scispace - formally typeset
Search or ask a question

Showing papers in "Ecological Applications in 2008"


Journal ArticleDOI
TL;DR: It will be shown that former assumptions that measuring errors or storage terms are the reason for the unclosed energy balance do not stand up because even turbulent fluxes derived from documented methods and calibrated sensors, net radiation, and ground heat fluxes cannot close the energy balance.
Abstract: This paper gives an overview of 20 years of research on the energy balance closure problem. It will be shown that former assumptions that measuring errors or storage terms are the reason for the unclosed energy balance do not stand up because even turbulent fluxes derived from documented methods and calibrated sensors, net radiation, and ground heat fluxes cannot close the energy balance. Instead, exchange processes on larger scales of the heterogeneous landscape have a significant influence. By including these fluxes, the energy balance can be approximately closed. Therefore, the problem is a scale problem and has important consequences to the measurement and modeling of turbulent fluxes.

1,150 citations


Journal ArticleDOI
TL;DR: Based on a pan-Arctic quantitative index of species sensitivity to climate change, the hooded seal, the polar bear, and the narwhal appear to be the three most sensitive Arctic marine mammal species, primarily due to reliance on sea ice and specialized feeding.
Abstract: We review seven Arctic and four subarctic marine mammal species, their habitat requirements, and evidence for biological and demographic responses to climate change. We then describe a pan-Arctic quantitative index of species sensitivity to climate change based on population size, geographic range, habitat specificity, diet diversity, migration, site fidelity, sensitivity to changes in sea ice, sensitivity to changes in the trophic web, and maximum population growth potential (Rmax). The index suggests three types of sensitivity based on: (1) narrowness of distribution and specialization in feeding, (2) seasonal dependence on ice, and (3) reliance on sea ice as a structure for access to prey and predator avoidance. Based on the index, the hooded seal, the polar bear, and the narwhal appear to be the three most sensitive Arctic marine mammal species, primarily due to reliance on sea ice and specialized feeding. The least sensitive species were the ringed seal and bearded seal, primarily due to large circumpolar distributions, large population sizes, and flexible habitat requirements. The index provides an objective framework for ranking species and focusing future research on the effects of climate change on Arctic marine mammals. Finally, we distinguish between highly sensitive species and good indicator species and discuss regional variation and species-specific ecology that confounds Arctic-wide generalization regarding the effects of climate change.

633 citations


Journal ArticleDOI
TL;DR: Some simple economic analyses are provided to discuss key concepts involved in formalizing ecosystem service research, including the distinction between services and benefits, understanding the importance of marginal ecosystem changes, and formalizing the idea of a safe minimum standard for ecosystem service provision.
Abstract: It has become essential in policy and decision-making circles to think about the economic benefits (in addition to moral and scientific motivations) humans derive from well-functioning ecosystems. The concept of ecosystem services has been developed to address this link between ecosystems and human welfare. Since policy decisions are often evaluated through cost–benefit assessments, an economic analysis can help make ecosystem service research operational. In this paper we provide some simple economic analyses to discuss key concepts involved in formalizing ecosystem service research. These include the distinction between services and benefits, understanding the importance of marginal ecosystem changes, formalizing the idea of a safe minimum standard for ecosystem service provision, and discussing how to capture the public benefits of ecosystem services. We discuss how the integration of economic concepts and ecosystem services can provide policy and decision makers with a fuller spectrum of information for making conservation–conversion trade-offs. We include the results from a survey of the literature and a questionnaire of researchers regarding how ecosystem service research can be integrated into the policy process. We feel this discussion of economic concepts will be a practical aid for ecosystem service research to become more immediately policy relevant.

527 citations


Journal ArticleDOI
TL;DR: Bottom trawl surveys of fish and invertebrates in the southeastern Bering Sea (1982-2006) show a coincident reorganization in community composition by latitude, suggesting that internal community dynamics also contribute to changing biogeography.
Abstract: Seasonal ice cover creates a pool of cold bottom water on the eastern Bering Sea continental shelf each winter. The southern edge of this cold pool, which defines the ecotone between arctic and subarctic communities, has retreated approximately 230 km northward since the early 1980s. Bottom trawl surveys of fish and invertebrates in the southeastern Bering Sea (1982-2006) show a coincident reorganization in community composition by latitude. Survey catches show community-wide northward distribution shifts, and the area formerly covered by the cold pool has seen increases in total biomass, species richness, and average trophic level as subarctic fauna have colonized newly favorable habitats. Warming climate has immediate management implications, as 57% of variability in commercial snow crab (Chionoecetes opilio) catch is explained by winter sea ice extent. Several measures of community distribution and structure show linear relationships with bottom temperature, suggesting warming climate as the primary cause of changing biogeography. However, residual variability in distribution not explained by climate shows a strong temporal trend, suggesting that internal community dynamics also contribute to changing biogeography. Variability among taxa in their response to temperature was not explained by commercial status or life history traits, suggesting that species-specific responses to future warming will be difficult to predict.

