scispace - formally typeset
Search or ask a question

Showing papers in "Disease Models & Mechanisms in 2019"


Journal ArticleDOI
TL;DR: The currently available methods, particularly those aimed at modelling human biology, are highlighted, and an overview of their capabilities and limitations are provided.
Abstract: The past decade has seen an explosion in the field of in vitro disease modelling, in particular the development of organoids. These self-organizing tissues derived from stem cells provide a unique system to examine mechanisms ranging from organ development to homeostasis and disease. Because organoids develop according to intrinsic developmental programmes, the resultant tissue morphology recapitulates organ architecture with remarkable fidelity. Furthermore, the fact that these tissues can be derived from human progenitors allows for the study of uniquely human processes and disorders. This article and accompanying poster highlight the currently available methods, particularly those aimed at modelling human biology, and provide an overview of their capabilities and limitations. We also speculate on possible future technological advances that have the potential for great strides in both disease modelling and future regenerative strategies.

228 citations


Journal ArticleDOI
TL;DR: Newer molecular technologies to precisely and efficiently manipulate the mammalian genome are enabling the production of more scientifically valuable animal models.
Abstract: Over the past decade, new methods and procedures have been developed to generate genetically engineered mouse models of human disease. This At a Glance article highlights several recent technical advances in mouse genome manipulation that have transformed our ability to manipulate and study gene expression in the mouse. We discuss how conventional gene targeting by homologous recombination in embryonic stem cells has given way to more refined methods that enable allele-specific manipulation in zygotes. We also highlight advances in the use of programmable endonucleases that have greatly increased the feasibility and ease of editing the mouse genome. Together, these and other technologies provide researchers with the molecular tools to functionally annotate the mouse genome with greater fidelity and specificity, as well as to generate new mouse models using faster, simpler and less costly techniques.

85 citations


Journal ArticleDOI
TL;DR: The beneficial effects of exercise against diet-induced early obesity and NAFLD are mediated by its capacity to modulate intestinal microbiota composition and functionality, restore lipid metabolism and prevent disruption of the gut-liver axis.
Abstract: Childhood obesity has reached epidemic levels, representing one of the most serious public health concerns associated with metabolic syndrome and non-alcoholic fatty liver disease (NAFLD). There is limited clinical experience concerning pediatric NAFLD patients, and thus the therapeutic options are scarce. The aim of this study was to evaluate the benefits of exercise on gut microbiota composition and functionality balance, and consequent effects on early obesity and NAFLD onset in an in vivo model. Juvenile (21-day-old) male Wistar rats fed a control diet or a high-fat diet (HFD) were subjected to a combined aerobic and resistance training protocol. Fecal microbiota was sequenced by an Illumina MiSeq system, and parameters related to metabolic syndrome, fecal metabolome, intestinal barrier integrity, bile acid metabolism and transport, and alteration of the gut-liver axis were measured. Exercise decreased HFD-induced body weight gain, metabolic syndrome and hepatic steatosis, as a result of its lipid metabolism modulatory capacity. Gut microbiota composition and functionality were substantially modified as a consequence of diet, age and exercise intervention. In addition, the training protocol increased Parabacteroides, Bacteroides and Flavobacterium genera, correlating with a beneficial metabolomic profile, whereas Blautia, Dysgonomonas and Porphyromonas showed an opposite pattern. Exercise effectively counteracted HFD-induced microbial imbalance, leading to intestinal barrier preservation, which, in turn, prevented deregulation of the gut-liver axis and improved bile acid homeostasis, determining the clinical outcomes of NAFLD. In conclusion, we provide scientific evidence highlighting the benefits of gut microbiota composition and functionality modulation by physical exercise protocols in the management of early obesity and NAFLD development.

84 citations


Journal ArticleDOI
TL;DR: Investigation of the crosstalk between the Wnt and other signaling pathways will improve understanding of orofacial cleft development and provide opportunities for treatment and prevention.
Abstract: Diverse signaling cues and attendant proteins work together during organogenesis, including craniofacial development. Lip and palate formation starts as early as the fourth week of gestation in humans or embryonic day 9.5 in mice. Disruptions in these early events may cause serious consequences, such as orofacial clefts, mainly cleft lip and/or cleft palate. Morphogenetic Wnt signaling, along with other signaling pathways and transcription regulation mechanisms, plays crucial roles during embryonic development, yet the signaling mechanisms and interactions in lip and palate formation and fusion remain poorly understood. Various Wnt signaling and related genes have been associated with orofacial clefts. This Review discusses the role of Wnt signaling and its crosstalk with cell adhesion molecules, transcription factors, epigenetic regulators and other morphogenetic signaling pathways, including the Bmp, Fgf, Tgfβ, Shh and retinoic acid pathways, in orofacial clefts in humans and animal models, which may provide a better understanding of these disorders and could be applied towards prevention and treatments.

