scispace - formally typeset
Search or ask a question

Showing papers in "Ecological Monographs in 2012"


Journal ArticleDOI
TL;DR: In this paper, the authors suggest that ecological studies would benefit from the combined use of the classical statistical models of community composition data, such as constrained or unconstrained multivariate analyses of site-by-species abundance tables, with rapidly emerging and diversifying methods of spatial pattern analysis.
Abstract: Species spatial distributions are the result of population demography, behavioral traits, and species interactions in spatially heterogeneous environmental conditions. Hence the composition of species assemblages is an integrative response variable, and its variability can be explained by the complex interplay among several structuring factors. The thorough analysis of spatial variation in species assemblages may help infer processes shaping ecological communities. We suggest that ecological studies would benefit from the combined use of the classical statistical models of community composition data, such as constrained or unconstrained multivariate analyses of site-by-species abundance tables, with rapidly emerging and diversifying methods of spatial pattern analysis. Doing so allows one to deal with spatially explicit ecological models of beta diversity in a biogeographic context through the multiscale analysis of spatial patterns in original species data tables, including spatial characterization of fitted or residual variation from environmental models. We summarize here the recent progress for specifying spatial features through spatial weighting matrices and spatial eigenfunctions in order to define spatially constrained or scale-explicit multivariate analyses. Through a worked example on tropical tree communities, we also show the potential of the overall approach to identify significant residual spatial patterns that could arise from the omission of important unmeasured explanatory variables or processes.

511 citations


Journal ArticleDOI
TL;DR: This work provides global estimates of resorption efficiencies and nutrient concentrations for carbon (C), N, and P and the first global-scale estimates for essential nutrients such as potassium (K), calcium (Ca), and magnesium (Mg).
Abstract: Nutrient resorption in plants influences nutrient availability and cycling and is a key process in biogeochemical models. Improved estimates of resorption parameters are needed for predicting long-term primary productivity and for improving such models. Currently, most models assume a value of 50% resorption for nitrogen (N) and phosphorus (P) and lack resorption data for other nutrients and for specific vegetation types. We provide global estimates of resorption efficiencies and nutrient concentrations for carbon (C), N, and P and the first global-scale estimates for essential nutrients such as potassium (K), calcium (Ca), and magnesium (Mg). We also examine leaf mass loss during senescence (LML) globally and for different plant types, thus defining a mass loss correction factor (MLCF) needed to quantify unbiased resorption values. We used a global meta-analysis of 86 studies and ∼1000 data points across climates for green and senesced leaves in six plant types: ferns, forbs, graminoids, conifers, and ev...

503 citations


Journal ArticleDOI
TL;DR: This work synthesizes previously existing and novel methodologies to develop a general suite of mechanistic models based on biased and correlated random walks that allow different behavioral states for directed, area-restricted, and exploratory movements associated with haul-out, foraging, and other behaviors.
Abstract: Recent developments in animal tracking technology have permitted the collection of detailed data on the movement paths of individuals from many species. However, analysis methods for these data have not developed at a similar pace, largely due to a lack of suitable candidate models, coupled with the technical difficulties of fitting such models to data. To facilitate a general modeling framework, we propose that complex movement paths can be conceived as a series of movement strategies among which animals transition as they are affected by changes in their internal and external environment. We synthesize previously existing and novel methodologies to develop a general suite of mechanistic models based on biased and correlated random walks that allow different behavioral states for directed (e.g., migration), exploratory (e.g., dispersal), area-restricted (e.g., foraging), and other types of movement. Using this “toolbox” of nested model components, multistate movement models may be custom-built for a wide variety of species and applications. As a unified state-space modeling framework, it allows the simultaneous investigation of numerous hypotheses about animal movement from imperfectly observed data, including time allocations to different movement behavior states, transitions between states, the use of memory or navigation, and strengths of attraction (or repulsion) to specific locations. The inclusion of covariate information permits further investigation of specific hypotheses related to factors driving different types of movement behavior. Using reversible-jump Markov chain Monte Carlo methods to facilitate Bayesian model selection and multi-model inference, we apply the proposed methodology to real data by adapting it to the natural history of the grey seal (Halichoerus grypus) in the North Sea. Although previous grey seal studies tended to focus on correlated movements, we found overwhelming evidence that bias toward haul-out or foraging locations better explained seal movement than did simple or correlated random walks. Posterior model probabilities also provided evidence that seals transition among directed, area-restricted, and exploratory movements associated with haul-out, foraging, and other behaviors. With this intuitive framework for modeling and interpreting animal movement, we believe that the development and application of custom-made movement models will become more accessible to ecologists and non-statisticians.