446 citations


Journal ArticleDOI
TL;DR: Impacts of climate change on ice-related species categories are categorized for: ice-obligate species that rely on sea ice platforms, ice-associated species that are adapted to sea ice-dominated ecosystems, and seasonally migrant species for which sea ice can act as a barrier.
Abstract: Evolutionary selection has refined the life histories of seven species (three cetacean [narwhal, beluga, and bowhead whales], three pinniped [walrus, ringed, and bearded seals], and the polar bear) to spatial and temporal domains influenced by the seasonal extremes and variability of sea ice, temperature, and day length that define the Arctic. Recent changes in Arctic climate may challenge the adaptive capability of these species. Nine other species (five cetacean [fin, humpback, minke, gray, and killer whales] and four pinniped [harp, hooded, ribbon, and spotted seals]) seasonally occupy Arctic and subarctic habitats and may be poised to encroach into more northern latitudes and to remain there longer, thereby competing with extant Arctic species. A synthesis of the impacts of climate change on all these species hinges on sea ice, in its role as: (1) platform, (2) marine ecosystem foundation, and (3) barrier to non-ice-adapted marine mammals and human commercial activities. Therefore, impacts are categorized for: (1) ice-obligate species that rely on sea ice platforms, (2) ice-associated species that are adapted to sea ice-dominated ecosystems, and (3) seasonally migrant species for which sea ice can act as a barrier. An assessment of resilience is far more speculative, as any number of scenarios can be envisioned, most of them involving potential trophic cascades and anticipated human perturbations. Here we provide resilience scenarios for the three ice-related species categories relative to four regions defined by projections of sea ice reductions by 2050 and extant shelf oceanography. These resilience scenarios suggest that: (1) some populations of ice-obligate marine mammals will survive in two regions with sea ice refugia, while other stocks may adapt to ice-free coastal habitats, (2) ice-associated species may find suitable feeding opportunities within the two regions with sea ice refugia and, if capable of shifting among available prey, may benefit from extended foraging periods in formerly ice-covered seas, but (3) they may face increasing competition from seasonally migrant species, which will likely infiltrate Arctic habitats. The means to track and assess Arctic ecosystem change using sentinel marine mammal species are suggested to offer a framework for scientific investigation and responsible resource management.

407 citations


Journal ArticleDOI
TL;DR: Recommendations include proper planning and environmental risk assessments for the expansion of sugarcane to new regions such as Central Brazil, improvement of land use practices to reduce soil erosion and nitrogen pollution, and proper protection of streams and riparian ecosystems to discourage excessive replacement of natural ecosystems by bioenergy crops.
Abstract: Several geopolitical factors, aggravated by worries of global warming, have been fueling the search for and production of renewable energy worldwide for the past few years. Such demand for renewable energy is likely to benefit the sugarcane ethanol industry in Brazil, not only because sugarcane ethanol has a positive energetic balance and relatively low production costs, but also because Brazilian ethanol has been successfully produced and used as biofuel in the country since the 1970s. However, environmental and social impacts associated with ethanol production in Brazil can become important obstacles to sustainable biofuel production worldwide. Atmospheric pollution from burning of sugarcane for harvesting, degradation of soils and aquatic systems, and the exploitation of cane cutters are among the issues that deserve immediate attention from the Brazilian government and international societies. The expansion of sugarcane crops to the areas presently cultivated for soybeans also represent an environmental threat, because it may increase deforestation pressure from soybean crops in the Amazon region. In this paper, we discuss environmental and social issues linked to the expansion of sugarcane in Brazil for ethanol production, and we provide recommendations to help policy makers and the Brazilian government establish new initiatives to produce a code for ethanol production that is environmentally sustainable and economically fair. Recommendations include proper planning and environmental risk assessments for the expansion of sugarcane to new regions such as Central Brazil, improvement of land use practices to reduce soil erosion and nitrogen pollution, proper protection of streams and riparian ecosystems, banning of sugarcane burning practices, and fair working conditions for sugarcane cutters. We also support the creation of a more constructive approach for international stakeholders and trade organizations to promote sustainable development for biofuel production in developing countries such as Brazil. Finally, we support the inclusion of environmental values in the price of biofuels in order to discourage excessive replacement of natural ecosystems such as forests, wetlands, and pasture by bioenergy crops.

369 citations


Journal ArticleDOI
TL;DR: An overview of prey preferences of seven core Arctic marine mammal species (AMM) and four non-core species on a pan-Arctic scale with regional examples is provided and three potential scenarios of large-scale biotic change are suggested, based on published observations and predictions of environmental change.
Abstract: This review provides an overview of prey preferences of seven core Arctic marine mammal species (AMM) and four non-core species on a pan-Arctic scale with regional examples. Arctic marine mammal species exploit prey resources close to the sea ice, in the water column, and at the sea floor, including lipid-rich pelagic and benthic crustaceans and pelagic and ice-associated schooling fishes such as capelin and Arctic cod. Prey preferred by individual species range from cephalopods and benthic bivalves to Greenland halibut. A few AMM are very prey-, habitat-, and/or depth-specific (e.g., walrus, polar bear), while others are rather opportunistic and, therefore, likely less vulnerable to change (e.g., beluga, bearded seal). In the second section, we review prey distribution patterns and current biomass hotspots in the three major physical realms (sea ice, water column, and seafloor), highlighting relations to environmental parameters such as advection patterns and the sea ice regime. The third part of the contribution presents examples of documented changes in AMM prey distribution and biomass and, subsequently, suggests three potential scenarios of large-scale biotic change, based on published observations and predictions of environmental change. These scenarios discuss (1) increased pelagic primary and, hence, secondary production, particularly in the central Arctic, during open-water conditions in the summer (based on surplus nutrients currently unutilized); (2) reduced benthic and pelagic biomass in coastal/shelf areas (due to increased river runoff and, hence, changed salinity and turbidity conditions); and (3) increased pelagic grazing and recycling in open-water conditions at the expense of the current tight benthic-pelagic coupling in part of the ice-covered shelf regions (due to increased pelagic consumption vs. vertical flux). Should those scenarios hold true, pelagic-feeding and generalist AMM might be advantaged, while the range for benthic shelf-feeding, ice-dependent AMM such as walrus would decrease. New pelagic feeding grounds may open up to AMM and subarctic marine mammal species in the High Arctic basins while nearshore waters might provide less abundant food in the future.