74 citations


Journal ArticleDOI
TL;DR: Preclinical modelling of glioblastoma multiforme is discussed to understand its biology and develop therapies, with a focus on mammalian model systems.
Abstract: Glioblastoma multiforme (GBM) is one of the deadliest human cancers. Despite increasing knowledge of the genetic and epigenetic changes that underlie tumour initiation and growth, the prognosis for GBM patients remains dismal. Genome analysis has failed to lead to success in the clinic. Fresh approaches are needed that can stimulate new discoveries across all levels: cell-intrinsic mechanisms (transcriptional/epigenetic and metabolic), cell-cell signalling, niche and microenvironment, systemic signals, immune regulation, and tissue-level physical forces. GBMs are inherently extremely challenging: tumour detection occurs too late, and cells infiltrate widely, hiding in quiescent states behind the blood-brain barrier. The complexity of the brain tissue also provides varied and complex microenvironments that direct cancer cell fates. Phenotypic heterogeneity is therefore superimposed onto pervasive genetic heterogeneity. Despite this bleak outlook, there are reasons for optimism. A myriad of complementary, and increasingly sophisticated, experimental approaches can now be used across the research pipeline, from simple reductionist models devised to delineate molecular and cellular mechanisms, to complex animal models required for preclinical testing of new therapeutic approaches. No single model can cover the breadth of unresolved questions. This Review therefore aims to guide investigators in choosing the right model for their question. We also discuss the recent convergence of two key technologies: human stem cell and cancer stem cell culture, as well as CRISPR/Cas tools for precise genome manipulations. New functional genetic approaches in tailored models will likely fuel new discoveries, new target identification and new therapeutic strategies to tackle GBM.

70 citations


Journal ArticleDOI
TL;DR: In a zebrafish model for inflammation, glucocorticoids do not affect the migration of macrophages, but inhibit their differentiation towards an M1 phenotype, by strongly attenuating transcriptional responses in these cells.
Abstract: Glucocorticoid drugs are widely used to treat immune-related diseases, but their use is limited by side effects and by resistance, which especially occurs in macrophage-dominated diseases. In order to improve glucocorticoid therapies, more research is required into the mechanisms of glucocorticoid action. In the present study, we have used a zebrafish model for inflammation to study glucocorticoid effects on the innate immune response. In zebrafish larvae, the migration of neutrophils towards a site of injury is inhibited upon glucocorticoid treatment, whereas migration of macrophages is glucocorticoid resistant. We show that wounding-induced increases in the expression of genes that encode neutrophil-specific chemoattractants (Il8 and Cxcl18b) are attenuated by the synthetic glucocorticoid beclomethasone, but that beclomethasone does not attenuate the induction of the genes encoding Ccl2 and Cxcl11aa, which are required for macrophage recruitment. RNA sequencing on FACS-sorted macrophages shows that the vast majority of the wounding-induced transcriptional changes in these cells are inhibited by beclomethasone, whereas only a small subset is glucocorticoid-insensitive. As a result, beclomethasone decreases the number of macrophages that differentiate towards a pro-inflammatory (M1) phenotype, which we demonstrated using a tnfa:eGFP-F reporter line and analysis of macrophage morphology. We conclude that differentiation and migration of macrophages are regulated independently, and that glucocorticoids leave the chemotactic migration of macrophages unaffected, but exert their anti-inflammatory effect on these cells by inhibiting their differentiation to an M1 phenotype. The resistance of macrophage-dominated diseases to glucocorticoid therapy can therefore not be attributed to an intrinsic insensitivity of macrophages to glucocorticoids.

63 citations


Journal ArticleDOI
TL;DR: The potential of photoacoustic imaging to visualise features of the tumour microenvironment such as blood vessels, hypoxia, fibrosis and immune infiltrate to provide unprecedented insight into tumour biology is detailed.
Abstract: The tumour microenvironment (TME) is a complex cellular ecosystem subjected to chemical and physical signals that play a role in shaping tumour heterogeneity, invasion and metastasis. Studying the roles of the TME in cancer progression would strongly benefit from non-invasive visualisation of the tumour as a whole organ in vivo, both preclinically in mouse models of the disease, as well as in patient tumours. Although imaging techniques exist that can probe different facets of the TME, they face several limitations, including limited spatial resolution, extended scan times and poor specificity from confounding signals. Photoacoustic imaging (PAI) is an emerging modality, currently in clinical trials, that has the potential to overcome these limitations. Here, we review the biological properties of the TME and potential of existing imaging methods that have been developed to analyse these properties non-invasively. We then introduce PAI and explore the preclinical and clinical evidence that support its use in probing multiple features of the TME simultaneously, including blood vessel architecture, blood oxygenation, acidity, extracellular matrix deposition, lipid concentration and immune cell infiltration. Finally, we highlight the future prospects and outstanding challenges in the application of PAI as a tool in cancer research and as part of a clinical oncologist's arsenal.

61 citations


Journal ArticleDOI
TL;DR: Two key types of amyotrophic lateral sclerosis mouse models are compared: transgenic mice and those that express genes at physiological levels, exploring the advantages of each type for studying pathomechanisms and comparing the phenotypes for genes in which the two classes of model exist.
Abstract: A wide range of genetic mouse models is available to help researchers dissect human disease mechanisms. Each type of model has its own distinctive characteristics arising from the nature of the introduced mutation, as well as from the specific changes to the gene of interest. Here, we review the current range of mouse models with mutations in genes causative for the human neurodegenerative disease amyotrophic lateral sclerosis. We focus on the two main types of available mutants: transgenic mice and those that express mutant genes at physiological levels from gene targeting or from chemical mutagenesis. We compare the phenotypes for genes in which the two classes of model exist, to illustrate what they can teach us about different aspects of the disease, noting that informative models may not necessarily mimic the full trajectory of the human condition. Transgenic models can greatly overexpress mutant or wild-type proteins, giving us insight into protein deposition mechanisms, whereas models expressing mutant genes at physiological levels may develop slowly progressing phenotypes but illustrate early-stage disease processes. Although no mouse models fully recapitulate the human condition, almost all help researchers to understand normal and abnormal biological processes, providing that the individual characteristics of each model type, and how these may affect the interpretation of the data generated from each model, are considered and appreciated.