255 citations


Journal ArticleDOI
TL;DR: Comparing effects of substrate N (as it differed between leaves and litter) and externally supplied N (inorganic or organic forms) on decomposition and decomposer community structure and function over four years shows asymptotic decomposition models fit the data equally well as single exponential models.
Abstract: Despite the importance of litter decomposition for ecosystem fertility and carbon balance, key uncertainties remain about how this fundamental process is affected by nitrogen (N) availability. Resolving such uncertainties is critical for predicting the ecosystem consequences of increased anthropogenic N deposition. Toward that end, we decomposed green leaves and senesced litter of northern pin oak (Quercus ellipsoidalis) in three forested stands dominated by northern pin oak or white pine (Pinus strobus) to compare effects of substrate N (as it differed between leaves and litter) and externally supplied N (inorganic or organic forms) on decomposition and decomposer community structure and function over four years. Asymptotic decomposition models fit the data equally well as single exponential models and allowed us to compare effects of N on both the initial decomposition rate (ka) and the level of asymptotic mass remaining (A, proportion of mass remaining at which decomposition approaches zero, i.e., the ...

238 citations


Journal ArticleDOI
TL;DR: To address heritable clinal variation and adaptation of growth and defense traits of common milkweed, seed was planted from 22 populations encompassing the species' latitudinal range in common gardens near the range center (New York) and toward the range edges (New Brunswick and North Carolina).
Abstract: Broad-scale geographical gradients in the abiotic environment and interspecific interactions should select for clinal adaptation. How trait clines evolve has recently received increased attention because of anticipated climate change and the importance of rapid evolution in invasive species. This issue is particularly relevant for clines in growth and defense of plants, because both sets of traits are closely tied to fitness and because such sessile organisms experience strong local selection. Yet despite widespread recognition that growth and defense traits are intertwined, the general issue of their joint clinal evolution is not well resolved. To address heritable clinal variation and adaptation of growth and defense traits of common milkweed (Asclepias syriaca), we planted seed from 22 populations encompassing the species' latitudinal range in common gardens near the range center (New York) and toward the range edges (New Brunswick and North Carolina). Populations were differentiated in 13 traits, and ...

154 citations


Journal ArticleDOI
TL;DR: It is hypothesized that tree growth is positively related to soil base cation and P availability and negatively related to local competition; Fabaceae growth is weakly correlated with soil resources if fixed N is used indirectly to acquire other resources.
Abstract: Tropical forest productivity is widely assumed to be limited by soil phosphorus (P), but biogeochemical processes that deplete P also could deplete base cations, suggesting multiple resource limitation. Limitation by several resources could arise from species and functional diversity and from variation among groups in resource requirements, including ecophysiological strategies that minimize P limitation. We hypothesized that tree growth is positively related to soil base cation and P availability and negatively related to local competition; Fabaceae growth is weakly correlated with soil resources if fixed N is used indirectly to acquire other resources; growth of species with low wood density is more strongly related to soil resource availability than that of species with high wood density. Diameter growth and soil resource availability were measured in five mapped stands situated across natural soil resource gradients in lowland wet tropical forest (La Selva Biological Station, Costa Rica). Soil resourc...

145 citations


Journal ArticleDOI
TL;DR: In this paper, the influence of increasing climate aridity in explaining the decline in vegetation cover in highly vulnerable gypsum semiarid shrublands of the Mediterranean region was investigated.
Abstract: Semiarid Mediterranean regions are highly susceptible to desertification processes. This study investigated the influence of increasing climate aridity in explaining the decline in vegetation cover in highly vulnerable gypsum semiarid shrublands of the Mediterranean region. For this purpose, we have used time series of percent cover of vegetation obtained from remote sensing imagery (Landsat satellites). We found a dominant trend toward decreased vegetation cover, mainly in summer and in areas affected by the most severe water stress conditions (low precipitation, higher evapotranspiration rates, and sun-exposed slopes). We show that past human management and current climate trends interact with local environmental conditions to determine the occurrence of vegetation degradation processes. The results suggest that degradation could be a consequence of the past overexploitation that has characterized this area (and many others in the Mediterranean region), but increased aridity, mainly related to global wa...

