scispace - formally typeset
Search or ask a question

Showing papers in "Earth Surface Processes and Landforms in 2009"


Journal ArticleDOI
TL;DR: In this paper, the authors present an accounting for uncertainty in DEMs from repeat topographic surveys: improved sediment budgets, which can be used to improve the quality of topographic data.
Abstract: Wheaton, J. M., Brasington, J., Darby, S. E., Sear, D. A. (2010). Accounting for uncertainty in DEMs from repeat topographic surveys: improved sediment budgets. Earth Surface Processes and Landforms, 35, (2), 136-156.

855 citations


Journal ArticleDOI
TL;DR: In this article, the authors investigated the correlations between riparian vegetation and hydrogeomorphic dynamics along a transverse gradient from the main channel to the floodplain of the River Tech, France.
Abstract: Riparian vegetation responds to hydrogeomorphic disturbances and environmental changes and also controls these changes. Here, we propose that the control of sediment erosion and deposition by riparian vegetation is a key geomorphological and ecological (i.e. biogeomorphic) function within fluvial corridors. In a 3 year study, we investigated the correlations between riparian vegetation and hydrogeomorphic dynamics along a transverse gradient from the main channel to the floodplain of the River Tech, France. Sediment erosion and deposition rates varied significantly along the transverse gradient as a function of the vegetation biovolume intercepting water flow. These effects, combined with the extremely strong mechanical resistance of pioneer woody structures and strong resilience of pioneer labile herbaceous communities, Populus nigra and Salix spp., explain the propensity of biogeomorphic succession (i.e. the synergy between vegetation succession and landform construction) to progress between destructive floods. This geomorphological function newly identified as an ‘ecosystem function’ per se encompasses the coupling of habitat and landform creation, maintenance and change with fundamental ecosystem structural changes in space and in time. Three different biogeomorphic functions, all related to the concept of ecosystem engineering, were identified: (i) the function of pioneer herbaceous communities to retain fine sediment and diaspores in the exposed zones of the active tract near the water resource, facilitating recruitment of further herbaceous and Salicacea species; (ii) the function of woody vegetation to drive the construction of forested islands and floodplains; and (iii) the function of stabilised riparian forests to act as ‘diversity reservoirs’ which can support regeneration after destructive floods. Overall, this study based on empirical data points to the fundamental importance of sediment flow control by pioneer riparian vegetation in defining fluvial ecosystem and landform organisation in time and in space. Copyright © 2009 John Wiley & Sons, Ltd.

247 citations


Journal ArticleDOI
TL;DR: In this paper, the authors report rates of erosion and weathering in saprolite and soil to quantify how climate influences denudation, by focusing on an elevation transect in the western Sierra Nevada Mountains, California.
Abstract: Landscapes evolve in response to external forces, such as tectonics and climate, that influence surface processes of erosion and weathering. Internal feedbacks between erosion and weathering also play an integral role in regulating the landscapes response. Our understanding of these internal and external feedbacks is limited to a handful of field-based studies, only a few of which have explicitly examined saprolite weathering. Here, we report rates of erosion and weathering in saprolite and soil to quantify how climate influences denudation, by focusing on an elevation transect in the western Sierra Nevada Mountains, California. We use an adapted mass balance approach and couple soil-production rates from the cosmogenic radionuclide (CRN) 10Be with zirconium concentrations in rock, saprolite and soil. Our approach includes deep saprolite weathering and suggests that previous studies may have underestimated denudation rates across similar landscapes. Along the studied climate gradient, chemical weathering rates peak at middle elevations (1200–2000 m), averaging 112·3 ± 9·7 t km–2 y–1 compared to high and low elevation sites (46·8 ± 5·2 t km−2 y−1). Measured weathering rates follow similar patterns with climate as those of predicted silica fluxes, modeled using an Arrhenius temperature relationship and a linear relationship between flux and precipitation. Furthermore, chemical weathering and erosion are tightly correlated across our sites, and physical erosion rates increase with both saprolite weathering rates and intensity. Unexpectedly, saprolite and soil weathering intensities are inversely related, such that more weathered saprolites are overlain by weakly weathered soils. These data quantify exciting links between climate, weathering and erosion, and together suggest that climate controls chemical weathering via temperature and moisture control on chemical reaction rates. Our results also suggest that saprolite weathering reduces bedrock coherence, leading to faster rates of soil transport that, in turn, decrease material residence times in the soil column and limit soil weathering. Copyright © 2009 John Wiley & Sons, Ltd.

240 citations


Journal ArticleDOI
TL;DR: In this paper, the authors evaluate the potential for remote mapping of river bathymetry by examining the theoretical basis of a simple, ratio-based technique for retrieving depth information from passive optical image data, and performing radiative transfer simulations to quantify the effects of suspended sediment concentration, bottom reflectance, and water surface state.
Abstract: This paper evaluates the potential for remote mapping of river bathymetry by (1) examining the theoretical basis of a simple, ratio-based technique for retrieving depth information from passive optical image data; (2) performing radiative transfer simulations to quantify the effects of suspended sediment concentration, bottom reflectance, and water surface state; (3) assessing the accuracy of spectrally based depth retrieval under field conditions via ground-based reflectance measurements; and (4) producing bathymetric maps for a pair of gravel-bed rivers from hyperspectral image data. Consideration of the relative magnitudes of various radiance components allowed us to define the range of conditions under which spectrally based depth retrieval is appropriate: the remotely sensed signal must be dominated by bottom-reflected radiance. We developed a simple algorithm, called optimal band ratio analysis (OBRA), for identifying pairs of wavelengths for which this critical assumption is valid and which yield strong, linear relationships between an image-derived quantity X and flow depth d. OBRA of simulated spectra indicated that water column optical properties were accounted for by a shorter-wavelength numerator band sensitive to scattering by suspended sediment while depth information was provided by a longer-wavelength denominator band subject to strong absorption by pure water. Field spectra suggested that bottom reflectance was fairly homogeneous, isolating the effect of depth, and that radiance measured above the water surface was primarily reflected from the bottom, not the water column. OBRA of these data, 28% of which were collected during a period of high turbidity, yielded strong X versus d relations (R2 from 0·792 to 0·976), demonstrating that accurate depth retrieval is feasible under field conditions. Moreover, application of OBRA to hyperspectral image data resulted in spatially coherent, hydraulically reasonable bathymetric maps, though negative depth estimates occurred along channel margins where pixels were mixed. This study indicates that passive optical remote sensing could become a viable tool for measuring river bathymetry. Copyright © 2009 John Wiley & Sons, Ltd.

