that these genes are deletion dosage sensors. This study leads to two major findings. The first is that the 16p11.2 region comprises a highly active set of genes, which may present a large genetic target, and may explain why multiple brain function and other phenotypes are associated with this interval. The second major finding is that there are (at least) two genes with deletion dosage sensor properties amongst the 16p11.2 set, which may link this CNV to brain disorders including ASD and IDD.

Journal ArticleDOI
TL;DR: Current mouse models of a core set of ciliopathies, their utility and future prospects are reviewed.
Abstract: The ciliopathies are an apparently disparate group of human diseases that all result from defects in the formation and/or function of cilia. They include disorders such as Meckel-Gruber syndrome (MKS), Joubert syndrome (JBTS), Bardet-Biedl syndrome (BBS) and Alstrom syndrome (ALS). Reflecting the manifold requirements for cilia in signalling, sensation and motility, different ciliopathies exhibit common elements. The mouse has been used widely as a model organism for the study of ciliopathies. Although many mutant alleles have proved lethal, continued investigations have led to the development of better models. Here, we review current mouse models of a core set of ciliopathies, their utility and future prospects.

Journal ArticleDOI
TL;DR: Opinion on whether increased food intake or decreased energy expenditure drives the obesity epidemic is still divided, but recent evidence favours the idea that food intake, rather than altered expenditure, is most important.
Abstract: Work on obesity is evolving, and obesity is a consequence of our evolutionary history. In the space of 50 years, we have become an obese species. The reasons why can be addressed at a number of different levels. These include separating between whether the primary cause lies on the food intake or energy expenditure side of the energy balance equation, and determining how genetic and environmental effects contribute to weight variation between individuals. Opinion on whether increased food intake or decreased energy expenditure drives the obesity epidemic is still divided, but recent evidence favours the idea that food intake, rather than altered expenditure, is most important. There is more of a consensus that genetics explains most (probably around 65%) of weight variation between individuals. Recent advances in genome-wide association studies have identified many polymorphisms that are linked to obesity, yet much of the genetic variance remains unexplained. Finding the causes of this unexplained variation will be an impetus of genetic and epigenetic research on obesity over the next decade. Many environmental factors – including gut microbiota, stress and endocrine disruptors – have been linked to the risk of developing obesity. A better understanding of gene-by-environment interactions will also be key to understanding obesity in the years to come.

Journal ArticleDOI
TL;DR: An early and marked impairment of microtubule dynamics all along the axons of spastin-deficient cortical neurons, which is likely to be responsible for the occurrence of axonal swellings and cargo stalling, contributes to a better understanding of the pathogenesis of SPG4-linked HSP and ascertain the influence of micro Tubule-targeted drugs on the early axonal phenotype in a mouse model of the disease.
Abstract: Mutations in SPG4, encoding the microtubule-severing protein spastin, are responsible for the most frequent form of hereditary spastic paraplegia (HSP), a heterogeneous group of genetic diseases characterized by degeneration of the corticospinal tracts. We previously reported that mice harboring a deletion in Spg4, generating a premature stop codon, develop progressive axonal degeneration characterized by focal axonal swellings associated with impaired axonal transport. To further characterize the molecular and cellular mechanisms underlying this mutant phenotype, we have assessed microtubule dynamics and axonal transport in primary cultures of cortical neurons from spastin-mutant mice. We show an early and marked impairment of microtubule dynamics all along the axons of spastin-deficient cortical neurons, which is likely to be responsible for the occurrence of axonal swellings and cargo stalling. Our analysis also reveals that a modulation of microtubule dynamics by microtubule-targeting drugs rescues the mutant phenotype of cortical neurons. Together, these results contribute to a better understanding of the pathogenesis of SPG4-linked HSP and ascertain the influence of microtubule-targeted drugs on the early axonal phenotype in a mouse model of the disease.