131 citations


Journal ArticleDOI
TL;DR: In this paper, a sequence of aerial photographs of the Chihuahuan Desert showed that migration was not continuous, but intermittent in response to fluctuating weather regimes, and the rates at which bands expanded upslope and contracted downslope were better predicted by the change in annual rainfall than by its average level.
Abstract: Dense vegetation bands aligned to contour levels and alternating at regular intervals with relatively barren interbands have been reported at the margins of all tropical deserts. Since their discovery in the 1950s, it has been supposed that these vegetation bands migrate upslope, forming a space-time cyclic pattern. Evidence to date has been relatively sparse and indirect, and observations have remained conflicting. Unequivocal photographic evidence of upslope migration (a few decimeters per year) is provided here for three independent dryland areas exhibiting periodic banded pattern: (1) the U.S. northeastern Chihuahuan Desert, (2) the Somalian Haud, and (3) the Mediterranean steppes of eastern Morocco. Migration speeds, averaged through time and space using Fourier cross-spectral analysis, are shown to be directly proportional to pattern scale (wavelength). A sequence of aerial photographs of the Chihuahuan Desert showed that migration was not continuous, but intermittent in response to fluctuating weather regimes. The rates at which bands expanded upslope and contracted downslope were better predicted by the change in annual rainfall than by its average level. However, the migration of banded patterns cannot be considered as systematic because in our observations of three other banded systems located in the Somalian Haud, central Australia, and western New South Wales, migration was undetectable at the available image resolution. In each of the six sites under study, the modal value of band orientation axes was verified to be approximately orthogonal to the steepest slope. Our results underscore the importance of taking both the spatial structure and the past climate sequence into account for understanding vegetation dynamics in arid to semiarid ecosystems. In addition, we show how Fourier spectral analysis applied to historical series of optical images can serve to quantify landscape dynamics at a decadal time scale.

125 citations


Journal ArticleDOI
TL;DR: In this paper, the authors investigated shifts in organic carbon quantity and quality associated with urbanization and ecosystem restoration, and its potential effects on denitrification at the riparian-stream interface.
Abstract: Organic carbon is important in regulating ecosystem function, and its source and abundance may be altered by urbanization. We investigated shifts in organic carbon quantity and quality associated with urbanization and ecosystem restoration, and its potential effects on denitrification at the riparian–stream interface. Field measurements of streamwater chemistry, organic carbon characterization, and laboratory-based denitrification experiments were completed at two forested, two restored, and two unrestored urban streams at the Baltimore Long-Term Ecological Research site, Maryland, USA. Dissolved organic carbon (DOC) and nitrate loads increased with runoff according to a power-law function that varied across sites. Stable isotopes and molar C:N ratios suggested that stream particulate organic matter (POM) was a mixture of periphyton, leaves, and grass that varied across site types. Stable-isotope signatures and lipid biomarker analyses of sediments showed that terrestrial organic carbon sources in streams...

118 citations


Journal ArticleDOI
TL;DR: The results support empirical predictions of the functional effects of diversity, but they also suggest basic ecosystem processes will continue even after dramatic losses of native species diversity if simple functional roles are provided by introduced species.
Abstract: The positive relationship between species diversity (richness and evenness) and critical ecosystem functions, such as productivity, carbon storage, and nutrient cycling, is often used to predict the consequences of extinction. At regional scales, however, plant species richness is mostly increasing rather than decreasing because successful plant species introductions far outnumber extinctions. If these regional increases in richness lead to local increases in diversity, a reasonable prediction is that productivity, carbon storage, and nutrient cycling will increase following invasion, yet this prediction has rarely been tested empirically. We tested this prediction in novel forest communities dominated by introduced species (;90% basal area) in lowland Hawaiian rain forests by comparing their functionality to that of native forests. We conducted our comparison along a natural gradient of increasing nitrogen availability, allowing for a more detailed examination of the role of plant functional trait differences (specifically, N2 fixation) in driving possible changes to ecosystem function. Hawaii is emblematic of regional patterns of species change; it has much higher regional plant richness than it did historically, due to .1000 plant species introductions and only ;71 known plant extinctions, resulting in an ;100% increase in richness. At local scales, we found that novel forests had significantly higher tree species richness and higher diversity of dominant tree species. We further found that aboveground biomass, productivity, nutrient turnover (as measured by soil-available and litter-cycled nitrogen and phosphorus), and belowground carbon storage either did not differ significantly or were significantly greater in novel relative to native forests. We found that the addition of introduced N2-fixing tree species on N-limited substrates had the strongest effect on ecosystem function, a pattern found by previous empirical tests. Our results support empirical predictions of the functional effects of diversity, but they also suggest basic ecosystem processes will continue even after dramatic losses of native species diversity if simple functional roles are provided by introduced species. Because large portions of the Earth's surface are undergoing similar transitions from native to novel ecosystems, our results are likely to be broadly applicable.