234 citations


Journal ArticleDOI
TL;DR: In this paper, the Erlenbach stream has been monitored for more than 20 years and three exceptional events (events with high sediment yield and long return times that have a large effect on channel morphology) have impacted the stream and partly or completely rearranged the existing step-pool morphology.
Abstract: Sediment transport in the Erlenbach, a small stream with step-pool morphology in the canton of Schwyz, Switzerland, has been monitored for more than 20 years. During this time three exceptional events (events with high sediment yield and long return times that have a large effect on channel morphology) have impacted the stream and partly or completely rearranged the existing step-pool morphology. In the aftermath of the events, sediment transport rates at a given discharge and total sediment yield remained elevated for about a year or longer. For the last event, dated on the 20 June 2007, observations of boulder mobility and step destruction were used to interpret channel stability. Boulders with median diameters of up to 135 cm and estimated weights of more than 2·5 tons have moved during the 2007 event. Using hydraulic observations and shear stress calculations boulders up to 65 cm in diameter were predicted to have been fully mobile in peak conditions, even if form resistance and increased critical stresses needed for the initiation of motion in steep streams were taken into account. For two of the events, estimated peak shear stresses at the bed exceeded 1000 Pa, calculated both from observations of the flow hydraulics and from boulder mobility. This suggests that highly energetic flows occur relatively frequently in small, steep streams and that large boulders can be transported by fluvial processes in such streams. The observations have potential significance for hazard risk mitigation, stream engineering and restoration. Copyright © 2009 John Wiley & Sons, Ltd.

206 citations


Journal ArticleDOI
TL;DR: In this article, the authors describe both laboratory and field experiments designed to evaluate close-range terrestrial laser scanning (TLS) data for sedimentological applications and to develop protocols for data acquisition.
Abstract: The grain-scale morphology of fluvial sediments is an important control on the character and dynamics of river systems; however current understanding of its role is limited by the difficulties of robustly quantifying field surface morphology. Terrestrial Laser Scanning (TLS) offers a new methodology for the rapid acquisition of high-resolution and high-precision surface elevation data from in situ sediments. To date, most environmental and fluvial applications of TLS have focused on large-scale systems, capturing macroscale morphologies. Application of this new technology at scales necessary to characterize the complexity of grain-scale fluvial sediments therefore requires a robust assessment of the quality and sources of errors in close-range TLS data. This paper describes both laboratory and field experiments designed to evaluate close-range TLS for sedimentological applications and to develop protocols for data acquisition. In the former, controlled experiments comprising high-resolution scans of white, grey and black planes and a sphere were used to quantify the magnitude and source of three-dimensional (3D) point errors resulting from a combination of surface geometry, reflectivity effects and inherent instrument precision. Subsequently, a methodology for the collection and processing of grain-scale TLS data is described through an application to a coarse grained gravel system, the River Feshie (D50 32 to 63 mm). This stepwise strategy incorporates averaging repeat scans and filtering scan artefact and non-surface points using local 3D search algorithms. The sensitivity of the results to the filter parameter values are assessed by careful internal validation of Digital Terrain Models (DTMs) created from the resulting point cloud data. The transferability of this methodology is assessed through application to a second river, Bury Green Brook, dominated by finer gravel (D50 18 to 33 mm). The factor limiting the resolution of DTMs created from this second dataset was found to be the relative sizes of the laser footprint and smallest grains. Copyright © 2009 John Wiley & Sons, Ltd.

204 citations


Journal ArticleDOI
TL;DR: In this paper, 10 representative research sites were selected in eastern Spain to assess soil erosion rates and processes in new citrus orchards on sloping soils, and the experimental plots were located at representatives sites on limestone, in areas with 498 to 715 mm year−1 mean annual rainfall, north-facing slopes, herbicide treated, and new plantations.
Abstract: Ten representative research sites were selected in eastern Spain to assess soil erosion rates and processes in new citrus orchards on sloping soils. The experimental plots were located at representatives sites on limestone, in areas with 498 to 715 mm year−1 mean annual rainfall, north-facing slopes, herbicide treated, and new (less than 3 years old) plantations. Ten rainfall simulation experiments (1 h at 55 mm h−1 on 0·25 m2 plots) were carried out at each of the 10 selected study sites to determine the interill soil erosion and runoff rates. The 100 rainfall simulation tests (10 × 10 m) showed that ponding and runoff occurred in all the plots, and quickly: 121 and 195 s, respectively, following rainfall initiation. Runoff discharge was one third of the rainfall, and sediment concentration reached 10·4 g L−1. The soil erosion rates were 2·4 Mg ha−1 h−1 under 5-year return period rainfall thunderstorms. These are among the highest soil erosion rates measured in the western Mediterranean basin, similar to badland, mine spoil and road embankment land surfaces. The positive relationship between runoff discharge and sediment concentration (r2 = 0·83) shows that the sediment availability is very high. Soil erosion rates on new citrus orchards growing on sloped soils are neither tolerable nor sustainable. Copyright © 2009 John Wiley & Sons, Ltd.