60 citations


Journal ArticleDOI
TL;DR: The evolutionary conservation of a subcortical social brain between teleosts and mammals as the biological basis for using zebrafish to model human social behavior disorders is explored, while summarizing relevant experimental tools and assays are discussed.
Abstract: Social behaviors are essential for the survival and reproduction of social species. Many, if not most, neuropsychiatric disorders in humans are either associated with underlying social deficits or are accompanied by social dysfunctions. Traditionally, rodent models have been used to model these behavioral impairments. However, rodent assays are often difficult to scale up and adapt to high-throughput formats, which severely limits their use for systems-level science. In recent years, an increasing number of studies have used zebrafish (Danio rerio) as a model system to study social behavior. These studies have demonstrated clear potential in overcoming some of the limitations of rodent models. In this Review, we explore the evolutionary conservation of a subcortical social brain between teleosts and mammals as the biological basis for using zebrafish to model human social behavior disorders, while summarizing relevant experimental tools and assays. We then discuss the recent advances gleaned from zebrafish social behavior assays, the applications of these assays to studying related disorders, and the opportunities and challenges that lie ahead.

58 citations


Journal ArticleDOI
TL;DR: VPS13A, which is implicated in chorea-acanthocytosis, is essential for efficient lysosomal degradation, while localized in close association with mitochondria, suggesting that inter-organelle communication may be relevant in the pathogenesis of the disease.
Abstract: Members of the VPS13 family are associated with various human diseases. In particular, the loss of function of VPS13A leads to chorea-acanthocytosis (ChAc), a rare neurodegenerative disease without available curative treatments. Autophagy has been considered a promising therapeutic target because the absence of VPS13A causes a defective autophagy flux. However, the mechanistic details of this deficiency are unknown. Here, we identified Rab7A as an interactor of one of the VPS13 family members in Dictyostelium discoideum and showed that this interaction is conserved between the human homologs VPS13A and RAB7A in HeLa cells. As RAB7A is a key player in endosome trafficking, we addressed the possible function of VPS13A in endosome dynamics and lysosome degradation. Our results suggest that the decrease in autophagy observed in the absence of VPS13A may be the result of a more general defect in endocytic trafficking and lysosomal degradation. Unexpectedly, we found that VPS13A is closely localized to mitochondria, suggesting that the role of VPS13A in the endolysosomal pathway might be related to inter-organelle communication. We show that VPS13A localizes at the interface between mitochondria-endosomes and mitochondria-endoplasmic reticulum and that the presence of membrane contact sites is altered in the absence of VPS13A. Based on these findings, we propose that therapeutic strategies aimed at modulating the endolysosomal pathway could be beneficial in the treatment of ChAc.This article has an associated First Person interview with the first author of the paper.

56 citations


Journal ArticleDOI
TL;DR: In this article, the authors performed a longitudinal study to simultaneously assess the gut microbiome, immunophenotype and changes in ileum and brain epigenetic marks relative to motor behavior and muscle atrophy in the mutant superoxide dismutase 1 (SOD1G93A) familial ALS mouse model.
Abstract: Amyotrophic lateral sclerosis (ALS) is a terminal neurodegenerative disease. Genetic predisposition, epigenetic changes, aging and accumulated life-long environmental exposures are known ALS risk factors. The complex and dynamic interplay between these pathological influences plays a role in disease onset and progression. Recently, the gut microbiome has also been implicated in ALS development. In addition, immune cell populations are differentially expanded and activated in ALS compared to healthy individuals. However, the temporal evolution of both the intestinal flora and the immune system relative to symptom onset in ALS is presently not fully understood. To better elucidate the timeline of the various potential pathological factors, we performed a longitudinal study to simultaneously assess the gut microbiome, immunophenotype and changes in ileum and brain epigenetic marks relative to motor behavior and muscle atrophy in the mutant superoxide dismutase 1 (SOD1G93A) familial ALS mouse model. We identified alterations in the gut microbial environment early in the life of SOD1G93A animals followed by motor dysfunction and muscle atrophy, and immune cell expansion and activation, particularly in the spinal cord. Global brain cytosine hydroxymethylation was also altered in SOD1G93A animals at disease end-stage compared to control mice. Correlation analysis confirmed interrelationships with the microbiome and immune system. This study serves as a starting point to more deeply comprehend the influence of gut microorganisms and the immune system on ALS onset and progression. Greater insight may help pinpoint novel biomarkers and therapeutic interventions to improve diagnosis and treatment for ALS patients.This article has an associated First Person interview with the joint first authors of the paper.

Journal ArticleDOI
TL;DR: It is demonstrated that post-stroke administration of pramipexole induces the neurological recovery through mitochondrial pathways in ischemia/reperfusion injury.
Abstract: A dopamine D2 receptor agonist, pramipexole, has been found to elicit neuroprotection in patients with Parkinson’s disease and restless leg syndrome. Recent evidence has shown that pramipexole mediates its neuroprotection through mitochondria. Considering this, we examined the possible mitochondrial role of pramipexole in promoting neuroprotection following an ischemic stroke of rat. Male Wistar rats underwent transient middle cerebral artery occlusion (tMCAO) and then received pramipexole (0.25 mg and 1 mg/kg body weight) at 1, 6, 12 and 18 h post-occlusion. A panel of neurological tests and 2,3,5-triphenyl tetrazolium chloride (TTC) staining were performed at 24 h after the surgery. Flow cytometry was used to detect the mitochondrial membrane potential, and mitochondrial levels of reactive oxygen species (ROS) and Ca2+, respectively. Mitochondrial oxidative phosphorylation was analyzed by oxygraph (oxygen electrode). Western blotting was used to analyze the expression of various proteins such as Bax, Bcl-2 and cytochrome c. Pramipexole promoted the neurological recovery as shown by the panel of neurobehavioral tests and TTC staining. Post-stroke treatment with pramipexole reduced levels of mitochondrial ROS and Ca2+ after ischemia. Pramipexole elevated the mitochondrial membrane potential and mitochondrial oxidative phosphorylation. Western blotting showed that pramipexole inhibited the transfer of cytochrome c from mitochondria to cytosol, and hence inhibited the mitochondrial permeability transition pore. Thus, our results have demonstrated that post-stroke administration of pramipexole induces the neurological recovery through mitochondrial pathways in ischemia/reperfusion injury.

