scispace - formally typeset
Search or ask a question
JournalISSN: 1366-9516

Diversity and Distributions 

Wiley-Blackwell
About: Diversity and Distributions is an academic journal published by Wiley-Blackwell. The journal publishes majorly in the area(s): Species richness & Biodiversity. It has an ISSN identifier of 1366-9516. It is also open access. Over the lifetime, 2535 publications have been published receiving 141949 citations. The journal is also known as: Diversity and distributions.


Papers
More filters
Journal ArticleDOI
TL;DR: A new statistical explanation of MaxEnt is described, showing that the model minimizes the relative entropy between two probability densities defined in covariate space, which is likely to be a more accessible way to understand the model than previous ones that rely on machine learning concepts.
Abstract: MaxEnt is a program for modelling species distributions from presence-only species records. This paper is written for ecologists and describes the MaxEnt model from a statistical perspective, making explicit links between the structure of the model, decisions required in producing a modelled distribution, and knowledge about the species and the data that might affect those decisions. To begin we discuss the characteristics of presence-only data, highlighting implications for modelling distributions. We particularly focus on the problems of sample bias and lack of information on species prevalence. The keystone of the paper is a new statistical explanation of MaxEnt which shows that the model minimizes the relative entropy between two probability densities (one estimated from the presence data and one, from the landscape) defined in covariate space. For many users, this viewpoint is likely to be a more accessible way to understand the model than previous ones that rely on machine learning concepts. We then step through a detailed explanation of MaxEnt describing key components (e.g. covariates and features, and definition of the landscape extent), the mechanics of model fitting (e.g. feature selection, constraints and regularization) and outputs. Using case studies for a Banksia species native to south-west Australia and a riverine fish, we fit models and interpret them, exploring why certain choices affect the result and what this means. The fish example illustrates use of the model with vector data for linear river segments rather than raster (gridded) data. Appropriate treatments for survey bias, unprojected data, locally restricted species, and predicting to environments outside the range of the training data are demonstrated, and new capabilities discussed. Online appendices include additional details of the model and the mathematical links between previous explanations and this one, example code and data, and further information on the case studies.

4,621 citations

Journal ArticleDOI
TL;DR: It is proposed that the term ‘invasive’ should be used without any inference to environmental or economic impact, and terms like ‘pests’ and ‘weeds’ are suitable labels for the 50–80% of invaders that have harmful effects.
Abstract: . Much confusion exists in the English-language literature on plant invasions concerning the terms ‘naturalized’ and ‘invasive’ and their associated concepts. Several authors have used these terms in proposing schemes for conceptualizing the sequence of events from introduction to invasion, but often imprecisely, erroneously or in contradictory ways. This greatly complicates the formulation of robust generalizations in invasion ecology. Based on an extensive and critical survey of the literature we defined a minimum set of key terms related to a graphic scheme which conceptualizes the naturalization/invasion process. Introduction means that the plant (or its propagule) has been transported by humans across a major geographical barrier. Naturalization starts when abiotic and biotic barriers to survival are surmounted and when various barriers to regular reproduction are overcome. Invasion further requires that introduced plants produce reproductive offspring in areas distant from sites of introduction (approximate scales: > 100 m over 6 m/3 years for taxa spreading by roots, rhizomes, stolons or creeping stems). Taxa that can cope with the abiotic environment and biota in the general area may invade disturbed, seminatural communities. Invasion of successionally mature, undisturbed communities usually requires that the alien taxon overcomes a different category of barriers. We propose that the term ‘invasive’ should be used without any inference to environmental or economic impact. Terms like ‘pests’ and ‘weeds’ are suitable labels for the 50–80% of invaders that have harmful effects. About 10% of invasive plants that change the character, condition, form, or nature of ecosystems over substantial areas may be termed ‘transformers’.