188 citations


Journal ArticleDOI
TL;DR: In this article, an automatic method for water surface classification and delineation by combining the geometrical and signal intensity information provided by airborne laser scanning (ALS) is presented. But this method is not suitable for water-land boundary segmentation.
Abstract: In recent years airborne laser scanning (ALS) evolved into a state-of-the-art technology for topographic data acquisition. We present a novel, automatic method for water surface classification and delineation by combining the geometrical and signal intensity information provided by ALS. The reflection characteristics of water surfaces in the near-infrared wavelength (1064 nm) of the ALS system along with the surface roughness information provide the basis for the differentiation between water and land areas. Water areas are characterized by a high number of laser shot dropouts and predominant low backscatter energy. In a preprocessing step, the recorded intensities are corrected for spherical loss and atmospheric attenuation, and the locations of laser shot dropouts are modeled. A seeded region growing segmentation, applied to the point cloud and the modeled dropouts, is used to detect potential water regions. Object-based classification of the resulting segments determines the final separation of water and non-water points. The water-land-boundary is defined by the central contour line of the transition zone between water and land points. We demonstrate that the proposed workflow succeeds for a regulated river (Inn, Austria) with smooth water surface as well as for a pro-glacial braided river (Hintereisfernerbach, Austria). A multi-temporal analysis over five years of the pro-glacial river channel emphasizes the applicability of the developed method for different ALS systems and acquisition settings (e.g. point density). The validation, based on real time kinematic (RTK) global positioning system (GPS) field survey and a terrestrial orthophoto, indicate point cloud classification accuracy above 97% with 0·45 m planimetric accuracy (root mean square error) of the water–land boundary. This article shows the capability of ALS data for water surface mapping with a high degree of automation and accuracy. This provides valuable datasets for a number of applications in geomorphology, hydrology and hydraulics, such as monitoring of braided rivers, flood modeling and mapping. Copyright © 2009 John Wiley & Sons, Ltd.

173 citations


Journal ArticleDOI
TL;DR: The potential for geomorphological mapping and quantitative calculations of light detection and ranging (LiDAR) data within fluvial geomorphology was studied for two river catchments within Belgium (Dijle and Ambleve) as discussed by the authors.
Abstract: The potential for geomorphological mapping and quantitative calculations of light detection and ranging (LiDAR) data within fluvial geomorphology was studied for two river catchments within Belgium (Dijle and Ambleve), which differ in physical settings and floodplain morphology. Two commercial, of-the-shelf LiDAR datasets with different specifications (horizontal resolution and vertical accuracy) were available for parts of the floodplains of both catchments. Real-time kinematic (RTK) Global Positioning System (GPS) data were used as ground truth for error calculations. Qualitative analysis of LiDAR data allowed the identification of former channel patterns, levees, colluvial hillslope and fan deposits. These results were confirmed by field data, topographic surveys and historical maps. The pixel resolution proved to be an important factor in the identification of small landforms: only features with a width equal to or larger than LiDAR resolution can be detected. This poses limits on the usability of regionally available LiDAR data, which often have a horizontal resolution of several metres. The LiDAR data were also used in a quantitative analysis of channel dynamics. In the study area, the width of the Dijle River channel increased 3 m on average between 1969 and 2003. A sediment budget of channel processes for the period 1969–2003 indicated a total river bank erosion of 16·1 103 m3 and a total within channel deposition of 7·1 103 m3, resulting in a net river erosion of 9·0 103 m3 or c. 0·4 Mg year−1 per metre river length. Sequential LiDAR data can in theory be used to calculate vertical sedimentation rates, as long as there is control on the error of the reference levels used. Copyright © 2008 John Wiley and Sons, Ltd.

167 citations


Journal ArticleDOI
TL;DR: In this paper, LiDAR data collected immediately following Hurricane Katrina and in July 2006 after almost a year of recovery was used to characterize the recovery of Santa Rosa Island in northwest Florida, which was preceded by Hurricanes Ivan (2004) and Dennis (2005).
Abstract: The recovery of Santa Rosa Island in northwest Florida is characterized following Hurricane Katrina (September 2005), which was preceded by Hurricanes Ivan (2004) and Dennis (2005). Beach and dune recovery were quantified to the east and west of Pensacola Beach through a comparison of LiDAR data collected immediately following Hurricane Katrina and in July 2006 after almost a year of recovery. East of Pensacola Beach (the Santa Rosa Unit), the shoreline retreated by an average of 64 m during the 2004–2005 hurricane season and recovered by an average of 19 m. To the west of Pensacola Beach (the Fort Pickens Unit), the shoreline retreated by an average of 30 m, and while no significant shoreface recovery was observed, the presence of vegetation on low-profile dunes promoted backshore accretion. It is found that beachface recovery in the Santa Rosa Unit and backshore accretion in the Fort Pickens Unit occurred at the widest sections of the island where the pre-storm profile volume had been relatively large and overwash penetration was at a minimum. The narrow sections of the island (between cuspate headlands) had a smaller profile volume before the storms, leading to greater overwash penetration and in some cases island breaching in both sections, which limited the volume of sediment available for shoreface recovery. The alongshore variation in recovery is not only related to the island width, but also the offshore bathymetry, height of the pre-storm dunes and the overwash penetration. If sufficient time is allowed for the return of vegetation and the recovery of the dunes, the variations in storm impact observed during Hurricane Ivan will be reinforced during subsequent storms. In this respect, the level of impact during subsequent storms and the ability of the island to recover will depend on the frequency of storm events. Copyright © 2009 John Wiley & Sons, Ltd.