110 citations


Journal ArticleDOI
TL;DR: In this article, the effects of water availability on the rates of chemical and biological processes that affect soil formation can help clarify the global patterns of soil fertility, which affect agricultural and forest productivity, as well as biodiversity.
Abstract: Climate and soils are widely recognized as major drivers of virtually all properties of ecosystems and communities. However, despite major advances in the understanding of soil formation and ecosystem dynamics, the effects of climate on soil properties are not widely appreciated. Understanding the effects of water availability on the rates of chemical and biological processes that affect soil formation can help clarify the global patterns of soil fertility, which affect agricultural and forest productivity, as well as biodiversity. Empirical tests of Albrecht's conceptual model of soil development and degradation using global climate and soil data sets and soil chronosequences confirm that soil total exchangeable bases (TEB), phosphorus, nitrogen, and other components of soil fertility, along with plant productivity generally decline on older soils and under wetter conditions as precipitation exceeds potential evapotranspiration. The basic pattern of soil fertility in relation to water availability is a unimodal curve, with a maximum near or below a water balance of zero (annual precipitation minus annual potential evapotranspiration). Analysis of global data by subregions reveals significant differences between temperate and tropical soil fertility distributions, as well as significant differences between continents. The low levels of soil nutrients (e.g., TEB, P, N) and plant productivity found on ancient soils or highly weathered soils in regions with high precipitation suggest that the positive effects of low productivity on plant diversity that have been observed at local and regional scales may also occur at the global scale.

Journal ArticleDOI
TL;DR: An eight-year multigeneration study of population dynamics of bicolor damselfish inhabiting four large coral reefs in the Bahamas found that populations on the two naturally high-settlement reefs experienced temporal density dependence in multiple per capita demographic rates: mortality, survival to adulthood, and fecundity.
Abstract: Do small-scale experiments showing spatial density dependence in marine fishes scale-up to temporal density dependence and regulation of relatively large local populations? If so, what are the causative mechanisms and their implications? We conducted an eight-year multigeneration study of population dynamics of bicolor damselfish (Stegastes partitus) inhabiting four large coral reefs in the Bahamas. After a four-year baseline period, it was clear that two populations naturally received very few settlement-stage larvae, so recruitment of recently settled fish was artificially enhanced at one low-settlement reef and reduced at one high-settlement reef to ensure a broad range of population sizes over which to test for regulation. Over all eight years, populations on the two naturally high-settlement reefs experienced temporal density dependence in multiple per capita demographic rates: mortality, survival to adulthood, and fecundity. These local populations also displayed components of regulation: persistenc...

Journal ArticleDOI
TL;DR: In this paper, the authors investigate the role of early successional conifers in the development of non-steady state regimes dominated by lodgepole pine (Pinus contorta var. latifolia Engelm. ex Wats).
Abstract: Paleoecological records indicate that subalpine forests in western North America have been resilient in response to multiple influences, including severe droughts, insect outbreaks, and widely varying fire regimes, over many millennia. One hypothesis for explaining this ecosystem resilience centers on the disruption of forest dynamics by frequent disturbance and climatic variability, and the resulting development of non-steady-state regimes dominated by early-successional conifers with broad climatic tolerances, such as lodgepole pine (Pinus contorta var. latifolia Engelm. ex Wats.). To evaluate this hypothesis, we independently reconstructed the vegetation, fire, and effective-moisture histories of a small, forested watershed at 2890 m elevation in southeastern Wyoming, USA, using sedimentary pollen and charcoal counts in conjunction with sedimentary lake-level indicators. The data indicate that prominent vegetation shifts (from sagebrush steppe to spruce–fir parkland at ca. 10.7 ka and spruce–fir parkla...