Journal ArticleDOI
TL;DR: Using a new reverse genetic screening method for zebrafish microglia development, involving automated image analysis, it is identified that il34 facilitates yolk sac macrophage distribution to target organs, including the brain.
Abstract: Microglia are brain-resident macrophages, which have specialized functions important in brain development and in disease. They colonize the brain in early embryonic stages, but few factors that drive the migration of yolk sac macrophages (YSMs) into the embryonic brain, or regulate their acquisition of specialized properties, are currently known. Here, we present a CRISPR/Cas9-based in vivo reverse genetic screening pipeline to identify new microglia regulators using zebrafish. Zebrafish larvae are particularly suitable due to their external development, transparency and conserved microglia features. We targeted putative microglia regulators, by Cas9/gRNA complex injections, followed by Neutral-Red-based visualization of microglia. Microglia were quantified automatically in 3-day-old larvae using a software tool we called SpotNGlia. We identified that loss of zebrafish colony-stimulating factor 1 receptor (Csf1r) ligand, Il34, caused reduced microglia numbers. Previous studies on the role of IL34 in microglia development in vivo were ambiguous. Our data, and a concurrent paper, show that, in zebrafish, il34 is required during the earliest seeding of the brain by microglia. Our data also indicate that Il34 is required for YSM distribution to other organs. Disruption of the other Csf1r ligand, Csf1, did not reduce microglia numbers in mutants, whereas overexpression increased the number of microglia. This shows that Csf1 can influence microglia numbers, but might not be essential for the early seeding of the brain. In all, we identified il34 as a modifier of microglia colonization, by affecting distribution of YSMs to target organs, validating our reverse genetic screening pipeline in zebrafish. This article has an associated First Person interview with the joint first authors of the paper.

Journal ArticleDOI
TL;DR: A new mechanism contributing to autophagy-lysosomal pathway dysfunction in neuronopathic Gaucher's disease iPSCs is uncovered, and the mTOR complex is identified as a potential therapeutic target in GBA1-associated neurodegeneration.
Abstract: Bi-allelic GBA1 mutations cause Gaucher's disease (GD), the most common lysosomal storage disorder. Neuronopathic manifestations in GD include neurodegeneration, which can be severe and rapidly progressive. GBA1 mutations are also the most frequent genetic risk factors for Parkinson's disease. Dysfunction of the autophagy-lysosomal pathway represents a key pathogenic event in GBA1-associated neurodegeneration. Using an induced pluripotent stem cell (iPSC) model of GD, we previously demonstrated that lysosomal alterations in GD neurons are linked to dysfunction of the transcription factor EB (TFEB). TFEB controls the coordinated expression of autophagy and lysosomal genes and is negatively regulated by the mammalian target of rapamycin complex 1 (mTORC1). To further investigate the mechanism of autophagy-lysosomal pathway dysfunction in neuronopathic GD, we examined mTORC1 kinase activity in GD iPSC neuronal progenitors and differentiated neurons. We found that mTORC1 is hyperactive in GD cells as evidenced by increased phosphorylation of its downstream protein substrates. We also found that pharmacological inhibition of glucosylceramide synthase enzyme reversed mTORC1 hyperactivation, suggesting that increased mTORC1 activity is mediated by the abnormal accumulation of glycosphingolipids in the mutant cells. Treatment with the mTOR inhibitor Torin1 upregulated lysosomal biogenesis and enhanced autophagic clearance in GD neurons, confirming that lysosomal dysfunction is mediated by mTOR hyperactivation. Further analysis demonstrated that increased TFEB phosphorylation by mTORC1 results in decreased TFEB stability in GD cells. Our study uncovers a new mechanism contributing to autophagy-lysosomal pathway dysfunction in GD, and identifies the mTOR complex as a potential therapeutic target for treatment of GBA1-associated neurodegeneration.

Journal ArticleDOI
TL;DR: An in vitro gut model is established that can be used to experimentally dissect commensal-like interactions of C. albicans with a bacterial microbiota and the host epithelial barrier and fungal shedding is discovered as a novel mechanism by which bacteria contribute to the protection of epithelial surfaces.
Abstract: The intestine is the primary reservoir of Candida albicans that can cause systemic infections in immunocompromised patients. In this reservoir, the fungus exists as a harmless commensal. However, antibiotic treatment can disturb the bacterial microbiota, facilitating fungal overgrowth and favoring pathogenicity. The current in vitro gut models that are used to study the pathogenesis of C. albicans investigate the state in which C. albicans behaves as a pathogen rather than as a commensal. We present a novel in vitro gut model in which the fungal pathogenicity is reduced to a minimum by increasing the biological complexity. In this model, enterocytes represent the epithelial barrier and goblet cells limit C. albicans adhesion and invasion. Significant protection against C. albicans-induced necrotic damage was achieved by the introduction of a microbiota of antagonistic lactobacilli. We demonstrated a time-, dose- and species-dependent protective effect against C. albicans-induced cytotoxicity. This required bacterial growth, which relied on the presence of host cells, but was not dependent on the competition for adhesion sites. Lactobacillus rhamnosus reduced hyphal elongation, a key virulence attribute. Furthermore, bacterial-driven shedding of hyphae from the epithelial surface, associated with apoptotic epithelial cells, was identified as a main and novel mechanism of damage protection. However, host cell apoptosis was not the driving mechanism behind shedding. Collectively, we established an in vitro gut model that can be used to experimentally dissect commensal-like interactions of C. albicans with a bacterial microbiota and the host epithelial barrier. We also discovered fungal shedding as a novel mechanism by which bacteria contribute to the protection of epithelial surfaces.This article has an associated First Person interview with the joint first authors of the paper.