151 citations


Journal ArticleDOI
TL;DR: In this paper, a synthetic review of gully morphology and genesis focuses on incised semi-permanent gully systems rather than on shallow ephemeral gullies, and examines the conditions for gully formation; a sharp step to initiate a headcut, a sufficiently low effective bedload fraction to evacuate eroded material, and the potential to maintain steep sidewalls, usually dominated by mass movement processes.
Abstract: This synthetic review of gully morphology and genesis focuses on incised semi-permanent gully systems rather than on shallow ephemeral gullies. It examines the conditions for gully formation; a sharp step to initiate a headcut, a sufficiently low effective bedload fraction to evacuate eroded material, and the potential to maintain steep sidewalls, usually dominated by mass movement processes. Gully formation is also favoured by an indurated surface layer which maintains steep sideslopes, often with armouring material from the capping layer, and a sharp headcut which does not diffuse away. Two different approaches towards the areal modelling of gully system development agree in treating the ratio of advective (channel) to diffusive (sideslope) processes as a key determinant of the morphology of a gully system as it evolves. Implications for gully prevention and remediation are briefly discussed. Copyright © 2009 John Wiley & Sons, Ltd.

Journal ArticleDOI
TL;DR: In this paper, the authors explored the relationship between the graded river gradient (K), the SL index and the stream power, proposing the use of a re-named SLk index, which enables the comparison of variable-length rivers, as well as the drawing of SLk anomaly maps.
Abstract: The stream length-gradient index (SL) shows the variation in stream power along river reaches. This index is very sensitive to changes in channel slope, thus allowing the evaluation of recent tectonic activity and/or rock resistance. Nevertheless, the comparison of SL values from rivers of different length is biased due to the manner in which the index is formulated, thus making correlations of SL anomalies along different rivers difficult. Therefore, when undertaking a comparison of SL values of rivers of different lengths, a normalization factor must be used. The graded river gradient (K) has already been used in some studies to normalize the SL index. In this work, we explore the relationships between the graded river gradient (K), the SL index and the stream power, proposing the use of a re-named SLk index, which enables the comparison of variable-length rivers, as well as the drawing of SLk anomaly maps. We present here a GIS-based procedure to generate SLk maps and to identify SLk anomalies. In order to verify the advantages of this methodology, we compared an SLk map of the NE border of the Granada basin with both simple river profile–knickpoint identification and with an SL map. The results show that the SLk map supplies good results with defined anomalies and suitably reflects the main tectonic and lithological features of the study area. Copyright © 2008 John Wiley & Sons, Ltd.

Journal ArticleDOI
TL;DR: In this article, a series of 14 experimental runs were performed in a laboratory physical model with uniform sand, varying the discharge and the longitudinal slope, in order to assess whether the system reaches a steady state under constant flow conditions and, in that case, to determine how it can be described and on which parameters it depends.
Abstract: The high dynamism and complexity of braided networks poses a series of open questions, significant for river restoration and management. The present work is aimed at the characterization of the morphology of braided streams, in order to assess whether the system reaches a steady state under constant flow conditions and, in that case, to determine how it can be described and on which parameters it depends. A series of 14 experimental runs were performed in a laboratory physical model with uniform sand, varying the discharge and the longitudinal slope. Planimetric and altimetric configurations were monitored in order to assess the occurrence of a steady state. A set of parameters was considered, such as the braid-plain width and the number and typology of branches and nodes. Results point out that a relationship exists between braiding morphology and two dimensionless parameters, related to total water discharge and stream power. We found that network complexity increases at higher values of water discharge and a larger portion of branches exhibits morphological activity. Results are then compared to the outputs of a simple one-dimensional model, that allows to easily predict the average network complexity, once the bed topography is known. Model computations permit also the investigation of the effect of water discharge variations and to compare different width definitions. The at-a-station variability of planimetric parameters shows a peculiar behaviour, both regarding number of branches and wetted width. In particular, the analysis of the relationship between width and discharge highlighted relevant differences in comparison to single thread channel. Copyright © 2009 John Wiley & Sons, Ltd.

Journal ArticleDOI
TL;DR: The results demonstrate that the method can extract a high number of sampling points at high accuracy, provided that there is suitable image texture across the site, and final judgment concerning the suitability of derived data is dependent upon an understanding of measurement variability and user quantification of acceptable accuracy.
Abstract: This paper highlights the requirement for very high resolution (<0·25 m) elevation data for quantitative and qualitative morphometric analyses. Traditional techniques for high resolution data capture (e.g. airborne, heliborne) are prohibitively expensive for small studies and therefore a kite-based platform was developed, in conjunction with a consumer non-metric digital camera, for data capture. The combination of kite and digital camera is more generally termed kite aerial photography (KAP). The accuracy of data derived by digital photogrammetry and imagery acquired using a kite based non-metric camera is assessed by three experiments: one on smooth terrain, one on tor terrain and one on a glaciofluvial esker. Ground control targets were surveyed at all three sites, with the imagery subsequently processed using the Leica Photogrammetry Suite. The results demonstrate that the method can extract a high number of sampling points at high accuracy, provided that there is suitable image texture across the site. However, final judgment concerning the suitability of derived data is dependent upon an understanding of measurement variability and user quantification of acceptable accuracy. Copyright © 2008 John Wiley & Sons, Ltd.

Journal ArticleDOI
TL;DR: In this article, the authors present preliminary results on their research on interrill carbon (C) erosion, SOM transport by rill erosion and the stationarity of C erosion during the Holocene.
Abstract: Recent research on the contribution of soil erosion on agricultural land to atmospheric carbon dioxide (CO2) emphasizes either the contribution of soil organic matter (SOM) mineralization during transport as source for atmospheric CO2, or the deep burial of SOM-rich sediment in agricultural landscapes as a sink. The contribution of either process is subject to a controversial debate. In this letter, we present preliminary results on our research on interrill carbon (C) erosion, SOM transport by rill erosion and the stationarity of C erosion during the Holocene. None of those issues has been incorporated comprehensively and with global coverage in the debate on the role of C erosion in the global C cycle. Therefore, we argue that only an eco-geomorphologic perspective on organic C movement through landscapes can reconcile the two positions. Copyright © 2009 John Wiley & Sons, Ltd.


