scispace - formally typeset
Search or ask a question
JournalISSN: 2045-7758

Ecology and Evolution 

Wiley
About: Ecology and Evolution is an academic journal published by Wiley. The journal publishes majorly in the area(s): Population & Biology. It has an ISSN identifier of 2045-7758. It is also open access. Over the lifetime, 9618 publications have been published receiving 152215 citations. The journal is also known as: Ecol Evol & Ecology & Evolution.


Papers
More filters
Journal ArticleDOI
TL;DR: This work used path analysis to determine whether compound indices detected more relationships between diversities of different organisms and traits than more basic indices, and demonstrated that while common diversity indices may appear interchangeable in simple analyses, when considering complex interactions, the choice of index can profoundly alter the interpretation of results.
Abstract: Biodiversity, a multidimensional property of natural systems, is difficult to quantify partly because of the multitude of indices proposed for this purpose. Indices aim to describe general properties of communities that allow us to compare different regions, taxa, and trophic levels. Therefore, they are of fundamental importance for environmental monitoring and conservation, although there is no consensus about which indices are more appropriate and informative. We tested several common diversity indices in a range of simple to complex statistical analyses in order to determine whether some were better suited for certain analyses than others. We used data collected around the focal plant Plantago lanceolata on 60 temperate grassland plots embedded in an agricultural landscape to explore relationships between the common diversity indices of species richness (S), Shannon's diversity (H'), Simpson's diversity (D-1), Simpson's dominance (D-2), Simpson's evenness (E), and Berger-Parker dominance (BP). We calculated each of these indices for herbaceous plants, arbuscular mycorrhizal fungi, aboveground arthropods, belowground insect larvae, and P.lanceolata molecular and chemical diversity. Including these trait-based measures of diversity allowed us to test whether or not they behaved similarly to the better studied species diversity. We used path analysis to determine whether compound indices detected more relationships between diversities of different organisms and traits than more basic indices. In the path models, more paths were significant when using H', even though all models except that with E were equally reliable. This demonstrates that while common diversity indices may appear interchangeable in simple analyses, when considering complex interactions, the choice of index can profoundly alter the interpretation of results. Data mining in order to identify the index producing the most significant results should be avoided, but simultaneously considering analyses using multiple indices can provide greater insight into the interactions in a system.

712 citations

Journal ArticleDOI
TL;DR: A novel risk-assessment framework is developed that integrates ecological and evolutionary perspectives on functional traits to determine species’ effects on ecosystems and their tolerance of environmental changes, and suggests a research agenda at the interface of evolutionary biology and ecosystem ecology.
Abstract: People depend on benefits provided by ecological systems. Understanding how these ecosystem services – and the ecosystem properties underpinning them – respond to drivers of change is therefore an urgent priority. We address this challenge through developing a novel risk-assessment framework that integrates ecological and evolutionary perspectives on functional traits to determine species’ effects on ecosystems and their tolerance of environmental changes. We define Specific Effect Function (SEF) as the per-gram or per capita capacity of a species to affect an ecosystem property, and Specific Response Function (SRF) as the ability of a species to maintain or enhance its population as the environment changes. Our risk assessment is based on the idea that the security of ecosystem services depends on how effects (SEFs) and tolerances (SRFs) of organisms – which both depend on combinations of functional traits – correlate across species and how they are arranged on the species’ phylogeny. Four extreme situations are theoretically possible, from minimum concern when SEF and SRF are neither correlated nor show a phylogenetic signal, to maximum concern when they are negatively correlated (i.e., the most important species are the least tolerant) and phylogenetically patterned (lacking independent backup). We illustrate the assessment with five case studies, involving both plant and animal examples. However, the extent to which the frequency of the four plausible outcomes, or their intermediates, apply more widely in real-world ecological systems is an open question that needs empirical evidence, and suggests a research agenda at the interface of evolutionary biology and ecosystem ecology.