320 citations


Journal ArticleDOI
TL;DR: The extent of the human footprint in relation to terrestrial (ecoregions) and aquatic systems, regional management and conservation status, physical environment, and temporal changes in human actions is evaluated.
Abstract: Anthropogenic features such as urbanization, roads, and power lines, are increasing in western United States landscapes in response to rapidly growing human populations However, their spatial effects have not been evaluated Our goal was to model the human footprint across the western United States We first delineated the actual area occupied by anthropogenic features, the physical effect area Next, we developed the human footprint model based on the ecological effect area, the zone influenced by features beyond their physical presence, by combining seven input models: three models quantified top-down anthropogenic influences of synanthropic predators (avian predators, domestic dog and cat presence risk), and four models quantified bottom-up anthropogenic influences on habitat (invasion of exotic plants, human-caused fires, energy extraction, and anthropogenic wildland fragmentation) Using independent bird population data, we found bird abundance of four synanthropic species to correlate positively with human footprint intensity and negatively for three of the six species influenced by habitat fragmentation We then evaluated the extent of the human footprint in relation to terrestrial (ecoregions) and aquatic systems (major rivers and lakes), regional management and conservation status, physical environment, and temporal changes in human actions The physical effect area of anthropogenic features covered 13% of the western United States with agricultural land (98%) being most dominant High-intensity human footprint areas (class 8-10) overlapped highly productive low-elevation private landholdings and covered 7% of the western United States compared to 48% for low- intensity areas (class 1-3), which were confined to low-productivity high-elevation federal landholdings Areas within 1 km of rivers were more affected by the human footprint compared to lakes Percentage human population growth was higher in low-intensity human footprint areas The disproportional regional effects of the human footprint on landscapes in the western United States create a challenge to management of ecosystems and wildlife populations Using footprint models, managers can plan land use actions, develop restoration scenarios, and identify areas of high conservation value at local landscapes within a regional context Moreover, human footprint models serve as a tool to stratify landscapes for studies investigating floral and faunal response to human disturbance intensity gradients

313 citations


Journal ArticleDOI
TL;DR: It is argued that efforts to protect local populations of A. maculatum and R. sylvatica in roadside wetlands should, in part, be aimed at reducing application of road salt near wetlands with high conductivity levels.
Abstract: Deicing agents, primarily road salt, are applied to roads in 26 states in the United States and in a number of European countries, yet the scale of impacts of road salt on aquatic organisms remains largely under-studied. The issue is germane to amphibian conservation because both adult and larval amphibians are known to be particularly sensitive to changes in their osmolar environments. In this study, we combined survey, experimental, and demographic modeling approaches to evaluate the possible effects of road salt on two common vernal-pond-breeding amphibian species, the spotted salamander (Ambystoma maculatum) and the wood frog (Rana sylvatica). We found that in the Adirondack Mountain Region of New York (USA), road salt traveled up to 172 m from the highway into wetlands. Surveys showed that egg mass densities of spotted salamanders (A. maculatum) and wood frogs (R. sylvatica) were two times higher in forest pools than roadside pools, but this pattern was better explained by road proximity than by increased salinity. Experiments demonstrated that embryonic and larval survival were reduced at moderate (500 muS) and high conductivities (3000 muS) in A. maculatum and at high conductivities in R. sylvatica. Demographic models suggest that such egg and larval stage effects of salt may have important impacts on populations near roads, particularly in the case of A. maculatum, for which salt exposure may lead to local extinction. For both species, the effect of road salt was dependent upon the strength of larval density dependence and declined rapidly with distance from the roadside, with the greatest negative effects being limited to within 50 m. Based on this evidence, we argue that efforts to protect local populations of A. maculatum and R. sylvatica in roadside wetlands should, in part, be aimed at reducing application of road salt near wetlands with high conductivity levels.

290 citations


Journal ArticleDOI
TL;DR: The results suggest that stream restoration designed to "reconnect" stream channels with floodplains can increase denitrification rates, that there can be substantial variability in the efficacy of stream restoration designs, and that more work is necessary to elucidate which designs can be effective in conjunction with watershed strategies to reduce nitrate-N sources to streams.
Abstract: Increased delivery of nitrogen due to urbanization and stream ecosystem degradation is contributing to eutrophication in coastal regions of the eastern United States. We tested whether geomorphic restoration involving hydrologic "reconnection" of a stream to its floodplain could increase rates of denitrification at the riparian-zone-stream interface of an urban stream in Baltimore, Maryland. Rates of denitrification measured using in situ 15N tracer additions were spatially variable across sites and years and ranged from undetectable to >200 microg N x (kg sediment)(-1) x d(-1). Mean rates of denitrification were significantly greater in the restored reach of the stream at 77.4 +/- 12.6 microg N x kg(-1) x d(-1) (mean +/- SE) as compared to the unrestored reach at 34.8 +/- 8.0 microg N x kg(-1) x d(-1). Concentrations of nitrate-N in groundwater and stream water in the restored reach were also significantly lower than in the unrestored reach, but this may have also been associated with differences in sources and hydrologic flow paths. Riparian areas with low, hydrologically "connected" streambanks designed to promote flooding and dissipation of erosive force for storm water management had substantially higher rates of denitrification than restored high "nonconnected" banks and both unrestored low and high banks. Coupled measurements of hyporheic groundwater flow and in situ denitrification rates indicated that up to 1.16 mg NO3(-)-N could be removed per liter of groundwater flow through one cubic meter of sediment at the riparian-zone-stream interface over a mean residence time of 4.97 d in the unrestored reach, and estimates of mass removal of nitrate-N in the restored reach were also considerable. Mass removal of nitrate-N appeared to be strongly influenced by hydrologic residence time in unrestored and restored reaches. Our results suggest that stream restoration designed to "reconnect" stream channels with floodplains can increase denitrification rates, that there can be substantial variability in the efficacy of stream restoration designs, and that more work is necessary to elucidate which designs can be effective in conjunction with watershed strategies to reduce nitrate-N sources to streams.

270 citations


Journal ArticleDOI
TL;DR: It is suggested that, by combining participatory and ecological approaches, it is possible to derive more accurate and relevant indicators than either approach could achieve alone.
Abstract: Given the growing popularity of indicators among policy-makers to measure progress toward conservation and sustainability goals, there is an urgent need to develop indicators that can be used accurately by both specialists and nonspecialists, drawing from the knowledge possessed by each group. This paper uses a case study from the Kalahari, Botswana to show how participatory and ecological methods can be combined to develop robust indicators that are accessible to a range of users to monitor and enhance the sustainability of land management. First, potential environmental sustainability indicators were elicited from pastoralists in three study sites. This knowledge was then evaluated by pastoralists, before being tested empirically using ecological and soil-based techniques. Despite the wealth of local knowledge about indicators, this knowledge was thinly spread. The knowledge was more holistic than published indicator lists for monitoring rangelands, encompassing vegetation, soil, livestock, wild animal, and socioeconomic indicators. Pastoralist preferences for vegetation and livestock indicators match recent shifts in ecological theory suggesting that livestock populations reach equilibrium with key forage resources in semiarid environments. Although most indicators suggested by pastoralists were validated through empirical work (e.g., decreased grass cover and soil organic matter content, and increased abundance of Acacia mellifera and thatching grass), they were not always sufficiently accurate or reliable for objective degradation assessment, showing that local knowledge cannot be accepted unquestioningly. We suggest that, by combining participatory and ecological approaches, it is possible to derive more accurate and relevant indicators than either approach could achieve alone.

