scispace - formally typeset
Search or ask a question
JournalISSN: 1087-3562

Earth Interactions 

American Meteorological Society
About: Earth Interactions is an academic journal published by American Meteorological Society. The journal publishes majorly in the area(s): Climate change & Precipitation. It has an ISSN identifier of 1087-3562. It is also open access. Over the lifetime, 402 publications have been published receiving 17586 citations. The journal is also known as: EI.


Papers
More filters
Journal ArticleDOI
TL;DR: The first results of the MODIS vegetation continuous field algorithm's global percent tree cover are presented in this article, where a supervised regression tree algorithm is used to estimate tree cover per 500m MODIS pixel.
Abstract: The first results of the Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation continuous field algorithm's global percent tree cover are presented. Percent tree cover per 500-m MODIS pixel is estimated using a supervised regression tree algorithm. Data derived from the MODIS visible bands contribute the most to discriminating tree cover. The results show that MODIS data yield greater spatial detail in the characterization of tree cover compared to past efforts using AVHRR data. This finer-scale depiction should allow for using successive tree cover maps in change detection studies at the global scale. Initial validation efforts show a reasonable relationship between the MODIS-estimated tree cover and tree cover from validation sites.

1,024 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present documented input parameters for a process-based ecosystem simulation model, BIOME-BGC, for major natural temperate biomes, including turnover and mortality, allocation, carbon to nitrogen ratios (C:N), the percent of plant material in labile, cellulose, and lignin pools, leaf morphology, leaf conductance rates and limitations, canopy water interception and light extinction.
Abstract: Ecosystem simulation models use descriptive input parameters to establish the physiology, biochemistry, structure, and allocation patterns of vegetation functional types, or biomes. For single-stand simulations it is possible to measure required data, but as spatial resolution increases, so too does data unavailability. Generalized biome parameterizations are then required. Undocumented parameter selection and unknown model sensitivity to parameter variation for larger-resolution simulations are currently the major limitations to global and regional modeling. The authors present documented input parameters for a process-based ecosystem simulation model, BIOME–BGC, for major natural temperate biomes. Parameter groups include the following: turnover and mortality; allocation; carbon to nitrogen ratios (C:N); the percent of plant material in labile, cellulose, and lignin pools; leaf morphology; leaf conductance rates and limitations; canopy water interception and light extinction; and the percent of...

789 citations

Journal ArticleDOI
TL;DR: In this paper, the authors developed a multilayer soil characteristics dataset for the conterminous United States (CONUS-SOIL) that specifically addresses the need for soil physical and hydraulic property information over large areas.
Abstract: Soil information is now widely required by many climate and hydrology models and soil-vegetation-atmosphere transfer schemes. This pa- per describes the development of a multilayer soil characteristics dataset for the conterminous United States (CONUS-SOIL) that specifically addresses the need for soil physical and hydraulic property information over large areas. The State Soil Geographic Database (STATSGO) developed by the U.S. De- partment of Agriculture-Natural Resources Conservation Service served as the starting point for CONUS-SOIL. Geographic information system and Perl computer programming language tools were used to create map coverages of soil properties including soil texture and rock fragment classes, depth-to-bed- rock, bulk density, porosity, rock fragment volume, particle-size (sand, silt, and clay) fractions, available water capacity, and hydrologic soil group. In- terpolation procedures for the continuous and categorical variables describing these soil properties were developed and applied to the original STATSGO data. In addition to any interpolation errors, the CONUS-SOIL dataset reflects the limitations of the procedures used to generate detailed county-level soil

660 citations

Journal ArticleDOI
TL;DR: In this article, the performance of different drought indices for monitoring drought impacts on several hydrological, agricultural, and ecological response variables was evaluated. And the authors found that the SPEI was the index that best captured the responses of the assessed variables to drought in summer, the seas...
Abstract: In this study, the authors provide a global assessment of the performance of different drought indices for monitoring drought impacts on several hydrological, agricultural, and ecological response variables. For this purpose, they compare the performance of several drought indices [the standardized precipitation index (SPI); four versions of the Palmer drought severity index (PDSI); and the standardized precipitation evapotranspiration index (SPEI)] to predict changes in streamflow, soil moisture, forest growth, and crop yield. The authors found a superior capability of the SPEI and the SPI drought indices, which are calculated on different time scales than the Palmer indices to capture the drought impacts on the aforementioned hydrological, agricultural, and ecological variables. They detected small differences in the comparative performance of the SPI and the SPEI indices, but the SPEI was the drought index that best captured the responses of the assessed variables to drought in summer, the seas...

642 citations

Journal ArticleDOI
TL;DR: In this paper, a review of recent studies related to how the urban environment affects precipitation is provided, with a set of recommendations for what observations and capa- bilities are needed in the future to advance our understanding of the processes.
Abstract: Precipitation is a key link in the global water cycle and a proxy for changing climate; therefore, proper assessment of the urban envi- ronment's impact on precipitation (land use, aerosols, thermal properties) will be increasingly important in ongoing climate diagnostics and prediction, Glob- al Water and Energy Cycle (GWEC) analysis and modeling, weather forecast- ing, freshwater resource management, urban planning-design, and land- atmosphere-ocean interface processes. These facts are particularly critical if current projections for global urban growth are accurate. The goal of this paper is to provide a concise review of recent (1990-present) studies related to how the urban environment affects precipitation. In addition to providing a synopsis of current work, recent findings are placed in context with historical investigations such as Metropolitan Meteorological Experiment (METROMEX) studies. Both observational and modeling studies of urban- induced rainfall are discussed. Additionally, a discussion of the relative roles of urban dynamic and microphysical (e.g., aerosol) processes is presented. The paper closes with a set of recommendations for what observations and capa- bilities are needed in the future to advance our understanding of the processes.

619 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
202310
202219
202114
20206
20197
201816