Journal ArticleDOI
TL;DR: In this paper, the authors used eddy covariance and biometric approaches to measure carbon dynamics over nine years in two slash pine plantations (Pinus elliottii var ellottii Englm) in north Florida, consisting of a newly planted and a mid-rotation stand.
Abstract: Planted pine forests (plantations) in the southeastern United States are an important component of the continent's carbon balance. Forest carbon dynamics are affected by a range of factors including climatic variability. Multiyear droughts have affected the region in the past, and an increase in the frequency of drought events has been predicted. How this increased climatic variability will affect the capacity of the region's pine plantations to sequester carbon is not known. We used eddy covariance and biometric approaches to measure carbon dynamics over nine years in two slash pine plantations (Pinus elliottii var elliottii Englm) in north Florida, consisting of a newly planted and a mid-rotation stand. During this time, the region experienced two multiyear droughts (1999-2002 and 2006-2008), separated by a three-year wet period. Net ecosystem carbon accumulation measured using both approaches showed the same trends and magnitudes during plantation development. The newly planted site released 15.6 Mg C/ha during the first three years after planting, before becoming a carbon sink in year 4. Increases in carbon uptake during the early stages of stand development were driven by the aggrading leaf area index (LAI). After canopy closure, both sites were continuous carbon sinks with net carbon uptake (NEE) fluctuating between 4 and ; 8M g Cha � 1 � yr � 1 , depending on environmental conditions. Drought reduced NEE by ;25% through its negative effects on both LAI and radiation-use efficiency, which resulted in a larger impact on gross ecosystem carbon exchange than on ecosystem respiration. While results indicate that responses to drought involved complex interactions among water availability, LAI, and radiation-use efficiency, these ecosystems remain carbon sinks under current management strategies and climatic variability. Variation within locations is primarily due to major disturbances, such as logging in the current study and, to a much lesser extent, local environmental fluctuations. When data from this study are compared to flux data from a broad range of forests worldwide, these ecosystems fill a data gap in the warm-temperate zone and support a broad maximum NEE (for closed-canopy forests) between 88C and 208C mean annual temperature.

Journal ArticleDOI
TL;DR: This work evaluated whether fire injury increased susceptibility of lodgepole pines to mountain pine beetle, how it influenced beetle reproductive success, and whether beetle population phase altered this interaction.
Abstract: Bark beetle outbreaks and wildfire are important disturbances in conifer ecosystems, yet their interactions are not well understood. We evaluated whether fire injury increased susceptibility of lodgepole pines (Pinus contorta) to mountain pine beetle (Dendroctonus ponderosae Hopkins), how it influenced beetle reproductive success, and whether beetle population phase altered this interaction. Eight sites that experienced wildfire and eight unburned sites were examined in the Greater Yellowstone Ecosystem (USA). Half were in areas where D. ponderosae was undergoing outbreaks, and half were in areas with low populations. We examined 2056 trees one year after fire for burn injury and beetle attack. We quantified beetle reproductive success in a random sample of 106 trees, and measured gallery areas of D. ponderosae and competing subcortical herbivores in 79 additional trees. Baited flight traps sampled stand-level populations of subcortical herbivores and predators. Wildfire predisposed trees to D. ponderosae...

Journal ArticleDOI
TL;DR: A Bayesian framework for interpreting uncertainty is developed that can be applied when comparing and evaluating the characteristics and behavior of alternative model formulations and then extended to address comparisons both between and within alternative models.
Abstract: Qualitative network analyses provide a broad range of advantages for formulating ideas and testing understanding of ecosystem function, for exploring feedback dynamics, and for making qualitative predictions in cases where data are limited. They have been applied to a wide range of ecological questions, including exploration of the implications of uncertainty about fundamental system structure. However, we argue that questions regarding model uncertainty in qualitative network analyses have been under-explored, and that there is a need for a coherent framework for evaluating uncertainty. To address this issue, we have developed a Bayesian framework for interpreting uncertainty that can be applied when comparing and evaluating the characteristics and behavior of alternative model formulations. Specifically, we recognize that results from previously developed simulation approaches to qualitative modeling can be interpreted as marginal likelihoods that translate to Bayes factors for model comparison. We then test and extend our Bayesian interpretation of qualitative model results to address comparisons both between and within alternative models. With the use of examples, we demonstrate how our Bayesian framework for interpretation can improve the application of qualitative modeling for addressing uncertainty about the structure and function of ecological networks.