Journal ArticleDOI
TL;DR: The lack of integrated long-term data on health, diseases, and toxicant effects in Arctic marine mammals severely limits the ability to predict the effects of climate change on marine mammal health.
Abstract: The lack of integrated long-term data on health, diseases, and toxicant effects in Arctic marine mammals severely limits our ability to predict the effects of climate change on marine mammal health. The overall health of an individual animal is the result of complex interactions among immune status, body condition, pathogens and their pathogenicity, toxicant exposure, and the various environmental conditions that interact with these factors. Climate change could affect these interactions in several ways. There may be direct effects of loss of the sea ice habitat, elevations of water and air temperature, and increased occurrence of severe weather. Some of the indirect effects of climate change on animal health will likely include alterations in pathogen transmission due to a variety of factors, effects on body condition due to shifts in the prey base/food web, changes in toxicant exposures, and factors associated with increased human habitation in the Arctic (e.g., chemical and pathogen pollution in the runoff due to human and domestic-animal wastes and chemicals and increased ship traffic with the attendant increased risks of ship strike, oil spills, ballast pollution, and possibly acoustic injury). The extent to which climate change will impact marine mammal health will also vary among species, with some species more sensitive to these factors than others. Baseline data on marine mammal health parameters along with matched data on the population and climate change trends are needed to document these changes.

Journal ArticleDOI
TL;DR: It is found that centrality depends on the way the graph-theoretical model of habitat patches is constructed, although even the simplest network representation, not taking strength and directionality of potential organisms flows into account, still provides a coarse-grained assessment of the most important patches according to their contribution to landscape connectivity.
Abstract: We use a graph-theoretical landscape modeling approach to investigate how to identify central patches in the landscape as well as how these central patches influence (1) organism movement within the local neighborhood and (2) the dispersal of organisms beyond the local neighborhood. Organism movements were theoretically estimated based on the spatial configuration of the habitat patches in the studied landscape. We find that centrality depends on the way the graph-theoretical model of habitat patches is constructed, although even the simplest network representation, not taking strength and directionality of potential organisms flows into account, still provides a coarse-grained assessment of the most important patches according to their contribution to landscape connectivity. Moreover, we identify (at least) two general classes of centrality. One accounts for the local flow of organisms in the neighborhood of a patch, and the other accounts for the ability to maintain connectivity beyond the scale of the local neighborhood. Finally, we study how habitat patches with high scores on different network centrality measures are distributed in a fragmented agricultural landscape in Madagascar. Results show that patches with high degree and betweenness centrality are widely spread, while patches with high subgraph and closeness centrality are clumped together in dense clusters. This finding may enable multispecies analyses of single-species network models.

Journal ArticleDOI
TL;DR: A classification based on the general flow pattern and on the source intensity evolution along streamlines was proposed, found to be a fairly good fit for the observations and could serve as a tool to better understand and quantify the fluxes at sites subjected to repeatable patterns.
Abstract: A detailed analysis of the various processes at work in stable boundary layers was made. It pointed out that two main mechanisms may affect eddy covariance measurements in stable conditions and that their impacts were different. On one hand, intermittent turbulence produces strongly nonstationary events during which the validity of turbulent transport and storage measurements is uncertain. On the other hand, during breeze and drainage flow events, significant advection takes place and competes with turbulent flux and storage. Intermittent turbulence questions both the ability of eddy covariance systems to adequately capture turbulent flux and storage and the representativeness of the measurements. Ability of the systems to capture the fluxes could be improved by adapting the averaging time period or the high pass filtering characteristics. However, beyond this, the question of representativeness of the flux remains open as the flux measured during an intermittent turbulence event represents not only the s...

Journal ArticleDOI
TL;DR: This work uses data on the pattern of distribution of one bird species (Black-backed Woodpecker, Picoides arcticus) as derived from 16465 sample locations to show that, in western Montana, this bird species is extremely specialized on severely burned forests.
Abstract: Many scientists and forest land managers concur that past fire suppression, grazing, and timber harvesting practices have created unnatural and unhealthy conditions in the dry, ponderosa pine forests of the western United States. Specifically, such forests are said to carry higher fuel loads and experience fires that are more severe than those that occurred historically. It remains unclear, however, how far these generalizations can be extrapolated in time and space, and how well they apply to the more mesic ponderosa pine systems and to other forest systems within the western United States. I use data on the pattern of distribution of one bird species (Black-backed Woodpecker, Picoides arcticus) as derived from 16465 sample locations to show that, in western Montana, this bird species is extremely specialized on severely burned forests. Such specialization has profound implications because it suggests that the severe fires we see burning in many forests in the Intermountain West are not entirely "unnatural" or "unhealthy." Instead, severely burned forest conditions have probably occurred naturally across a broad range of forest types for millennia. These findings highlight the fact that severe fire provides an important ecological backdrop for fire specialists like the Black-backed Woodpecker, and that the presence and importance of severe fire may be much broader than commonly appreciated.

