scispace - formally typeset
Search or ask a question

Showing papers in "Ecology in 2009"


Journal ArticleDOI
01 Dec 2009-Ecology
TL;DR: This work presents permutation tests to assess the statistical significance of species-site group associations and bootstrap methods for obtaining confidence intervals, which includes several new indices.
Abstract: Ecologists often face the task of studying the association between single species and one or several groups of sites representing habitat types, community types, or other categories. Besides characterizing the ecological preference of the species, the strength of the association usually presents a lot of interest for conservation biology, landscape mapping and management, and natural reserve design, among other applications. The indices most frequently employed to assess these relationships are the phi coefficient of association and the indicator value index (IndVal). We compare these two approaches by putting them into a broader framework of related measures, which includes several new indices. We present permutation tests to assess the statistical significance of species-site group associations and bootstrap methods for obtaining confidence intervals. Correlation measures, such as the phi coefficient, are more context-dependent than indicator values but allow focusing on the preference of the species. In contrast, the two components of an indicator value index directly assess the value of the species as a bioindicator because they can be interpreted as its positive predictive value and sensitivity. Ecologists should select the most appropriate index of association strength according to their objective and then compute confidence intervals to determine the precision of the estimate.

2,428 citations


Journal ArticleDOI
01 Sep 2009-Ecology
TL;DR: PanTHERIA as mentioned in this paper is a species-level data set compiled for analysis of life history, ecology, and geography of all known extant and recently extinct mammalian species, collected over a period of three years by 20 individuals.
Abstract: Analyses of life-history, ecological, and geographic trait differences among species, their causes, correlates, and likely consequences are increasingly important for understanding and conserving biodiversity in the face of rapid global change. Assembling multispecies trait data from diverse literature sources into a single comprehensive data set requires detailed consideration of methods to reliably compile data for particular species, and to derive single estimates from multiple sources based on different techniques and definitions. Here we describe PanTHERIA, a species-level data set compiled for analysis of life history, ecology, and geography of all known extant and recently extinct mammals. PanTHERIA is derived from a database capable of holding multiple geo-referenced values for variables within a species containing 100 740 lines of biological data for extant and recently extinct mammalian species, collected over a period of three years by 20 individuals. PanTHERIA also includes spatial databases o...

1,372 citations


Journal ArticleDOI
01 Apr 2009-Ecology
TL;DR: While initial projections suggested dramatic future increases in the geographic range of infectious diseases, recent models predict range shifts in disease distributions, with little net increase in area.
Abstract: The projected global increase in the distribution and prevalence of infectious diseases with climate change suggests a pending societal crisis. The subject is increasingly attracting the attention of health professionals and climate-change scientists, particularly with respect to malaria and other vector-transmitted human diseases. The result has been the emergence of a crisis discipline, reminiscent of the early phases of conservation biology. Latitudinal, altitudinal, seasonal, and interannual associations between climate and disease along with historical and experimental evidence suggest that climate, along with many other factors, can affect infectious diseases in a nonlinear fashion. However, although the globe is significantly warmer than it was a century ago, there is little evidence that climate change has already favored infectious diseases. While initial projections suggested dramatic future increases in the geographic range of infectious diseases, recent models predict range shifts in disease distributions, with little net increase in area. Many factors can affect infectious disease, and some may overshadow the effects of climate.

874 citations


Journal ArticleDOI
01 Aug 2009-Ecology
TL;DR: Both bee abundance and species richness were significantly, negatively affected by disturbance, however, the magnitude of the effects was not large and the only disturbance type showing a significant negative effect, habitat loss and fragmentation, was statistically significant only in systems where very little natural habitat remains.
Abstract: Pollinators may be declining globally, a matter of concern because animal pollination is required by most of the world's plant species, including many crop plants. Human land use and the loss of native habitats is thought to be an important driver of decline for wild, native pollinators, yet the findings of published studies on this topic have never been quantitatively synthesized. Here we use meta-analysis to synthesize the literature on how bees, the most important group of pollinators, are affected by human disturbances such as habitat loss, grazing, logging, and agriculture. We obtained 130 effect sizes from 54 published studies recording bee abundance and/or species richness as a function of human disturbance. Both bee abundance and species richness were significantly, negatively affected by disturbance. However, the magnitude of the effects was not large. Furthermore, the only disturbance type showing a significant negative effect, habitat loss and fragmentation, was statistically significant only in systems where very little natural habitat remains. Therefore, it would be premature to draw conclusions about habitat loss having caused global pollinator decline without first assessing the extent to which the existing studies represent the status of global ecosystems. Future pollinator declines seem likely given forecasts of increasing land-use change.