Journal ArticleDOI
TL;DR: The history of transgenic NHP models and the progress of CRISPR/Cas9-mediated genome editing in NHPs is summarized, from the first proof-of-principle green fluorescent protein-expressing monkeys to sophisticated NHP model of human neurodegenerative disease that accurately phenocopy several complex disease features.
Abstract: Owing to their high similarity to humans, non-human primates (NHPs) provide an exceedingly suitable model for the study of human disease. In this Review, we summarize the history of transgenic NHP models and the progress of CRISPR/Cas9-mediated genome editing in NHPs, from the first proof-of-principle green fluorescent protein-expressing monkeys to sophisticated NHP models of human neurodegenerative disease that accurately phenocopy several complex disease features. We discuss not only the breakthroughs and advantages, but also the potential shortcomings of the application of the CRISPR/Cas9 system to NHPs that have emerged from the expanded understanding of this technology in recent years. Although off-target and mosaic mutations are the main concerns in CRISPR/Cas9-mediated NHP modeling, recent progress in genome editing techniques make it likely that these technical limitations will be overcome soon, bringing excellent prospects to human disease studies.

Journal ArticleDOI
TL;DR: It is proved that the rescue of cellular homeostasis following 4-PBA treatment is associated with its chaperone activity, since it increases protein secretion, restoring ER proteostasis and reducing PERK activation and cell survival also in the presence of pharmacological inhibition of autophagy.
Abstract: Osteogenesis imperfecta (OI) types VII, VIII and IX, caused by recessive mutations in cartilage-associated protein (CRTAP), prolyl-3-hydroxylase 1 (P3H1) and cyclophilin B (PPIB), respectively, are characterized by the synthesis of overmodified collagen. The genes encode for the components of the endoplasmic reticulum (ER) complex responsible for the 3-hydroxylation of specific proline residues in type I collagen. Our study dissects the effects of mutations in the proteins of the complex on cellular homeostasis, using primary fibroblasts from seven recessive OI patients. In all cell lines, the intracellular retention of overmodified type I collagen molecules causes ER enlargement associated with the presence of protein aggregates, activation of the PERK branch of the unfolded protein response and apoptotic death. The administration of 4-phenylbutyrate (4-PBA) alleviates cellular stress by restoring ER cisternae size, and normalizing the phosphorylated PERK (p-PERK):PERK ratio and the expression of apoptotic marker. The drug also has a stimulatory effect on autophagy. We proved that the rescue of cellular homeostasis following 4-PBA treatment is associated with its chaperone activity, since it increases protein secretion, restoring ER proteostasis and reducing PERK activation and cell survival also in the presence of pharmacological inhibition of autophagy. Our results provide a novel insight into the mechanism of 4-PBA action and demonstrate that intracellular stress in recessive OI can be alleviated by 4-PBA therapy, similarly to what we recently reported for dominant OI, thus allowing a common target for OI forms characterized by overmodified collagen.This article has an associated First Person interview with the first author of the paper.

Journal ArticleDOI
TL;DR: Mouse models of prediabetes and type 2 diabetes that develop peripheral neuropathy display increased levels of nerve triglycerides, which return to normal upon dietary reversal, suggesting that altered lipids are involved in disease.
Abstract: Peripheral neuropathy (PN) is a complication of prediabetes and type 2 diabetes (T2D). Increasing evidence suggests that factors besides hyperglycaemia contribute to PN development, including dyslipidaemia. The objective of this study was to determine differential lipid classes and altered gene expression profiles in prediabetes and T2D mouse models in order to identify the dysregulated pathways in PN. Here, we used high-fat diet (HFD)-induced prediabetes and HFD/streptozotocin (STZ)-induced T2D mouse models that develop PN. These models were compared to HFD and HFD-STZ mice that were subjected to dietary reversal. Both untargeted and targeted lipidomic profiling, and gene expression profiling were performed on sciatic nerves. Lipidomic and transcriptomic profiles were then integrated using complex correlation analyses, and biological meaning was inferred from known lipid-gene interactions in the literature. We found an increase in triglycerides (TGs) containing saturated fatty acids. In parallel, transcriptomic analysis confirmed the dysregulation of lipid pathways. Integration of lipidomic and transcriptomic analyses identified an increase in diacylglycerol acyltransferase 2 (DGAT2), the enzyme required for the last and committed step in TG synthesis. Increased DGAT2 expression was present not only in the murine models but also in sural nerve biopsies from hyperlipidaemic diabetic patients with PN. Collectively, these findings support the hypothesis that abnormal nerve-lipid signalling is an important factor in peripheral nerve dysfunction in both prediabetes and T2D.This article has an associated First Person interview with the joint first authors of the paper.