Journal ArticleDOI
TL;DR: The framework that is presented will help to speed the progress of ecological research and lead to better conservation decisions and improve communication among scientists by rationalizing theory associated with particular phenomena to purge redundancy and by developing definitions for key terms.
Abstract: Ecological theory often fails applied ecologists in three ways: (1) Theory has little predictive value but is nevertheless applied in conservation with a risk of perverse outcomes, (2) individual theories have limited heuristic value for planning and framing research because they are narrowly focused, and (3) theory can lead to poor communication among scientists and hinder scientific progress through inconsistent use of terms and widespread redundancy. New approaches are therefore needed that improve the distillation, communication, and application of ecological theory. We advocate three approaches to resolve these problems: (1) improve prediction by reviewing theory across case studies to develop contingent theory where possible, (2) plan new research using a checklist of phenomena to avoid the narrow heuristic value of individual theories, and (3) improve communication among scientists by rationalizing theory associated with particular phenomena to purge redundancy and by developing definitions for key terms. We explored the extent to which these problems and solutions have been featured in two case studies of long-term ecological research programs in forests and plantations of southeastern Australia. We found that our main contentions were supported regarding the prediction, planning, and communication limitations of ecological theory. We illustrate how inappropriate application of theory can be overcome or avoided by investment in boundary-spanning actions. The case studies also demonstrate how some of our proposed solutions could work, particularly the use of theory in secondary case studies after developing primary case studies without theory. When properly coordinated and implemented through a widely agreed upon and broadly respected international collaboration, the framework that we present will help to speed the progress of ecological research and lead to better conservation decisions.

Journal ArticleDOI
TL;DR: In this paper, the Walker Branch watershed in eastern Tennessee has been studied for 20 years, and the long-term changes in catchment hydrology have led to significant trends in the concentrations and fluxes of these solutes.
Abstract: We present 20 years of weekly stream water chemistry, hydrology, and climate data for the Walker Branch watershed in eastern Tennessee, USA. Since 1989, the watershed has experienced a ∼1.0°C increase in mean annual temperature, a ∼20% decline in precipitation, and a ∼30% increase in forest evapotranspiration rates. As a result, stream runoff has declined by ∼34%. We evaluate long-term trends in stream water concentrations and fluxes for nine solutes and use wet deposition data to calculate approximate watershed input–output budgets. Dissolved constituents were classified as geochemical solutes (Ca2+, Mg2+, and SO42−) or nutrients (NH4+, NO3−, soluble reactive phosphorus [SRP], total soluble nitrogen [TSN], total soluble phosphorus [TSP], and dissolved organic carbon [DOC]). Geochemical solutes are predominantly controlled by discharge, and the long-term changes in catchment hydrology have led to significant trends in the concentrations and fluxes of these solutes. Further, the trends in geochemical solut...

Journal ArticleDOI
TL;DR: It is shown that year-round sexual habitat segregation in S. canicula can be accounted for directly by female avoidance of male sexual harassment, a major cause of within-species sexual segregation among vertebrates.
Abstract: Within-species sexual segregation is a widespread phenomenon among vertebrates, but its causes remain a topic of much debate. Female avoidance of male coercive mating attempts has the potential to influence the social structure of animal populations, yet it has been largely overlooked as a driver of sexual separation. Indeed, its potential role in long-term structuring of natural populations has not been studied. Here we use a comparative approach to examine the suitability of multiple hypotheses forwarded to account for sexual segregation (i.e., activity budget, predation risk, thermal niche–fecundity, and social factors) as drivers underlying sex-specific habitat use in a monomorphic model vertebrate, the small-spotted catshark, Scyliorhinus canicula. Using this hypothesis-driven approach, we show that year-round sexual habitat segregation in S. canicula can be accounted for directly by female avoidance of male sexual harassment. Long-term electronic tracking reveals that sperm-storing female catsharks ...

Journal ArticleDOI
TL;DR: This work uses a quantitative trait model with predator–prey coevolution to investigate how both population and trait dynamics are affected by density-dependent prey defense cost vs. density-independent cost, and investigates the effect of relative speeds of prey and predator evolution on population and traits dynamics.
Abstract: Predation acts as a selective pressure, driving prey adaptation. Predators can also evolve counter-defenses to increase the likelihood of successful attack. Investment in either trait can be costly, leading to a trade-off between the traits and other fitness components. Costs for defense have been shown experimentally to depend on environmental factors such as resource availability. This suggests that costs can increase with population size, rather than remaining constant as models often assume. Using a quantitative trait model with predator–prey coevolution, we investigate how both population and trait dynamics are affected by density-dependent prey defense cost (“variable cost”) vs. density-independent cost (“fixed cost”). We assume predator counter-defense cost is always density independent. We also investigate the effect of relative speeds of prey and predator evolution on population and trait dynamics, by varying a parameter that determines each population's additive genetic variance. For both models...