847 citations


Journal ArticleDOI
01 Feb 2009-Ecology
TL;DR: This paper describes how to test, and potentially falsify, a multivariate causal hypothesis involving only observed variables (i.e., a path analysis) when the data have a hierarchical or multilevel structure, and when different variables have different sampling distributions.
Abstract: This paper describes how to test, and potentially falsify, a multivariate causal hypothesis involving only observed variables (i.e., a path analysis) when the data have a hierarchical or multilevel structure, when different variables are potentially defined at different levels of such a hierarchy, and when different variables have different sampling distributions. The test is a generalization of Shipley's d-sep test and can be conducted using standard statistical programs capable of fitting generalized mixed models.

705 citations


Journal ArticleDOI
01 Feb 2009-Ecology
TL;DR: It is found that rates of carbon dioxide production from litter decomposition were dependent upon the microbial inoculum, with differences in the microbial community alone accounting for substantial variation in total carbon mineralized.
Abstract: A critical assumption underlying terrestrial ecosystem models is that soil microbial communities, when placed in a common environment, will function in an identical manner regardless of the composition of that community. Given high species diversity in microbial communities and the ability of microbes to adapt rapidly to new conditions, this assumption of functional redundancy seems plausible. We test the assumption by comparing litter decomposition rates in experimental microcosms inoculated with distinct microbial communities. We find that rates of carbon dioxide production from litter decomposition were dependent upon the microbial inoculum, with differences in the microbial community alone accounting for substantial (;20%) variation in total carbon mineralized. Communities that shared a common history with a given foliar litter exhibited higher decomposition rates when compared to communities foreign to that habitat. Our results suggest that the implicit assumption in ecosystem models (i.e., microbial communities in the same environment are functionally equivalent) is incorrect. To predict accurately how biogeochemical processes will respond to global change may require consideration of the community composition and/or adaptation of microbial communities to past resource environments.

696 citations


Journal ArticleDOI
01 Mar 2009-Ecology
TL;DR: This work investigated the effects of pure habitat, pure spatial, and spatially structured habitat processes on the distributions of species richness and species composition in a recently established 24-ha stem-mapping plot in the subtropical evergreen broad-leaved forest of Gutianshan National Nature Reserve in East China.
Abstract: The classical environmental control model assumes that species distribution is determined by the spatial variation of underlying habitat conditions. This niche-based model has recently been challenged by the neutral theory of biodiversity which assumes that ecological drift is a key process regulating species coexistence. Understanding the mechanisms that maintain biodiversity in communities critically depends on our ability to decompose the variation of diversity into the contributions of different processes affecting it. Here we investigated the effects of pure habitat, pure spatial, and spatially structured habitat processes on the distributions of species richness and species composition in a recently established 24-ha stem-mapping plot in the subtropical evergreen broad-leaved forest of Gutianshan National Nature Reserve in East China. We used the new spatial analysis method of principal coordinates of neighbor matrices (PCNM) to disentangle the contributions of these processes. The results showed that (1) habitat and space jointly explained approximately 53% of the variation in richness and approximately 65% of the variation in species composition, depending on the scale (sampling unit size); (2) tree diversity (richness and composition) in the Gutianshan forest was dominantly controlled by spatially structured habitat (24%) and habitat-independent spatial component (29%); the spatially independent habitat contributed a negligible effect (6%); (3) distributions of richness and species composition were strongly affected by altitude and terrain convexity, while the effects of slope and aspect were weak; (4) the spatial distribution of diversity in the forest was dominated by broad-scaled spatial variation; (5) environmental control on the one hand and unexplained spatial variation on the other (unmeasured environmental variables and neutral processes) corresponded to spatial structures with different scales in the Gutianshan forest plot; and (6) five habitat types were recognized; a few species were statistically significant indicators of three of these habitats, whereas two habitats had no significant indicator species. The results suggest that the diversity of the forest is equally governed by environmental control (30%) and neutral processes (29%). In the fine-scale analysis (10 x 10 m cells), neutral processes dominated (43%) over environmental control (20%).