Journal ArticleDOI
TL;DR: This model captures key aspects of Marfan-related syndromes, providing insights into the role of fibrillin-1 in eye development and disease and undermines the structural and biomechanical integrity of the ciliary zonule.
Abstract: Fibrillin is an evolutionarily ancient protein that lends elasticity and resiliency to a variety of tissues. In humans, mutations in fibrillin-1 cause Marfan and related syndromes, conditions in which the eye is often severely affected. To gain insights into the ocular sequelae of Marfan syndrome, we targeted Fbn1 in mouse lens or non-pigmented ciliary epithelium (NPCE). Conditional knockout of Fbn1 in NPCE, but not lens, profoundly affected the ciliary zonule, the system of fibrillin-rich fibers that centers the lens in the eye. The tensile strength of the fibrillin-depleted zonule was reduced substantially, due to a shift toward production of smaller caliber fibers. By 3 months, zonular fibers invariably ruptured and mice developed ectopia lentis, a hallmark of Marfan syndrome. At later stages, untethered lenses lost their polarity and developed cataracts, and the length and volume of mutant eyes increased. This model thus captures key aspects of Marfan-related syndromes, providing insights into the role of fibrillin-1 in eye development and disease.

Journal ArticleDOI
TL;DR: The history of Drosophila as a model to understand the cancer problem, from the initial work carried out by Mary Stark 100 years ago to today is summarized.
Abstract: When Mary Stark first described the presence of tumours in the fruit fly Drosophila melanogaster in 1918, would she ever have imagined that flies would become an invaluable organism for modelling and understanding oncogenesis? And if so, would she have expected it to take 100 years for this model to be fully accredited? This Special Article summarises the efforts and achievements of Drosophilists to establish the fly as a valid model in cancer research through different scientific periods.

Journal ArticleDOI
TL;DR: It is demonstrated that epalrestat is the first small molecule activator of PMM2 enzyme activity with the potential to treat peripheral neuropathy and correct the underlying enzyme deficiency in a majority of pediatric and adult PMM 2-CDG patients.
Abstract: Phosphomannomutase 2 deficiency, or PMM2-CDG, is the most common congenital disorder of glycosylation and affects over 1000 patients globally. There are no approved drugs that treat the symptoms or root cause of PMM2-CDG. To identify clinically actionable compounds that boost human PMM2 enzyme function, we performed a multispecies drug repurposing screen using a novel worm model of PMM2-CDG, followed by PMM2 enzyme functional studies in PMM2-CDG patient fibroblasts. Drug repurposing candidates from this study, and drug repurposing candidates from a previously published study using yeast models of PMM2-CDG, were tested for their effect on human PMM2 enzyme activity in PMM2-CDG fibroblasts. Of the 20 repurposing candidates discovered in the worm-based phenotypic screen, 12 were plant-based polyphenols. Insights from structure–activity relationships revealed epalrestat, the only antidiabetic aldose reductase inhibitor approved for use in humans, as a first-in-class PMM2 enzyme activator. Epalrestat increased PMM2 enzymatic activity in four PMM2-CDG patient fibroblast lines with genotypes R141H/F119L, R141H/E139K, R141H/N216I and R141H/F183S. PMM2 enzyme activity gains ranged from 30% to 400% over baseline, depending on genotype. Pharmacological inhibition of aldose reductase by epalrestat may shunt glucose from the polyol pathway to glucose-1,6-bisphosphate, which is an endogenous stabilizer and coactivator of PMM2 homodimerization. Epalrestat is a safe, oral and brain penetrant drug that was approved 27 years ago in Japan to treat diabetic neuropathy in geriatric populations. We demonstrate that epalrestat is the first small molecule activator of PMM2 enzyme activity with the potential to treat peripheral neuropathy and correct the underlying enzyme deficiency in a majority of pediatric and adult PMM2-CDG patients.

Journal ArticleDOI
TL;DR: Zebrafish are a highly versatile and relevant organism for human disease modelling and their ethos of creativity and collaboration in translating basic biological research into clinically relevant advances affecting how the authors understand and treat human disease is highlighted.
Abstract: Five years after the launch of the Disease Models & Mechanisms (DMM) Special Issue on zebrafish as a disease model, the field has progressed significantly. Zebrafish have been used to precisely model human genetic variants, to unpick the mechanisms of metabolic and other diseases, to study infection, inflammation and cancer, and to develop and test new therapeutic approaches. In this Editorial, we highlight recent research published in DMM that uses zebrafish to develop new experimental tools and to provide new insight into disease mechanism and therapy. The broad spectrum of subjects and approaches covered in these articles underscores the versatility of zebrafish in translational research. Further, it highlights the zebrafish community9s ethos of creativity and collaboration in translating basic biological research into clinically relevant advances affecting how we understand and treat human disease.

Journal ArticleDOI
TL;DR: This work reveals a crucial effect of the over-expression mutation TDP-43A315T on the formation of synaptic structures and the recruitment of GluR1 to the synaptic membrane and implicates hypoexcitability and attenuated synaptic function in the pathogenic decline of neuronal function in T DP-43-associated ALS.
Abstract: Altered cortical excitability and synapse dysfunction are early pathogenic events in amyotrophic lateral sclerosis (ALS) patients and animal models. Recent studies propose an important role for TAR DNA-binding protein 43 (TDP-43), the mislocalization and aggregation of which are key pathological features of ALS. However, the relationship between ALS-linked TDP-43 mutations, excitability and synaptic function is not fully understood. Here, we investigate the role of ALS-linked mutant TDP-43 in synapse formation by examining the morphological, immunocytochemical and excitability profile of transgenic mouse primary cortical pyramidal neurons that over-express human TDP-43A315T In TDP-43A315T cortical neurons, dendritic spine density was significantly reduced compared to wild-type controls. TDP-43A315T over-expression increased the total levels of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropinionic acid (AMPA) glutamate receptor subunit GluR1, yet the localization of GluR1 to the dendritic spine was reduced. These postsynaptic changes were coupled with a decrease in the amount of the presynaptic marker synaptophysin that colocalized with dendritic spines. Interestingly, action potential generation was reduced in TDP-43A315T pyramidal neurons. This work reveals a crucial effect of the over-expression mutation TDP-43A315T on the formation of synaptic structures and the recruitment of GluR1 to the synaptic membrane. This pathogenic effect may be mediated by cytoplasmic mislocalization of TDP-43A315T Loss of synaptic GluR1, and reduced excitability within pyramidal neurons, implicates hypoexcitability and attenuated synaptic function in the pathogenic decline of neuronal function in TDP-43-associated ALS. Further studies into the mechanisms underlying AMPA receptor-mediated excitability changes within the ALS cortical circuitry may yield novel therapeutic targets for treatment of this devastating disease.