Journal ArticleDOI
TL;DR: In this article, a new method to predict the runout of debris flows is presented, based on a data base of documented sediment-transporting events in torrent catchments of Austria, Switzerland and northern Italy.
Abstract: A new method to predict the runout of debris flows is presented. A data base of documented sediment-transporting events in torrent catchments of Austria, Switzerland and northern Italy has been compiled, using common classification techniques. With this data we test an empirical approach between planimetric deposition area and event volume, and compare it with results from other studies. We introduce a new empirical relation to determine the mobility coefficient as a function of geomorphologic catchment parameters. The mobility coefficient is thought to reflect some of the flow properties during the depositional part of the debris-flow event. The empirical equations are implemented in a geographical information system (GIS) based simulation program and combined with a simple flow routing algorithm, to determine the potential runout area covered by debris-flow deposits. For a given volume and starting point of the deposits, a Monte-Carlo technique is used to produce flow paths that simulate the spreading effect of a debris flow. The runout zone is delineated by confining the simulated potential spreading area in the down slope direction with the empirically determined planimetric deposition area. The debris-flow volume is then distributed over the predicted area according to the calculated outflow probability of each cell. The simulation uses the ARC-Objects environment of ESRI© and is adapted to run with high resolution (2·5 m × 2·5 m) digital elevation models, generated for example from LiDAR data. The simulation program called TopRunDF is tested with debris-flow events of 1987 and 2005 in Switzerland. Copyright © 2009 John Wiley & Sons, Ltd.

Journal ArticleDOI
TL;DR: In this article, the authors quantify and compare geodiversity in several geodynamic zones of the Iberian Peninsula using a geographic information system (GIS) procedure to carry out a regional terrain classification based on geod diversity factors.
Abstract: Geodiversity is a landscape characteristic related to the heterogeneity of the physical properties of the earth surface. In this work, we quantify and compare geodiversity in several geodynamic zones of the Iberian Peninsula. For this purpose, we have developed a geographic information system (GIS) procedure to carry out a regional terrain classification based on geodiversity factors. A classification process helped to produce a morphometric map (10 classes), a morphoclimatic map (five classes) and a geological map (15 classes). These three maps were combined using an overlay operation (union) to obtain the final terrain classification (419 classes), which was then applied to calculate diversity landscape indices. The latter were calculated using common landscape diversity indices (Patch Richness Density, Shannon's Diversity Index, Shannon's Evenness Index, Simpson's Diversity Index and Simpson's Evenness Index), provided by FRAGSTATS free software. These indices were calculated for the whole landscape of the main Iberian geological regions, thus revealing a close relationship between some index values and the geological and geomorphological characteristics. The highest diversity values are associated with Alpine collisional orogens and reactivated chains of the Precambrian-Palaeozoic massif. Intraplate orogen with sedimentary cover, characterized by extensive planation surfaces, have lower values. Mesozoic areas with no significant tectonic deformation and Cenozoic basins are characterized by the lowest diversity values. Amongst the latter, the major diversity is associated with the most dissected basins, which also present higher morphoclimatic variety. Though depending on the chosen scale and the landscape classification criteria, these indices provide an objective assessment of the regional geodiversity of Iberia. Copyright © 2009 John Wiley & Sons, Ltd.

Journal ArticleDOI
TL;DR: In this article, an overall approach to assess the effectiveness of soil conservation measures at catchment scale is the comparison of sediment budgets before and after implementation of a catchment management program.
Abstract: An overall approach to assess the effectiveness of soil conservation measures at catchment scale is the comparison of sediment budgets before and after implementation of a catchment management programme. In the May Zeg-zeg catchment (187 ha) in Tigray, north Ethiopia, integrated catchment management has been implemented since 2004: stone bunds were built in the whole catchment, vegetation was allowed to re-grow on steep slopes and other marginal land, stubble grazing abandoned, and check dams built in gullies. Land use and management were mapped and analysed for 2000 and 2006, whereby particular attention was given to the quantification of changes in soil loss due to the abandonment of stubble grazing. Sediment yield was also measured at the catchment's outlet. A combination of decreased soil loss (from 14·3 t ha–1 y–1 in 2000 to 9·0 t ha–1 y–1 in 2006) and increased sediment deposition (from 5·8 to 7·1 t ha–1 y–1) has led to strongly decreased sediment yield (from 8·5 to 1·9 t ha–1 y–1) and sediment delivery ratio (from 0·6 to 0·21). This diachronic comparison of sediment budgets revealed that integrated catchment management is most effective and efficient and is the advisable and desirable way to combat land degradation in Tigray and other tropical mountains. Copyright © 2009 John Wiley & Sons, Ltd.