541 citations


Journal ArticleDOI
01 Dec 2009-Ecology
TL;DR: The hierarchical-response framework is explicitly comparative to better understand differential sensitivities of ecosystems, and it can be used to guide the design of coordinated, cross-site experiments to enable more robust forecasts of contemporary and future ecosystem dynamics.
Abstract: In contrast to pulses in resource availability following disturbance events, many of the most pressing global changes, such as elevated atmospheric carbon dioxide concentrations and nitrogen deposition, lead to chronic and often cumulative alterations in available resources. Therefore, predicting ecological responses to these chronic resource alterations will require the modification of existing disturbance-based frameworks. Here, we present a conceptual framework for assessing the nature and pace of ecological change under chronic resource alterations. The "hierarchical-response framework" (HRF) links well-documented, ecological mechanisms of change to provide a theoretical basis for testing hypotheses to explain the dynamics and differential sensitivity of ecosystems to chronic resource alterations. The HRF is based on a temporal hierarchy of mechanisms and responses beginning with individual (physiological/metabolic) responses, followed by species reordering within communities, and finally species loss and immigration. Each mechanism is hypothesized to differ in the magnitude and rate of its effects on ecosystem structure and function, with this variation depending on ecosystem attributes, such as longevity of dominant species, rates of biogeochemical cycling, levels of biodiversity, and trophic complexity. Overall, the HRF predicts nonlinear changes in ecosystem dynamics, with the expectation that interactions with natural disturbances and other global-change drivers will further alter the nature and pace of change. The HRF is explicitly comparative to better understand differential sensitivities of ecosystems, and it can be used to guide the design of coordinated, cross-site experiments to enable more robust forecasts of contemporary and future ecosystem dynamics.

481 citations


Journal ArticleDOI
01 May 2009-Ecology
TL;DR: This study shows that the use in concert of both approaches with their own caveats and advantages is crucial to obtain more robust results and that comparisons among models are needed in the near future to gain accuracy regarding predictions of range shifts under climate change.
Abstract: Obtaining reliable predictions of species range shifts under climate change is a crucial challenge for ecologists and stakeholders. At the continental scale, niche-based models have been widely used in the last 10 years to predict the potential impacts of climate change on species distributions all over the world, although these models do not include any mechanistic relationships. In contrast, species-specific, process-based predictions remain scarce at the continental scale. This is regrettable because to secure relevant and accurate predictions it is always desirable to compare predictions derived from different kinds of models applied independently to the same set of species and using the same raw data. Here we compare predictions of range shifts under climate change scenarios for 2100 derived from niche-based models with those of a process-based model for 15 North American boreal and temperate tree species. A general pattern emerged from our comparisons: niche-based models tend to predict a stronger level of extinction and a greater proportion of colonization than the process-based model. This result likely arises because niche-based models do not take phenotypic plasticity and local adaptation into account. Nevertheless, as the two kinds of models rely on different assumptions, their complementarity is revealed by common findings. Both modeling approaches highlight a major potential limitation on species tracking their climatic niche because of migration constraints and identify similar zones where species extirpation is likely. Such convergent predictions from models built on very different principles provide a useful way to offset uncertainties at the continental scale. This study shows that the use in concert of both approaches with their own caveats and advantages is crucial to obtain more robust results and that comparisons among models are needed in the near future to gain accuracy regarding predictions of range shifts under climate change.