Journal ArticleDOI
TL;DR: Investigating relationships between aquatic resource utilization and contaminant exposure for a riparian invertivore assemblage along a stream contaminated with polychlorinated biphenyls demonstrated that riparian predators have great potential as biological monitors of stream condition and as an assessment tool for risk management of contaminated aquatic sediments.
Abstract: Aquatic insects provide a critical energy subsidy to riparian food webs, yet their role as vectors of contaminants to terrestrial ecosystems is poorly understood We investigated relationships between aquatic resource utilization and contaminant exposure for a riparian invertivore assemblage (spiders and herptiles) along a stream contaminated with polychlori nated biphenyls (PCBs) Stable carbon (813C) and nitrogen (615N) isotopes indicated that aquatic insect utilization varied among predators, with progressive enrichment of 513C and depletion of ?15N as predators shifted from aquatic to terrestrial prey PCB concentrations significantly increased along these isotopic gradients; S13C and 615N explained 65% and 15% of the variance in predator ZPCBs, respectively PCBs in predators were high, exceeding 2000 ng/g wet mass (the human-health advisory prohibiting any consumption of fish tissue) in three species Greater consideration should be given to streams as lateral exporters rather than simply as longitudinal conduits for contaminants Persistent contaminants are underutilized for addressing landscape-level questions in subsidy research, but our results demonstrate they are an ideal in situ tracer of stream-derived energy because they label stream organic matter and invertebrates over large distances Likewise, riparian predators such as tetragnathid spiders have great potential as biological monitors of stream condition and as an assessment tool for risk management of contaminated aquatic sediments

Journal ArticleDOI
TL;DR: It is proposed that Malthusian effects are responsible for the variation in gear and catch and that active management through reduced effort and reductions in the most competitive gear have the greatest potential to increase the functional and trophic diversity and per-person productivity.
Abstract: This study examined trends along a gradient of fishing intensity in an artisanal coral reef fishery over a 10-year period along 75 km of Kenya's most populated coastline. As predicted by Malthusian scenarios, catch per unit effort (CPUE), mean trophic level, the functional diversity of fished taxa, and the diversity of gear declined, while total annual catch and catch variability increased along the fishing pressure gradient. The fishery was able to sustain high (;16 Mgkm � 2 � yr � 1 ) but variable yields at high fishing pressure due to the dominance of a few productive herbivorous fish species in the catch. The effect of two separate management strategies to overcome this Malthusian pattern was investigated: fisheries area closure and elimination of the dominant and most ''competitive'' gear. We found that sites within 5 km of the enforced closure showed significantly lower total catch and CPUE, but increased yield stability and trophic level of catch than predicted by regression models normalized for fishing effort. Sites that had excluded illegal beach seine use through active gear management exhibited increased total catch and CPUE. There was a strong interaction between closure and gear management, which indicates that, for closures to be effective at increasing catch, there must be simultaneous efforts at gear management around the periphery of the closures. We propose that Malthusian effects are responsible for the variation in gear and catch and that active management through reduced effort and reductions in the most competitive gear have the greatest potential to increase the functional and trophic diversity and per-person productivity.

Journal ArticleDOI
TL;DR: The data support the compensatory immigration sink hypothesis; cougar removal in small game management areas (< 1000 km2) increased immigration and recruitment of younger animals from adjacent areas, resulting in little or no reduction in local cougar densities and a shift in population structure toward younger animals.
Abstract: Carnivores are widely hunted for both sport and population control, especially where they conflict with human interests. It is widely believed that sport hunting is effective in reducing carnivore populations and related human-carnivore conflicts, while maintaining viable populations. However, the way in which carnivore populations respond to harvest can vary greatly depending on their social structure, reproductive strategies, and dispersal patterns. For example, hunted cougar (Puma concolor) populations have shown a great degree of resiliency. Although hunting cougars on a broad geographic scale (.2000 km 2 ) has reduced densities, hunting of smaller areas (i.e., game management units, ,1000 km 2 ), could conceivably fail because of increased immigration from adjacent source areas. We monitored a heavily hunted population from 2001 to 2006 to test for the effects of hunting at a small scale (,1000 km 2 ) and to gauge whether population control was achieved (k � 1.0) or if hunting losses were negated by increased immigration allowing the population to remain stable or increase (k � 1.0). The observed growth rate of 1.00 was significantly higher than our predicted survival/fecundity growth rates (using a Leslie matrix) of 0.89 (deterministic) and 0.84 (stochastic), with the difference representing an 11-16% annual immigration rate. We observed no decline in density of the total population or the adult population, but a significant decrease in the average age of independent males. We found that the male component of the population was increasing (observed male population growth rate, kOM ¼ 1.09), masking a decrease in the female component (kOF ¼ 0.91). Our data support the compensatory immigration sink hypothesis; cougar removal in small game management areas (,1000 km 2 ) increased immigration and recruitment of younger animals from adjacent areas, resulting in little or no reduction in local cougar densities and a shift in population structure toward younger animals. Hunting in high-quality habitats may create an attractive sink, leading to misinterpretation of population trends and masking population declines in the sink and surrounding source areas.

Journal ArticleDOI
TL;DR: The reduction in exposure to trematodes due to pesticides-induced cercarial mortality was smaller than the pesticide-induced increase in amphibian susceptibility (a trait-mediated effect), suggesting that the net effect of exposure to environmentally realistic levels of pesticides will be to elevate amphibian trematode infections.
Abstract: Anthropogenic factors can have simultaneous positive and negative effects on parasite transmission, and thus it is important to quantify their net effects on disease risk. Net effects will be a product of changes in the survival and traits (e.g., susceptibility, infectivity) of both hosts and parasites. In separate laboratory experiments, we exposed cercariae of the trematode Echinostoma trivolvis, and its first and second intermediate hosts, snails (Planorbella trivolvis) and green frog tadpoles (Rana clamitans), respectively, to one of four common pesticides (atrazine, glyphosate, carbaryl, and malathion) at standardized, ecologically relevant concentrations (201.0, 3700.0, 33.5, and 9.6 microg/L, respectively). We measured effects of pesticide exposure on six mechanisms important to this host-parasite interaction: (1) survival of E. trivolvis cercariae over 26 hours, (2) tadpole survival over two weeks, (3) snail survival over four weeks, (4) snail growth and fecundity, (5) cercarial infectivity, and (6) tadpole susceptibility to a fixed number of cercariae. Pesticides, in general, caused significantly greater mortality of E. trivolvis cercariae than did control treatments, but atrazine was the lone chemical to significantly reduce cercarial survival (LC50 value = 267 mg/L) and then only at concentrations greater than commonly found in aquatic ecosystems (> or =200 microg/L). None of the pesticides significantly enhanced E. trivolvis virulence, decreased tadpole survival, or reduced snail survival, growth, or fecundity. Sublethal exposure of the cercariae to the pesticides (4 h) did not significantly affect trematode encystment in R. clamitans. In contrast, sublethal exposure of R. clamitans to each of the four pesticides increased their susceptibility as measured by the percentage of cercariae that encysted. The reduction in exposure to trematodes due to pesticide-induced cercarial mortality (a density-mediated effect) was smaller than the pesticide-induced increase in amphibian susceptibility (a trait-mediated effect), suggesting that the net effect of exposure to environmentally realistic levels of pesticides will be to elevate amphibian trematode infections. These findings highlight the importance of elucidating the lethal and sublethal effects of anthropogenic factors on both hosts and parasites to understand the mechanisms underlying changes in parasite transmission and virulence, an approach that is especially needed for amphibians, a taxon experiencing global disease-related declines.