Journal ArticleDOI
TL;DR: Fibrotic deposition and PH are inhibited by the FDA-approved drug hymecromone, suggesting hyaluronan synthesis inhibition as a potential therapy for CPFE and highlighting a novel mechanism through HAS3-positive macrophages.
Abstract: Combined pulmonary fibrosis and emphysema (CPFE) is a syndrome that predominantly affects male smokers or ex-smokers and it has a mortality rate of 55% and a median survival of 5 years. Pulmonary hypertension (PH) is a highly fatal complication of CPFE. Despite this dismal prognosis, no curative therapies exist for patients with CPFE outside of lung transplantation and no therapies are recommended to treat PH. This highlights the need to develop novel treatment approaches for CPFE. Studies from our group have demonstrated that adenosine and its receptor, ADORA2B, are elevated in chronic lung diseases. Activation of ADORA2B leads to elevated levels of hyaluronan synthases and increased hyaluronan, a glycosaminoglycan which contributes to chronic lung injury. We hypothesize that ADORA2B and hyaluronan contribute to CPFE. Using isolated CPFE lung tissue, we characterized expression levels of ADORA2B and hyaluronan synthases (HAS). Next using a unique model of experimental lung injury that replicates features of CPFE, namely airspace enlargement, PH and fibrotic deposition, we investigated whether 4MU, a hyaluronan synthase inhibitor, was able to inhibit features of CPFE. Increased protein levels of ADORA2B and HAS3 were detected in CPFE and in our experimental model of CPFE. Treatment with 4MU was able to attenuate PH and fibrosis but not airspace enlargement. This was accompanied by a reduction of HAS3-positive macrophages. We have generated pre-clinical data demonstrating the capacity of 4MU, a FDA-approved drug, to attenuate features of CPFE in an experimental model of chronic lung injury.

Journal ArticleDOI
TL;DR: It is demonstrated that fully differentiated human SH-SY5Y neuroblastoma cells grown in three-dimensional cell culture develop Lewy-body-like pathology upon exposure to exogenous α-synuclein species, and this system provides an ideal tool to screen compounds to therapeutically intervene in Lewy body formation, and to investigate the mechanisms involved in disease progression in synucleinopathies.
Abstract: Extensive loss of dopaminergic neurons and aggregation of the protein α-synuclein into ubiquitin-positive Lewy bodies represents a major neuropathological hallmark of Parkinson's disease (PD). At present, the generation of large nuclear-associated Lewy bodies from endogenous wild-type α-synuclein, translationally regulated under its own promoter in human cell culture models, requires costly and time-consuming protocols. Here, we demonstrate that fully differentiated human SH-SY5Y neuroblastoma cells grown in three-dimensional cell culture develop Lewy-body-like pathology upon exposure to exogenous α-synuclein species. In contrast to most cell- and rodent-based PD models, which exhibit multiple diffuse α-synuclein aggregates throughout the cytoplasm, a single large nuclear inclusion that is immunopositive for α-synuclein and ubiquitin is rapidly obtained in our model. This was achieved without the need for overexpression of α-synuclein or genetic modification of the cell line. However, phosphorylation of α-synuclein within these inclusions was not observed. The system described here provides an ideal tool to screen compounds to therapeutically intervene in Lewy body formation, and to investigate the mechanisms involved in disease progression in synucleinopathies.

Journal ArticleDOI
TL;DR: The zebrafish mpv17−/− mutant shows a severe mitochondrial phenotype with ultrastructural alterations and oxidative phosphorylation impairment, linking the loss of Mpv17 to pyrimidine de novo synthesis and opening a new simple therapeutic approach for MPV17-related MDS.
Abstract: Mitochondrial DNA depletion syndromes (MDS) are a group of rare autosomal recessive disorders with early onset and no cure available. MDS are caused by mutations in nuclear genes involved in mitochondrial DNA (mtDNA) maintenance, and characterized by both a strong reduction in mtDNA content and severe mitochondrial defects in affected tissues. Mutations in MPV17 , a nuclear gene encoding a mitochondrial inner membrane protein, have been associated with hepatocerebral forms of MDS. The zebrafish mpv17 null mutant lacks the guanine-based reflective skin cells named iridophores and represents a promising model to clarify the role of Mpv17. In this study, we characterized the mitochondrial phenotype of mpv17 −/− larvae and found early and severe ultrastructural alterations in liver mitochondria, as well as significant impairment of the respiratory chain, leading to activation of the mitochondrial quality control. Our results provide evidence for zebrafish Mpv17 being essential for maintaining mitochondrial structure and functionality, while its effects on mtDNA copy number seem to be subordinate. Considering that a role in nucleotide availability had already been postulated for MPV17, that embryos blocked in pyrimidine synthesis do phenocopy mpv17 −/− knockouts (KOs) and that mpv17 −/− KOs have impaired Dihydroorotate dehydrogenase activity, we provided mpv17 mutants with the pyrimidine precursor orotic acid (OA). Treatment with OA, an easily available food supplement, significantly increased both iridophore number and mtDNA content in mpv17 −/− mutants, thus linking the loss of Mpv17 to pyrimidine de novo synthesis and opening a new simple therapeutic approach for MPV17 -related MDS.