Journal ArticleDOI
TL;DR: In this article, an in situ fossil flora of Late Cretaceous age (∼73 Ma [mega-annum or million years]) from Big Cedar Ridge in central Wyoming, USA, which was sampled using a modified line-intercept method to quantify the relative abundances of 122 taxa at 100 sites across 4 km of exposed sedimentary deposits.
Abstract: We describe an in situ fossil flora of Late Cretaceous age (∼73 Ma [mega-annum or million years]) from Big Cedar Ridge in central Wyoming, USA, which we sampled using a modified line-intercept method to quantify the relative abundances of 122 taxa at 100 sites across 4 km of exposed sedimentary deposits. We also measured three physical variables at each site: paleotopographic level, grain size, and total organic content. Paleoenvironmental conditions and paleofloral composition at Big Cedar Ridge covary strongly and are highly heterogeneous on small spatial scales. The reconstructed vegetation has some similarities with extant topogenous fens, but also important differences. Non-monocot angiosperms were abundant only on wet, mineral substrates that had been disturbed shortly before preservation, consistent with the weedy life histories that are inferred for their Early Cretaceous ancestors. Many non-monocot angiosperms grew in small, dispersed populations, consistent with the hypothesis that they were bio...

Journal ArticleDOI
TL;DR: The study shows that control of biodiversity is strongly altered in urban areas, influenced by subtle shifts in top-down and bottom-up controls that are often superseded by climatic variations and habitat type.
Abstract: There is a demand for mechanistic studies to explore underlying drivers behind observed patterns of biodiversity in urban areas. We describe a two-year field experiment in which we manipulated bottom-up (resource availability) and top-down (bird predation) forces on arthropod communities associated with a native plant, Encelia farinosa, across three land-use types—urban, desert remnant, and outlying natural desert—in the Phoenix metropolitan area, Arizona, USA. We monitored the trophic structure, richness, and similarity of the arthropod communities on these manipulated plants over a two-year period. We predicted that (1) increased water resources increase plant productivity, (2) increased productivity increases arthropod abundances, and (3) in the urban habitat, top-down forces are greater than in other habitats and limit arthropod abundances. We also predicted that urban remnant habitats are more similar to urban habitats in terms of arthropod richness and composition. Strong interannual differences due to an unusual cold and dry winter in the first year suppressed plant growth in all but urban habitats, and arthropod abundances in all habitats were severely reduced. In the following year, arthropod abundances in desert and remnant habitats were higher than in urban habitats. Water had positive effects on plant growth and arthropod abundance, but these water effects emerged through complex interactions with habitat type and the presence/absence of cages used to reduce bird predation. Plants grew larger in urban habitats, and phenology also differed between urban and desert habitats. The results from caging suggest that bird predation may not be as important in cities as previously thought, and that arthropods may retard plant growth. As expected, desert communities are strongly bottom-up regulated, but contrary to predictions, we did not find evidence for strong top-down control in the city. Remnant habitats were intermediate between desert and urban habitats in terms of diversity, richness, evenness, arthropod composition and phenology, with urban habitats generally lowest in terms of diversity, richness, and evenness. Our study shows that control of biodiversity is strongly altered in urban areas, influenced by subtle shifts in top-down and bottom-up controls that are often superseded by climatic variations and habitat type.

Journal ArticleDOI
TL;DR: In this article, the authors describe wood anatomy-based proxies for spring temperatures in central North America from modern bur oaks (Quercus macrocarpa Michx), using 79 subfossil oak log cross sections from northern Missouri, 14C-dated to 9.9-13.63 ka (ka is 1000 cal yr BP).
Abstract: Paleoclimate proxies based on the measurement of xylem cell anatomy have rarely been developed across the temperature range of a species or applied to wood predating the most recent millennium. Here we describe wood anatomy-based proxies for spring temperatures in central North America from modern bur oaks (Quercus macrocarpa Michx.). The strong coherence of temperature signals across the species range supports the use of these proxies across thousands of years of climatic change. We also used 79 subfossil oak log cross sections from northern Missouri, 14C-dated to 9.9–13.63 ka (ka is 1000 cal yr BP), to assess the frequency of oak deposition into alluvial sediments and a subset of these oaks for a wood anatomy-based reconstruction of spring paleotemperatures. Temperatures during the Younger Dryas cold period (YD) were up to 3.5°C lower than modern temperatures for that region, equivalent to or lower than those experienced at the northern edge of the modern species range. Compared to extant oaks growing a...