Journal ArticleDOI
TL;DR: Examining how low concentrations of a globally common insecticide applied at various amounts, times, and frequencies affected aquatic communities containing zooplankton, phytoplankon, periphyton, and larval amphibians for 79 days found the mechanism underlying the trophic cascade is common to a wide range of insecticides, offering the possibility of general predictions for the way in which many insecticides impact aquatic communities and the populations of larval frogs.
Abstract: The field of toxicology has traditionally assessed the risk of contaminants by using laboratory experiments and a range of pesticide concentrations that are held constant for short periods of time (1–4 days). From these experiments, one can estimate the concentration that causes no effect on survival. However, organisms in nature frequently experience multiple applications of pesticides over time rather than a single constant concentration. In addition, organisms are embedded in ecological communities that can propagate indirect effects through a food web. Using outdoor mesocosms, we examined how low concentrations (10–250 μg/L) of a globally common insecticide (malathion) applied at various amounts, times, and frequencies affected aquatic communities containing zooplankton, phytoplankton, periphyton, and larval amphibians (reared at two densities) for 79 days. All application regimes caused a decline in zooplankton, which initiated a trophic cascade in which there was a bloom in phytoplankton and, in sev...

Journal ArticleDOI
TL;DR: It is demonstrated that atmospheric NO3- deposition exerts a direct and negative effect on microbial activity in this forest ecosystem, slowing the decomposition of aboveground litter and leading to the accumulation of forest floor and soil organic matter.
Abstract: Presently, there is uncertainty regarding the degree to which anthropogenic N deposition will foster C storage in the N-limited forests of the Northern Hemisphere, ecosystems which are globally important sinks for anthropogenic CO2. We constructed organic matter and N budgets for replicate northern hardwood stands (n ¼ 4) that have received ambient (0.7-1.2 g Nm � 2 � yr � 1 ) and experimental NO3 � deposition (ambient plus 3 g NO3 � -Nm � 2 � yr � 1 ) for a decade; we also traced the flow of a 15 NO3 � pulse over a six-year period. Experimental NO3 � deposition had no effect on organic matter or N stored in the standing forest overstory, but it did significantly increase the N concentration (þ19%) and N content (þ24%) of canopy leaves. In contrast, a decade of experimental NO3 � deposition significantly increased amounts of organic matter (þ12%) and N (þ9%) in forest floor and mineral soil, despite no increase in detritus production. A greater forest floor (Oe/a) mass under experimental NO3 � deposition resulted from slower decomposition, which is consistent with previously reported declines in lignolytic activity by microbial communities exposed to experimental NO3 � deposition. Tracing 15 NO3 � revealed that N accumulated in soil organic matter by first flowing through soil microorganisms and plants, and that the shedding of 15 N-labeled leaf litter enriched soil organic matter over a six-year duration. Our results demonstrate that atmospheric NO3 � deposition exerts a direct and negative effect on microbial activity in this forest ecosystem, slowing the decomposition of aboveground litter and leading to the accumulation of forest floor and soil organic matter. To the best of our knowledge, this mechanism is not represented in the majority of simulation models predicting the influence of anthropogenic N deposition on ecosystem C storage in northern forests.

Journal ArticleDOI
TL;DR: The multidimensional scaling (MDS) analysis and log-linear-saturated model indicated that the composition of the AMF community was significantly affected by the tillage system, and since some fungal types were treatment specific, agricultural practices could directly or indirectly influence AM biodiversity.
Abstract: Arbuscular mycorrhizal fungi (AMF) are a main component of soil microbiota in most agrosystems. As obligately mutualistic symbionts, they colonize the roots of the majority of plants, including crop plants. We used molecular techniques to investigate how different tillage systems (moldboard, shred-bedding, subsoil-bedding, and no tillage) can influence the AM fungal community colonizing maize, bean, and sorghum roots in an experimental site located in northern Tamaulipas, Mexico. Roots from 36 plants were analyzed using AM fungal-specific primers to partially amplify the small subunit (SSU) of the ribosomal DNA genes. More than 880 clones were screened for restriction fragment length polymorphism (RFLP) variation, and 173 of these were sequenced. Ten AM fungal types were identified and clustered into three AM fungal families: Gigasporaceae, Glomaceae, and Paraglomaceae. Glomus was the dominating taxon in all the samples. Four of the 10 identified types were distinct from any previously published sequences and could correspond to either known unsequenced species or unknown species. The fungal diversity was low in the four agriculture management systems, but the multidimensional scaling (MDS) analysis and log-linear-saturated model indicated that the composition of the AMF community was significantly affected by the tillage system. In conclusion, since some fungal types were treatment specific, agricultural practices could directly or indirectly influence AM biodiversity.