Journal ArticleDOI
TL;DR: New humanized nematode models of amyloid-beta and apolipoprotein E gene expression are reported, examining readouts for neurodegeneration, behavior, cellular function and survival, to elucidate the relative contributions of the proteins to the underlying pathology of Alzheimer's disease.
Abstract: Allele-specific distinctions in the human apolipoprotein E (APOE) locus represent the best-characterized genetic predictor of Alzheimer's disease (AD) risk. Expression of isoform APOEe2 is associated with reduced risk, while APOEe3 is neutral and APOEe4 carriers exhibit increased susceptibility. Using Caenorhabditis elegans, we generated a novel suite of humanized transgenic nematodes to facilitate neuronal modeling of amyloid-beta peptide (Aβ) co-expression in the context of distinct human APOE alleles. We found that co-expression of human APOEe2 with Aβ attenuated Aβ-induced neurodegeneration, whereas expression of the APOEe4 allele had no effect on neurodegeneration, indicating a loss of neuroprotective capacity. Notably, the APOEe3 allele displayed an intermediate phenotype; it was not neuroprotective in young adults but attenuated neurodegeneration in older animals. There was no functional impact from the three APOE isoforms in the absence of Aβ co-expression. Pharmacological treatment that examined neuroprotective effects of APOE alleles on calcium homeostasis showed allele-specific responses to changes in ER-associated calcium dynamics in the Aβ background. Additionally, Aβ suppressed survival, an effect that was rescued by APOEe2 and APOEe3, but not APOEe4. Expression of the APOE alleles in neurons, independent of Aβ, exerted no impact on survival. Taken together, these results illustrate that C. elegans provides a powerful in vivo platform with which to explore how AD-associated neuronal pathways are modulated by distinct APOE gene products in the context of Aβ-associated neurotoxicity. The significance of both ApoE and Aβ to AD highlights the utility of this new pre-clinical model as a means to dissect their functional inter-relationship.This article has an associated First Person interview with the first author of the paper.

Journal ArticleDOI
TL;DR: This Review summarizes some of the exciting work that has used Drosophila as a model for the ever-expanding field of intellectual disability and autism spectrum disorders, and highlights disease-relevant assays, emerging themes and future challenges.
Abstract: Intellectual disability (ID) and autism spectrum disorders (ASD) are frequently co-occurring neurodevelopmental disorders and affect 2-3% of the population. Rapid advances in exome and genome sequencing have increased the number of known implicated genes by threefold, to more than a thousand. The main challenges in the field are now to understand the various pathomechanisms associated with this bewildering number of genetic disorders, to identify new genes and to establish causality of variants in still-undiagnosed cases, and to work towards causal treatment options that so far are available only for a few metabolic conditions. To meet these challenges, the research community needs highly efficient model systems. With an increasing number of relevant assays and rapidly developing novel methodologies, the fruit fly Drosophila melanogaster is ideally positioned to change gear in ID and ASD research. The aim of this Review is to summarize some of the exciting work that already has drawn attention to Drosophila as a model for these disorders. We highlight well-established ID- and ASD-relevant fly phenotypes at the (sub)cellular, brain and behavioral levels, and discuss strategies of how this extraordinarily efficient and versatile model can contribute to 'next generation' medical genomics and to a better understanding of these disorders.

Journal ArticleDOI
TL;DR: Induced pluripotent stem cells (iPSC) are derived from somatic cells through a reprogramming process, which converts them to a pluripototent state, akin to that of embryonic stem cells.
Abstract: Induced pluripotent stem cells (iPSCs) are derived from somatic cells through a reprogramming process, which converts them to a pluripotent state, akin to that of embryonic stem cells. Over the past decade, iPSC models have found increasing applications in the study of human diseases, with blood disorders featuring prominently. Here, we discuss methodological aspects pertaining to iPSC generation, hematopoietic differentiation and gene editing, and provide an overview of uses of iPSCs in modeling the cell and gene therapy of inherited genetic blood disorders, as well as their more recent use as models of myeloid malignancies. We also discuss the strengths and limitations of iPSCs compared to model organisms and other cellular systems commonly used in hematology research.

Journal ArticleDOI
TL;DR: The presence of a macrophage-like, CX3CL1/CX3CR1-expressing tendon cell population within the healthy tendon proper, which potentially fulfills a surveillance function in tendons is demonstrated.
Abstract: Tendon disorders frequently occur and recent evidence has clearly implicated the presence of immune cells and inflammatory events during early tendinopathy. However, the origin and properties of these cells remain poorly defined. Therefore, the aim of this study was to determine the presence of cells in healthy rodent and human tendon tissue fulfilling macrophage-like functions. Using various transgenic reporter mouse models, we demonstrate the presence of tendon-resident cells in the dense matrix of the tendon core expressing the fractalkine (Fkn) receptor CX3CR1 and its cognate ligand CX3CL1/Fkn. Pro-inflammatory stimulation of 3D tendon-like constructs in vitro resulted in a significant increase in the expression of IL-1β, IL-6, Mmp3, Mmp9, CX3CL1 and epiregulin, which has been reported to contribute to inflammation, wound healing and tissue repair. Furthermore, we demonstrate that inhibition of the Fkn receptor blocked tendon cell migration in vitro, and show the presence of CX3CL1/CX3CR1/EREG-expressing cells in healthy human tendons. Taken together, we demonstrate the presence of CX3CL1+/CX3CR1+ 'tenophages' within the healthy tendon proper, which potentially fulfill surveillance functions in tendons.This article has an associated First Person interview with the first author of the paper.