Journal ArticleDOI
TL;DR: In this paper, a method was developed to use root-architecture data to derive parameters required for modeling temporal and spatial changes in root reinforcement, and the mean number of roots crossing a potential shear plane at each year of tree growth was calculated using data from all species and an additional sigmoidal regression was run.
Abstract: Riparian vegetation is known to exert a number of mechanical and hydrologic controls on bank stability. In particular, plant roots provide mechanical reinforcement to a soil matrix due to the different responses of soils and roots to stress. Root reinforcement is largely a function of the strength of the roots crossing potential shear planes, and the number and diameter of such roots. However, previous bank stability models have been constrained by limited field data pertaining to the spatial and temporal variability of root networks within stream banks. In this paper, a method is developed to use root-architecture data to derive parameters required for modeling temporal and spatial changes in root reinforcement. Changes in root numbers over time were assumed to follow a sigmoidal curve, which commonly represents the growth rates of organisms. Regressions for numbers of roots crossing potential shear planes over time showed small variations between species during the juvenile growth phase, but extrapolation led to large variations in root numbers by the time the senescent phase of the sigmoidal growth curve had been reached. In light of potential variability in the field data, the mean number of roots crossing a potential shear plane at each year of tree growth was also calculated using data from all species and an additional sigmoidal regression was run. After 30 years the mean number of roots predicted to cross a 1 m shear plane was 484, compared with species-specific curves whose values ranged from 240 roots for black willow trees to 890 roots for western cottonwood trees. In addition, the effect of spatial variations in rooting density with depth on stream-bank stability was modeled using the bank stability and toe erosion model (BSTEM). Three root distributions, all approximating the same average root reinforcement (5 kPa) over the top 1 m of the bank profile, were modeled, but with differing vertical distributions (concentrated near surface, non-linear decline with depth, uniform over top meter). It was found that stream-bank FS varied the most when the proportion of the failure plane length to the depth of the rooting zone was greatest. Copyright © 2008 John Wiley & Sons, Ltd.

Journal ArticleDOI
TL;DR: The authors suggest that the colonization of land by plants at the early Silurian, and their propagation inside continents, represent critical phases of the coupling between geomorphic and biological processes on the Earth at a global scale.
Abstract: Earth surface processes and landforms may have coadjusted† with plant morphology, biomechanics and life-history. We suggest that the colonization of land by plants at the early Silurian, and their propagation inside continents, represent critical phases of the coupling between geomorphic and biological processes on the Earth at a global scale. The consideration of this coupling involving geomorphic-biological feedback mechanisms at the scales of ecological succession and organisms' evolution may promote the emergence of an evolutionary† geomorphology. Copyright © 2009 John Wiley & Sons, Ltd.

Journal ArticleDOI
TL;DR: In this article, Wood load, channel parameters and valley parameters were surveyed in 50 contiguous stream segments each 25m in length along 12 streams in the Colorado Front Range, and the length and diameter of each piece of wood were measured, and each piece was tallied as a ramp, buried, bridge or unattached.
Abstract: Wood load, channel parameters and valley parameters were surveyed in 50 contiguous stream segments each 25 m in length along 12 streams in the Colorado Front Range. Length and diameter of each piece of wood were measured, and the orientation of each piece was tallied as a ramp, buried, bridge or unattached. These data were then used to evaluate longitudinal patterns of wood distribution in forested headwater streams of the Colorado Front Range, and potential channel-, valley- and watershed-scale controls on these patterns. We hypothesized that (i) wood load decreases downstream, (ii) wood is non-randomly distributed at channel lengths of tens to hundreds of meters as a result of the presence of wood jams and (iii) the proportion of wood clustered into jams increases with drainage area as a result of downstream increases in relative capacity of a stream to transport wood introduced from the adjacent riparian zone and valley bottom. Results indicate a progressive downstream decrease in wood load within channels, and correlations between wood load and drainage area, elevation, channel width, bed gradient and total stream power. Results support the first and second hypotheses, but are inconclusive with respect to the third hypothesis. Wood is non-randomly distributed at lengths of tens to hundreds of meters, but the proportion of pieces in jams reaches a maximum at intermediate downstream distances within the study area. We use these results to propose a conceptual model illustrating downstream trends in wood within streams of the Colorado Front Range. Copyright © 2009 John Wiley & Sons, Ltd.

Journal ArticleDOI
TL;DR: In this article, the authors investigated the influence of rock mass strength on the retreat rate of alpine cliff faces and employed the slope mass rating (SMR) geomechanical strength index, which combines numerous factors contributing to the strength of a rock mass.
Abstract: Collapse of cliff faces by rockfall is a primary mode of bedrock erosion in alpine environments and exerts a first-order control on the morphologic development of these landscapes. In this work we investigate the influence of rock mass strength on the retreat rate of alpine cliffs. To quantify rockwall competence we employed the Slope Mass Rating (SMR) geomechanical strength index, a metric that combines numerous factors contributing to the strength of a rock mass. The magnitude of cliff retreat was calculated by estimating the volume of talus at the toe of each rockwall and projecting that material back on to the cliff face, while accounting for the loss of production area as talus buries the base of the wall. Selecting sites within basins swept clean by advancing Last Glacial Maximum (LGM) glaciers allowed us to estimate the time period over which talus accumulation occurred (i.e. the production time). Dividing the magnitude of normal cliff retreat by the production time, we calculated recession rates for each site. Our study area included a portion of the Sierra Nevada between Yosemite National Park and Lake Tahoe. Rockwall recession rates determined for 40 alpine cliffs in this region range from 0·02 to 1·22 mm/year, with an average value of 0·28 mm/year. We found good correlation between rockwall recession rate and SMR which is best characterized by an exponential decrease in erosion rate with increasing rock mass strength. Analysis of the individual components of the SMR reveals that joint orientation (with respect to the cliff face) is the most important parameter affecting the rockwall erosion rate. The complete SMR score, however, best synthesizes the lithologic variables that contribute to the strength and erodibility of these rock slopes. Our data reveal no strong independent correlations between rockwall retreat rate and topographic attributes such as elevation, aspect, or slope angle. Copyright © 2009 John Wiley & Sons, Ltd.