Journal ArticleDOI
TL;DR: Global climate models indicate an additional warming of several degrees Celsius in much of the Arctic marine environment by 2050, however, the warming is seasonal, spatially variable, and closely associated with further retreat of sea ice.
Abstract: The climate of the Arctic marine environment is characterized by strong seasonality in the incoming solar radiation and by tremendous spatial variations arising from a variety of surface types, including open ocean, sea ice, large islands, and proximity to major landmasses. Interannual and decadal-scale variations are prominent features of Arctic climate, complicating the distinction between natural and anthropogenically driven variations. Nevertheless, climate models consistently indicate that the Arctic is the most climatically sensitive region of the Northern Hemisphere, especially near the sea ice margins. The Arctic marine environment has shown changes over the past several decades, and these changes are part of a broader global warming that exceeds the range of natural variability over the past 1000 years. Record minima of sea ice coverage during the past few summers and increased melt from Greenland have important implications for the hydrographic regime of the Arctic marine environment. The recent changes in the atmosphere (temperature, precipitation, pressure), sea ice, and ocean appear to be a coordinated response to systematic variations of the large-scale atmospheric circulation, superimposed on a general warming that is likely associated with increasing greenhouse gases. The changes have been sufficiently large in some sectors (e.g., the Bering/Chukchi Seas) that consequences for marine ecosystems appear to be underway. Global climate models indicate an additional warming of several degrees Celsius in much of the Arctic marine environment by 2050. However, the warming is seasonal (largest in autumn and winter), spatially variable, and closely associated with further retreat of sea ice. Additional changes predicted for 2050 are a general decrease of sea level pressure (largest in the Bering sector) and an increase of precipitation. While predictions of changes in storminess cannot be made with confidence, the predicted reduction of sea ice cover will almost certainly lead to increased oceanic mixing, ocean wave generation, and coastal flooding.

Journal ArticleDOI
TL;DR: The results indicate that, due to high habitat heterogeneity and the spatial variability of prey patches, fine-scale models of dolphin habitat selection in coastal habitats will be more successful if environmental variables are used as predictor variables of predator distributions rather than relying on prey data as explanatory variables.
Abstract: Predators and prey assort themselves relative to each other, the availability of resources and refuges, and the temporal and spatial scale of their interaction. Predictive models of predator distributions often rely on these relationships by incorporating data on environmental variability and prey availability to determine predator habitat selection patterns. This approach to predictive modeling holds true in marine systems where observations of predators are logistically difficult, emphasizing the need for accurate models. In this paper, we ask whether including prey distribution data in fine-scale predictive models of bottlenose dolphin (Tursiops truncatus) habitat selection in Florida Bay, Florida, USA, improves predictive capacity. Environmental characteristics are often used as predictor variables in habitat models of top marine predators with the assumption that they act as proxies of prey distribution. We examine the validity of this assumption by comparing the response of dolphin distribution and fish catch rates to the same environmental variables. Next, the predictive capacities of four models, with and without prey distribution data, are tested to determine whether dolphin habitat selection can be predicted without recourse to describing the distribution of their prey. The final analysis determines the accuracy of predictive maps of dolphin distribution produced by modeling areas of high fish catch based on significant environmental characteristics. We use spatial analysis and independent data sets to train and test the models. Our results indicate that, due to high habitat heterogeneity and the spatial variability of prey patches, fine-scale models of dolphin habitat selection in coastal habitats will be more successful if environmental variables are used as predictor variables of predator distributions rather than relying on prey data as explanatory variables. However, predictive modeling of prey distribution as the response variable based on environmental variability did produce high predictive performance of dolphin habitat selection, particularly foraging habitat.

Journal ArticleDOI
TL;DR: The goal of this study was to quantify the changes to ecosystem structure and function associated with a conversion from forest to reclaimed mine grassland by comparing a small watershed containing a 15-year-old reclaimed mine with a forested, reference watershed in western Maryland.
Abstract: The United States' use of coal results in many environmental alterations. In the Appalachian coal belt region, one widespread alteration is conversion of forest to reclaimed mineland. The goal of this study was to quantify the changes to ecosystem structure and function associated with a conversion from forest to reclaimed mine grassland by comparing a small watershed containing a 15-year-old reclaimed mine with a forested, reference watershed in western Maryland. Major differences were apparent between the two watersheds in terms of biogeochemistry. Total C, N, and P pools were all substantially lower at the mined site, mainly due to the removal of woody biomass but also, in the case of P, to reductions in soil pools. Mineral soil C, N, and P pools were 96%, 79%, and 69% of native soils, respectively. Although annual runoff from the watersheds was similar, the mined watershed exhibited taller, narrower storm peaks as a result of a higher soil bulk density and decreased infiltration rates. Stream export of N was much lower in the mined watershed due to lower net nitrification rates and nitrate concentrations in soil. However, stream export of sediment and P and summer stream temperature were much higher. Stream leaf decomposition was reduced and macroinvertebrate community structure was altered as a result of these changes to the stream environment. This land use change leads to substantial, long-term changes in ecosystem capital and function.

Journal ArticleDOI
TL;DR: The dynamic and complex interplay of ecological and environmental processes the authors observed driving patch recovery across the estuarine landscape are integral to recovery from disturbances in heterogeneous environments, confirming the utility of disturbance-recovery experiments as assays for cumulative change due to fragmentation and habitat change in estuaries.
Abstract: When changes in the frequency and extent of disturbance outstrip the recovery potential of resident communities, the selective removal of species contributes to habitat loss and fragmentation across landscapes. The degree to which habitat change is likely to influence community resilience will depend on metacommunity structure and connectivity. Thus ecological connectivity is central to understanding the potential for cumulative effects to impact upon diversity. The importance of these issues to coastal marine communities, where the prevailing concept of open communities composed of highly dispersive species is being challenged, indicates that these systems may be more sensitive to cumulative impacts than previously thought. We conducted a disturbance-recovery experiment across gradients of community type and environmental conditions to assess the roles of ecological connectivity and regional variations in community structure on the recovery of species richness, total abundance, and community composition in Mahurangi Harbour, New Zealand. After 394 days, significant differences in recovery between sites were apparent. Statistical models explaining a high proportion of the variability (R2 > 0.92) suggested that community recovery rates were controlled by a combination of physical and ecological features operating across spatial scales, affecting successional processes. The dynamic and complex interplay of ecological and environmental processes we observed driving patch recovery across the estuarine landscape are integral to recovery from disturbances in heterogeneous environments. This link between succession/recovery, disturbance, and heterogeneity confirms the utility of disturbance-recovery experiments as assays for cumulative change due to fragmentation and habitat change in estuaries.