3,516 citations

Journal ArticleDOI
TL;DR: In this article, a broad suite of algorithms with independent presence-absence data from multiple species and regions were evaluated for 46 species (from six different regions of the world) at three sample sizes (100, 30 and 10 records).
Abstract: A wide range of modelling algorithms is used by ecologists, conservation practitioners, and others to predict species ranges from point locality data. Unfortunately, the amount of data available is limited for many taxa and regions, making it essential to quantify the sensitivity of these algorithms to sample size. This is the first study to address this need by rigorously evaluating a broad suite of algorithms with independent presence‐absence data from multiple species and regions. We evaluated predictions from 12 algorithms for 46 species (from six different regions of the world) at three sample sizes (100, 30, and 10 records). We used data from natural history collections to run the models, and evaluated the quality of model predictions with area under the receiver operating characteristic curve (AUC). With decreasing sample size, model accuracy decreased and variability increased across species and between models. Novel modelling methods that incorporate both interactions between predictor variables and complex response shapes (i.e. GBM, MARS-INT, BRUTO) performed better than most methods at large sample sizes but not at the smallest sample sizes. Other algorithms were much less sensitive to sample size, including an algorithm based on maximum entropy (MAXENT) that had among the best predictive power across all sample sizes. Relative to other algorithms, a distance metric algorithm (DOMAIN) and a genetic algorithm (OM-GARP) had intermediate performance at the largest sample size and among the best performance at the lowest sample size. No algorithm predicted consistently well with small sample size ( n < 30) and this should encourage highly conservative use of predictions based on small sample size and restrict their use to exploratory modelling.

1,906 citations

Journal ArticleDOI
TL;DR: In this article, the authors tested the predictive accuracies of five consensus methods, namely Weighted Average (WA), Mean(All), Median(All, Median(PCA), and Best, for 28 threatened plant species.
Abstract: Aim Spatial modelling techniques are increasingly used in species distribution modelling. However, the implemented techniques differ in their modelling performance, and some consensus methods are needed to reduce the uncertainty of predictions. In this study, we tested the predictive accuracies of five consensus methods, namely Weighted Average (WA), Mean(All), Median(All), Median(PCA), and Best, for 28 threatened plant species. Location North-eastern Finland, Europe. Methods The spatial distributions of the plant species were forecasted using eight state-of-the-art single-modelling techniques providing an ensemble of predictions. The probability values of occurrence were then combined using five consensus algorithms. The predictive accuracies of the single-model and consensus methods were assessed by computing the area under the curve (AUC) of the receiver-operating characteristic plot. Results The mean AUC values varied between 0.697 (classification tree analysis) and 0.813 (random forest) for the single-models, and from 0.757 to 0.850 for the consensus methods. WA and Mean(All) consensus methods provided significantly more robust predictions than all the single-models and the other consensus methods. Main conclusions Consensus methods based on average function algorithms may increase significantly the accuracy of species distribution forecasts, and thus they show considerable promise for different conservation biological and biogeographical applications.

1,097 citations

Journal ArticleDOI
TL;DR: The role played by biogeographical science in the emergence of conservation guidance is examined and the case for the recognition of Conservation Biogeography as a key subfield of conservation biology delimited as both a substantial body of theory and analysis is made.
Abstract: There is general agreement among scientists that biodiversity is under assault on a global basis and that species are being lost at a greatly enhanced rate. This article examines the role played by biogeographical science in the emergence of conservation guidance and makes the case for the recognition of Conservation Biogeography as a key subfield of conservation biology delimited as: the application of biogeographical principles, theories, and analyses, being those concerned with the distributional dynamics of taxa individually and collectively, to problems concerning the conservation of biodiversity. Conservation biogeography thus encompasses both a substantial body of theory and analysis, and some of the most prominent planning frameworks used in conservation. Considerable advances in conservation guidelines have been made over the last few decades by applying biogeographical methods and principles. Herein we provide a critical review focussed on the sensitivity to assumptions inherent in the applications we examine. In particular, we focus on four inter-related factors: (i) scale dependency (both spatial and temporal); (ii) inadequacies in taxonomic and distributional data (the so-called Linnean and Wallacean shortfalls); (iii) effects of model structure and parameterisation; and (iv) inadequacies of theory. These generic problems are illustrated by reference to studies ranging from the application of historical biogeography, through island biogeography, and complementarity analyses to bioclimatic envelope modelling. There is a great deal of uncertainty inherent in predictive analyses in conservation biogeography and this area in particular presents considerable challenges. Protected area planning frameworks and their resulting map outputs are amongst the most powerful and influential applications within conservation biogeography, and at the global scale are characterised by the production, by a small number of prominent NGOs, of bespoke schemes, which serve both to mobilise funds and channel efforts in a highly targeted fashion. We provide a simple typology of protected area planning frameworks, with particular reference to the global scale, and provide a brief critique of some of their strengths and weaknesses. Finally, we discuss the importance, especially at regional scales, of developing more responsive analyses and models that integrate pattern (the compositionalist approach) and processes (the functionalist approach) such as range collapse and climate change, again noting the sensitivity of outcomes to starting assumptions. We make the case for the greater engagement of the biogeographical community in a programme of evaluation and refinement of all such schemes to test their robustness and their sensitivity to alternative conservation priorities and goals.

1,030 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
202368
2022204
2021221
2020127
2019140
2018154