Journal ArticleDOI
TL;DR: In this article, the spatial distribution of wood is surveyed using aerial imagery with a resolution finer than 0·10m and five techniques are field tested to assess their utility for quantifying the temporal dynamics in rivers: repeated high-resolution aerial surveys, the measurement of wood physical characteristics as proxies for 14C dating, passive and active radio frequency identification (RFID) tags, radio transmitters, and video.
Abstract: Wood plays an important role in stream ecology and geomorphology. Previous studies of wood in rivers have quantified spatial distributions but temporal dynamics remain poorly documented. The lack of such data is related to limitations of existing methods, especially when applied to large rivers. Five techniques are field-tested to assess their utility for quantifying the temporal dynamics in rivers: repeated high-resolution aerial surveys, the measurement of wood physical characteristics as proxies for 14C dating, passive and active radio frequency identification (RFID) tags, radio transmitters, and video. The spatial distribution of wood is surveyed using aerial imagery with a resolution finer than 0·10 m. The estimation of temporal trends by repeated aerial-based surveys needs to consider vegetation growth and hiding. Wood residence times can be calculated using 14C analysis, but the assessment of wood physical characteristics including decay status and wood density offers a cheaper, if less accurate, alternative. Wood resistance to penetration is tested but results are not significant. Radio transmitters are reliable for multi-year (∼5 year) surveys and can be detected at 800 m. Passive RFID tags are limited by a read range of 0·30 m but are reliable for longer term (>5 year) studies. Active RFID tags combine a moderate read range (10–300 m) and low cost with in-flood detection but require more testing. Video monitoring of wood passing on the surface of a river is successfully implemented. For a single flood on the Ain River (France), wood transport rates are an order of magnitude higher on the rising limb of the hydrograph than on the falling limb. Overall, the techniques improve the ability to gather the data needed to understand wood transfer processes and calibrate budgets of wood in rivers. Copyright © 2009 John Wiley & Sons, Ltd.

Journal ArticleDOI
TL;DR: In this paper, erosion rates and processes, determined from in situ-produced beryllium-10 (10Be) and aluminum-26 (26Al), across a soil-mantled landscape of Arnhem Land, northern Australia, were reported.
Abstract: We report erosion rates and processes, determined from in situ-produced beryllium-10 (10Be) and aluminum-26 (26Al), across a soil-mantled landscape of Arnhem Land, northern Australia. Soil production rates peak under a soil thickness of about 35 cm and we observe no soil thicknesses between exposed bedrock and this thickness. These results thus quantify a well-defined ‘humped’ soil-production function, in contrast to functions reported for other landscapes. We compare this function to a previously reported exponential decline of soil production rates with increasing soil thickness across the passive margin exposed in the Bega Valley, south-eastern Australia, and found remarkable similarities in rates. The critical difference in this work was that the Arnhem Land landscapes were either bedrock or mantled with soils greater than about 35 cm deep, with peak soil production rates of about 20 m/Ma under 35–40 cm of soil, thus supporting previous theory and modeling results for a humped soil production function. We also show how coupling point-specific with catchment-averaged erosion rate measurements lead to a better understanding of landscape denudation. Specifically, we report a nested sampling scheme where we quantify average erosion rates from the first-order, upland catchments to the main, sixth-order channel of Tin Camp Creek. The low (∼5 m/Ma) rates from the main channel sediments reflect contributions from the slowly eroding stony highlands, while the channels draining our study area reflect local soil production rates (∼10 m/Ma off the rocky ridge; ∼20 m/Ma from the soil mantled regions). Quantifying such rates and processes help determine spatial variations of soil thickness as well as helping to predict the sustainability of the Earth's soil resource under different erosional regimes. Copyright © 2009 John Wiley & Sons, Ltd.

Journal ArticleDOI
TL;DR: In this paper, the authors presented a new approach to storage quantification in a meso-scale alpine catchment of the Swiss Alps (Turtmann Valley, 110 km2).
Abstract: The determination of sediment storage is a critical parameter in sediment budget analyses. But, in many sediment budget studies the quantification of magnitude and time-scale of sediment storage is still the weakest part and often relies on crude estimations only, especially in large drainage basins (>100 km2). We present a new approach to storage quantification in a meso-scale alpine catchment of the Swiss Alps (Turtmann Valley, 110 km2). The quantification of depositional volumes was performed by combining geophysical surveys and geographic information system (GIS) modelling techniques. Mean thickness values of each landform type calculated from these data was used to estimate the sediment volume in the hanging valleys and the trough slopes. Sediment volume of the remaining subsystems was determined by modelling an assumed parabolic bedrock surface using digital elevation model (DEM) data. A total sediment volume of 781·3×106–1005·7×106 m3 is deposited in the Turtmann Valley. Over 60% of this volume is stored in the 13 hanging valleys. Moraine landforms contain over 60% of the deposits in the hanging valleys followed by sediment stored on slopes (20%) and rock glaciers (15%). For the first time, a detailed quantification of different storage types was achieved in a catchment of this size. Sediment volumes have been used to calculate mean denudation rates for the different processes ranging from 0·1 to 2·6 mm/a based on a time span of 10 ka. As the quantification approach includes a number of assumptions and various sources of error the values given represent the order of magnitude of sediment storage that has to be expected in a catchment of this size. Copyright © 2009 John Wiley & Sons, Ltd.