Journal ArticleDOI
TL;DR: It is shown that by considering the threat of catastrophic events as part of the reserve design problem it is possible to substantially improve the likely persistence of conservation features within reserve networks for a negligible increase in cost.
Abstract: Large-scale catastrophic events, although rare, lie generally beyond the control of local management and can prevent marine reserves from achieving biodiversity outcomes. We formulate a new conservation planning problem that aims to minimize the probability of missing conservation targets as a result of catastrophic events. To illustrate this approach we formulate and solve the problem of minimizing the impact of large-scale coral bleaching events on a reserve system for the Great Barrier Reef, Australia. We show that by considering the threat of catastrophic events as part of the reserve design problem it is possible to substantially improve the likely persistence of conservation features within reserve networks for a negligible increase in cost. In the case of the Great Barrier Reef, a 2% increase in overall reserve cost was enough to improve the long-run performance of our reserve network by >60%. Our results also demonstrate that simply aiming to protect the reefs at lowest risk of catastrophic bleaching does not necessarily lead to the best conservation outcomes, and enormous gains in overall persistence can be made by removing the requirement to represent all bioregions in the reserve network. We provide an explicit and well-defined method that allows the probability of catastrophic disturbances to be included in the site selection problem without creating additional conservation targets or imposing arbitrary presence/absence thresholds on existing data. This research has implications for reserve design in a changing climate.

Journal ArticleDOI
TL;DR: It is proved that the given planning goals cannot be achieved with a smaller area, given the modeling assumptions and data, so an alternate formalization of a minimum range size moving through time is proposed and used to achieve the revised goals, again with the smallest possible newly protected area.
Abstract: We introduce a new way of measuring and optimizing connectivity in conservation landscapes through time, accounting for both the biological needs of multiple species and the social and financial constraint of minimizing land area requiring additional protection. Our method is based on the concept of network flow; we demonstrate its use by optimizing protected areas in the Western Cape of South Africa to facilitate autogenic species shifts in geographic range under climate change for a family of endemic plants, the Cape Proteaceae. In 2005, P. Williams and colleagues introduced a novel framework for this protected area design task. To ensure population viability, they assumed each species should have a range size of at least 100 km 2 of predicted suitable conditions contained in protected areas at all times between 2000 and 2050. The goal was to design multiple dispersal corridors for each species, connecting suitable conditions between time periods, subject to each species' limited dispersal ability, and minimizing the total area requiring additional protection. We show that both minimum range size and limited dispersal abilities can be naturally modeled using the concept of network flow. This allows us to apply well-established tools from operations research and computer science for solving network flow problems. Using the same data and this novel modeling approach, we reduce the area requiring additional protection by a third compared to previous methods, from 4593 km 2 to 3062 km 2 , while still achieving the same conservation planning goals. We prove that this is the best solution mathematically possible: the given planning goals cannot be achieved with a smaller area, given our modeling assumptions and data. Our method allows for flexibility and refinement of the underlying climate-change, species-habitat-suitability, and dispersal models. In particular, we propose an alternate formalization of a minimum range size moving through time and use network flow to achieve the revised goals, again with the smallest possible newly protected area (2850 km 2 ). We show how to relate total dispersal distance to probability of successful dispersal, and compute a trade-off curve between this quantity and the total amount of extra land that must be protected.

Journal ArticleDOI
TL;DR: Restoration of tallgrass prairie vegetation can restore SOM lost through cultivation and has the potential to sequester relatively large amounts of SOC over a sustained period of time, and whether restored prairies can retain the C apparently transferred to the subsoil by cultivation practices remains to be seen.
Abstract: The recovery of ecosystem C and N dynamics after disturbance can be a slow process. Chronosequence approaches offer unique opportunities to use space-for-time substitution to quantify the recovery of ecosystem C and N stocks and estimate the potential of restoration practices for C sequestration. We studied the distribution of C and N stocks in two chronosequences that included long-term cultivated lands, 3- to 26-year-old prairie restorations, and remnant prairie on two related soil series. Results from the two chronosequences did not vary significantly and were combined. Based on modeling predictions, the recovery rates of different ecosystem components varied greatly. Overall, C stocks recovered faster than N stocks, but both C and N stocks recovered more rapidly for aboveground vegetation than for any other ecosystem component. Aboveground C and N reached 95% of remnant levels in only 13 years and 21 years, respectively, after planting to native vegetation. Belowground plant C and N recovered several ...

Journal ArticleDOI
TL;DR: In the nutrient-stressed Ringkøbing Fjord, Denmark, a small change in one variable facilitated by a change in sluice management caused a sudden regime shift from a bottom-up controlled turbid state, into a top-down controlled clear-water state.
Abstract: We demonstrate changes in ecosystem stable states in a coastal lagoon that are consistent with what a regime shift would hypothesize. In the nutrient-stressed Ringkobing Fjord, Denmark, a small change in one variable (salinity) facilitated by a change in sluice management, caused a sudden regime shift from a bottom-up controlled turbid state, into a top-down controlled clear-water state. The change in dominating pathway of organic matter production from pelagic turnover to benthic-pelagic coupling was facilitated by new recruitment and growth of existing suspension-feeding clams, Mya arenaria. With the invasion of clams, benthic grazing became the key feature of the biological structure. Phytoplankton composition and zooplankton abundance were also affected by the change in biological structure. The small, but sudden, increase in salinity caused by the change in sluice management led to a dramatic reduction in biomass and coverage of benthic vegetation and thus affected herbivorous waterbird populations. In recent years, plant coverage has been increasing, as can be expected with increased water transparency. The regime shift has some major implications for coastal water management and revealed some conflicts between different types of nature and environmental protection legislation.