Journal ArticleDOI
TL;DR: This experimental study shows that the vertical distribution of phytoplankton may be driven by intraspecific resource competition in space.
Abstract: A recent theory of the vertical distribution of phytoplankton considers how interacting niche construction processes such as resource depletion, behavior, and population dynamics contribute to spatial heterogeneity in the aquatic environment. In poorly mixed water columns with opposing resource gradients of nutrients and light, theory predicts that a species should aggregate at a single depth. This depth of aggregation, or biomass maximum, should change through time due to depletion of available resources. In addition, the depth of the aggregation should be deeper under low amounts of nutrient loading and shallower under higher amounts of nutrient loading. Theory predicts total biomass to exhibit a saturating relationship with nutrient supply. A surface biomass maximum limited by light and a deep biomass maximum limited by nutrients or co-limited by nutrients and light is also predicted by theory. To test this theory, we used a motile phytoplankton species (Chlamydomonas reinhardtii) growing in cylindrical plankton towers. In our experiment, the resource environment was strongly modified by the movement, self-shading, nutrient uptake, and growth of the phytoplankton. Supporting predictions, we routinely observed a single biomass maximum at the surface throughout the course of the experiment and at equilibrium under higher nutrient loading. However, at equilibrium, low nutrient loading led to a non-distinct biomass maximum with the population distributed over most of the water column instead of the distinct subsurface peak predicted by theory. Also supporting predictions, total biomass across water columns was positively related to nutrient supply but saturating at high nutrient supply conditions. Further supporting predictions, we also found evidence of light limitation for a surface biomass maximum and nutrient limitation for the deep biomass when no surface maximum was present. In addition, the light level leaving the bottom of the water column declined through time as the phytoplankton grew and was negatively related to nutrient loading. Nutrients were strongly depleted where biomass was present by the end of the experiment. This experimental study shows that the vertical distribution of phytoplankton may be driven by intraspecific resource competition in space.

Journal ArticleDOI
TL;DR: In this article, the fitness-abundance covariance is defined as the covariance between growth rates and the excess abundance of the population over what it would be without heterogeneous growth rates.
Abstract: In a recent paper, J. M. McNamara and S. R. Dall identified novel relationships between (1) the abundance of a species in different environments, (2) the temporal properties of environmental change, and (3) selection for or against dispersal. Here, the mathematics underlying these relationships in their two-environment model are investigated for arbitrary numbers of environments. A population statistic, the fitness–abundance covariance, is introduced, which quantifies the property they describe. It is the covariance between growth rates and the excess abundance of the population over what it would be without heterogeneous growth rates. Its value depends on the phase in the life cycle when the population is censused, and the pre-dispersal and post-dispersal values differ as an example of Fisher's Fundamental Theorem. The fitness–abundance covariance is shown to involve the Reduction Principle from the population genetics literature on the evolution of genetic systems and migration, which is reviewed. Condi...

Journal ArticleDOI
TL;DR: In this article, a numerical tectonic and geomorphic process-based landscape development model was used to create two landscapes with different geomorphic characteristics to demonstrate the influence of geomorphic processes on soil moisture patterns and plant distribution and evaluate the effectiveness of transects in describing moisture gradients and tolerance curves on landscapes dominated by creep or overland flow.
Abstract: Ecologists describe plant distribution using direct gradient analysis, by which a tolerance curve of species abundance is described along an environmental gradient (any environmental variable that affects plant distribution). Soil moisture is generally the gradient in low-relief areas that explains the most variation. Traditional direct gradient analyses have used terrain structure (i.e., transects up or down hillslopes) as a correlate to soil moisture. Here we use a numerical tectonic and geomorphic process-based landscape development model to create two landscapes with different geomorphic characteristics: (1) to demonstrate the influence of geomorphic processes on soil moisture patterns and plant distribution and (2) to evaluate the effectiveness of transects in describing moisture gradients and tolerance curves on landscapes dominated by creep or overland flow. We use a topographic index to approximate the distribution of soil moisture as it is determined by the shape of these different landscapes. Tr...