Journal ArticleDOI
TL;DR: In this paper, the authors use longitudinal profiles of the Colorado and tributaries between Marble Canyon and Cataract Canyon to investigate the incision history of the Grand Canyon in this region.
Abstract: The Colorado River system in southern Utah and northern Arizona is continuing to adjust to the baselevel fall responsible for the carving of the Grand Canyon. Estimates of bedrock incision rates in this area vary widely, hinting at the transient state of the Colorado and its tributaries. In conjunction with these data, we use longitudinal profiles of the Colorado and tributaries between Marble Canyon and Cataract Canyon to investigate the incision history of the Colorado in this region. We find that almost all of the tributaries in this region steepen as they enter the Colorado River. The consistent presence of oversteepened reaches with similar elevation drops in the lower section of these channels, and their coincidence within a corridor of high local relief along the Colorado, suggest that the tributaries are steepening in response to an episode of increased incision rate on the mainstem. This analysis makes testable predictions about spatial variations in incision rates; these predictions are consistent with existing rate estimates and can be used to guide further studies. We also present cosmogenic nuclide data from the Henry Mountains of southern Utah. We measured in situ10Be concentrations on four gravel-covered strath surfaces elevated from 1 m to 110 m above Trachyte Creek. The surfaces yield exposure ages that range from approximately 2·5 ka to 267 ka and suggest incision rates that vary between 350 and 600 m/my. These incision rates are similar to other rates determined within the high-relief corridor. Available data thus support the interpretation that tributaries of the Colorado River upstream of the Grand Canyon are responding to a recent pulse of rapid incision on the Colorado. Numerical modeling of detachment-limited bedrock incision suggests that this incision pulse is likely related to the upstream-dipping lithologic boundary at the northern edge of the Kaibab upwarp. Copyright © 2009 John Wiley & Sons, Ltd.

Journal ArticleDOI
TL;DR: The boat-based, mobile mapping system (BoMMS) with a laser scanner allows the derivation of detailed riverine topographical data for fluvial applications as discussed by the authors.
Abstract: The boat-based, mobile mapping system (BoMMS) with a laser scanner allows the derivation of detailed riverine topographical data for fluvial applications. Combined with data acquisition from static terrestrial LiDAR (light detection and range) or mobile terrestrial LiDAR on the ground, boat-based laser scanning enables a totally new field mapping approach for fluvial studies. The BoMMS approach is an extremely rapid methodology for surveying riverine topography, taking only 85 min to survey a reach approximately 6 km in length. The BoMMS approach also allowed an effective survey angle for deep river banks, which is difficult to achieve with aerial or static terrestrial LiDAR. Further, this paper demonstrates the three-dimensional mapping of a point-bar and its detailed morphology. Compared with the BoMMS surface, approximately, 80% and 96% of the terrestrial LiDAR points showed a height deviation of less than 2 cm and 5 cm, respectively, with an overall standard deviation of ± 2·7 cm. This level of accuracy and rapidity of data capture enables the mapping of post-flood deposition directly after a flood event without an extensive time lag. Additionally, the improved object characterisation may allow for better 3D mapping of the point bar and other riverrine features. However, the shadow effect of the BoMMS survey in point bar mapping should be removed by additional LiDAR data to acquire entire riverine topography. The approach demonstrated allowed a large reach to be surveyed compared with static terrestrial LiDAR and increased the spatial limit of survey towards aerial LiDAR, but it maintains the same or even better temporal resolution as static terrestrial LiDAR. Copyright © 2009 John Wiley & Sons, Ltd.

Journal ArticleDOI
TL;DR: In this article, the authors report bedload data and acoustic impulse measurements due to particle impact from the Pitzbach in Austria, showing that both tools and cover effects are active on the channel bed.
Abstract: We report bedload data and acoustic impulse measurements due to particle impact from the Pitzbach in Austria. Impulse counts can be viewed as a measure of the energy delivered to the bed by moving particles. Impulse counts show a large scatter even for the same discharge and bedload supply. This scatter is due to varying grain size distribution, grain shape, mode of transport of the sediment particles and spatial and temporal distribution of the sediment load. The mean impulse count at given hydraulic conditions may increase or decrease with increasing sediment supply, suggesting that both tools and cover effects are active on the channel bed. Dependent on the local balance between sediment supply and transport capacity, either effect may be dominant at different locations along the cross-section at the same time. Furthermore, the same bed location may respond to increasing sediment supply as tools-dominated at some discharges and cover-dominated at other discharges. Our observations may have implications for modelling of bedrock erosion in landscape evolution models and of bedrock channel morphology. Erosion models that do not incorporate both tools and cover effects are not sufficient to describe observations. Furthermore, a local erosion law cannot in general be used to describe erosion averaged over the channel cross-section. The changing balance between sediment supply and transport capacity with increasing discharge highlights that a single representative discharge is not sufficient to capture the full erosion dynamics. Copyright © 2008 John Wiley & Sons, Ltd.

Journal ArticleDOI
TL;DR: In this article, a regression relation between SSC and water reflectance of Band 4 appears to be able to provide a relatively accurate SSC estimate directly from Landsat ETM+ images for the Yangtze River.
Abstract: Suspended sediment concentration (SSC) is a critical parameter in the study of river sediment transport and water quality variation, but traditional measurement methods are costly and time-consuming. This paper is focused on presenting a methodology that may be useful in estimating SSC which is of key importance in process geomorphology and hydrology. In previous studies, remote sensing has been applied to estimate the SSC of sea waters as well as low turbid inland waters like lakes, reservoirs and short river reaches visible within a single Landsat satellite image coverage. Rivers, especially highly turbid large rivers, have largely been ignored. The dataset used in this paper includes measured SSC and multi-temporal Landsat ETM+ images covering most part of the Yangtze River. Using an effective easy-to-use atmospheric correction method that does not require in situ atmospheric conditions, retrieved water reflectance of Band 4 was found to be a good SSC indicator within the large SSC range 22–2610 mg l–1. The newly developed regression relation between SSC and water reflectance of Band 4 appears to be able to provide a relatively accurate SSC estimate directly from Landsat ETM+ images for the Yangtze River from the upper, the middle to the lower reaches. With the relation it is possible to estimate or map out SSC dynamics of large rivers which lack SSC data due to constraints of conventional measurements. Copyright © 2009 John Wiley & Sons, Ltd.