443 citations

Journal ArticleDOI
TL;DR: The need for reconsideration by the ecological community of the interpretation of synergism and antagonism in situations where individual stressor effects oppose each other or where cumulative effects are reversed and enhanced is emphasized.
Abstract: The potential for complex synergistic or antagonistic interactions between multiple stressors presents one of the largest uncertainties when predicting ecological change but, despite common use of the terms in the scientific literature, a consensus on their operational definition is still lacking. The identification of synergism or antagonism is generally straightforward when stressors operate in the same direction, but if individual stressor effects oppose each other, the definition of synergism is paradoxical because what is synergistic to one stressor's effect direction is antagonistic to the others. In their highly cited meta-analysis, Crain et al. (Ecology Letters, 11, 2008: 1304) assumed in situations with opposing individual effects that synergy only occurs when the cumulative effect is more negative than the additive sum of the opposing individual effects. We argue against this and propose a new systematic classification based on an additive effects model that combines the magnitude and response direction of the cumulative effect and the interaction effect. A new class of “mitigating synergism” is identified, where cumulative effects are reversed and enhanced. We applied our directional classification to the dataset compiled by Crain et al. (Ecology Letters, 11, 2008: 1304) to determine the prevalence of synergistic, antagonistic, and additive interactions. Compared to their original analysis, we report differences in the representation of interaction classes by interaction type and we document examples of mitigating synergism, highlighting the importance of incorporating individual stressor effect directions in the determination of synergisms and antagonisms. This is particularly pertinent given a general bias in ecology toward investigating and reporting adverse multiple stressor effects (double negative). We emphasize the need for reconsideration by the ecological community of the interpretation of synergism and antagonism in situations where individual stressor effects oppose each other or where cumulative effects are reversed and enhanced.

440 citations

Journal ArticleDOI
TL;DR: The observed synergisms between interacting stressors suggest that care must be made in making inferences from single-stressor studies, and there is now an urgent need to move toward more robust, holistic, and ecologically realistic climate change experiments that incorporate interactions.
Abstract: Ocean acidification and warming are considered two of the greatest threats to marine biodiversity, yet the combined effect of these stressors on marine organisms remains largely unclear. Using a meta-analytical approach, we assessed the biological responses of marine organisms to the effects of ocean acidification and warming in isolation and combination. As expected biological responses varied across taxonomic groups, life-history stages, and trophic levels, but importantly, combining stressors generally exhibited a stronger biological (either positive or negative) effect. Using a subset of orthogonal studies, we show that four of five of the biological responses measured (calcification, photosynthesis, reproduction, and survival, but not growth) interacted synergistically when warming and acidification were combined. The observed synergisms between interacting stressors suggest that care must be made in making inferences from single-stressor studies. Our findings clearly have implications for the development of adaptive management strategies particularly given that the frequency of stressors interacting in marine systems will be likely to intensify in the future. There is now an urgent need to move toward more robust, holistic, and ecologically realistic climate change experiments that incorporate interactions. Without them accurate predictions about the likely deleterious impacts to marine biodiversity and ecosystem functioning over the next century will not be possible.

423 citations

Journal ArticleDOI
TL;DR: Information is synthesized from >60 years of research on the structure and functioning of kelp forest habitats in European waters, with particular emphasis on the coasts of UK and Ireland, which represents an important biogeographic transition zone that is subjected to multiple threats and stressors.
Abstract: Kelp forests along temperate and polar coastlines represent some of most diverse and productive habitats on the Earth. Here, we synthesize information from >60 years of research on the structure and functioning of kelp forest habitats in European waters, with particular emphasis on the coasts of UK and Ireland, which represents an important biogeographic transition zone that is subjected to multiple threats and stressors. We collated existing data on kelp distribution and abundance and reanalyzed these data to describe the structure of kelp forests along a spatial gradient spanning more than 10° of latitude. We then examined ecological goods and services provided by kelp forests, including elevated secondary production, nutrient cycling, energy capture and flow, coastal defense, direct applications, and biodiversity repositories, before discussing current and future threats posed to kelp forests and identifying key knowledge gaps. Recent evidence unequivocally demonstrates that the structure of kelp forests in the NE Atlantic is changing in response to climate- and non-climate-related stressors, which will have major implications for the structure and functioning of coastal ecosystems. However, kelp-dominated habitats along much of the NE Atlantic coastline have been chronically understudied over recent decades in comparison with other regions such as Australasia and North America. The paucity of field-based research currently impedes our ability to conserve and manage these important ecosystems. Targeted observational and experimental research conducted over large spatial and temporal scales is urgently needed to address these knowledge gaps.

364 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
2023629
20221,223
20211,310
20201,117
20191,115
20181,080