469 citations


Journal ArticleDOI
01 Apr 2009-Ecology
TL;DR: This work develops the first statistically rigorous nonparametric method for estimating the minimum number of additional individuals, samples, or sampling area required to detect any arbitrary proportion of the estimated asymptotic species richness.
Abstract: Biodiversity sampling is labor intensive, and a substantial fraction of a biota is often represented by species of very low abundance, which typically remain undetected by biodiversity surveys. Statistical methods are widely used to estimate the asymptotic number of species present, including species not yet detected. Additional sampling is required to detect and identify these species, but richness estimators do not indicate how much sampling effort (additional individuals or samples) would be necessary to reach the asymptote of the species accumulation curve. Here we develop the first statistically rigorous nonparametric method for estimating the minimum number of additional individuals, samples, or sampling area required to detect any arbitrary proportion (including 100%) of the estimated asymptotic species richness. The method uses the Chao1 and Chao2 nonparametric estimators of asymptotic richness, which are based on the frequencies of rare species in the original sampling data. To evaluate the performance of the proposed method, we randomly subsampled individuals or quadrats from two large biodiversity inventories (light trap captures of Lepidoptera in Great Britain and censuses of woody plants on Barro Colorado Island [BCI], Panama). The simulation results suggest that the method performs well but is slightly conservative for small sample sizes. Analyses of the BCI results suggest that the method is robust to nonindependence arising from small-scale spatial aggregation of species occurrences. When the method was applied to seven published biodiversity data sets, the additional sampling effort necessary to capture all the estimated species ranged from 1.05 to 10.67 times the original sample (median approximately equal to 2.23). Substantially less effort is needed to detect 90% of the species (0.33-1.10 times the original effort; median approximately equal to 0.80). An Excel spreadsheet tool is provided for calculating necessary sampling effort for either abundance data or replicated incidence data.

468 citations


Journal ArticleDOI
01 Mar 2009-Ecology
TL;DR: The largest changes in fauna are predicted for the tundra, Central America, and the Andes Mountains where, assuming no dispersal constraints, specific areas are likely to experience over 90% turnover, so that faunal distributions in the future will bear little resemblance to those of today.
Abstract: Climate change is predicted to be one of the greatest drivers of ecological change in the coming century. Increases in temperature over the last century have clearly been linked to shifts in species distributions. Given the magnitude of projected future climatic changes, we can expect even larger range shifts in the coming century. These changes will, in turn, alter ecological communities and the functioning of ecosystems. Despite the seriousness of predicted climate change, the uncertainty in climate-change projections makes it difficult for conservation managers and planners to proactively respond to climate stresses. To address one aspect of this uncertainty, we identified predictions of faunal change for which a high level of consensus was exhibited by different climate models. Specifically, we assessed the potential effects of 30 coupled atmosphere-ocean general circulation model (AOGCM) future-climate simulations on the geographic ranges of 2954 species of birds, mammals, and amphibians in the Western Hemisphere. Eighty percent of the climate projections based on a relatively low greenhouse-gas emissions scenario result in the local loss of at least 10% of the vertebrate fauna over much of North and South America. The largest changes in fauna are predicted for the tundra, Central America, and the Andes Mountains where, assuming no dispersal constraints, specific areas are likely to experience over 90% turnover, so that faunal distributions in the future will bear little resemblance to those of today.

Journal ArticleDOI
01 Jan 2009-Ecology
TL;DR: Results show that all herbivores tend to use more open habitats preferentially when lions are in their vicinity, probably an effective anti-predator behavior against such an ambush predator.
Abstract: Predators may influence their prey populations not only through direct lethal effects, but also through indirect behavioral changes. Here, we combined spatiotemporal fine-scale data from GPS radio collars on lions with habitat use information on 11 African herbivores in Hwange National Park (Zimbabwe) to test whether the risk of predation by lions influenced the distribution of herbivores in the landscape. Effects of long-term risk of predation (likelihood of lion presence calculated over four months) and short-term risk of predation (actual presence of lions in the vicinity in the preceding 24 hours) were contrasted. The long-term risk of predation by lions appeared to influence the distributions of all browsers across the landscape, but not of grazers. This result strongly suggests that browsers and grazers, which face different ecological constraints, are influenced at different spatial and temporal scales in the variation of the risk of predation by lions. The results also show that all herbivores tend to use more open habitats preferentially when lions are in their vicinity, probably an effective anti-predator behavior against such an ambush predator. Behaviorally induced effects of lions may therefore contribute significantly to structuring African herbivore communities, and hence possibly their effects on savanna ecosystems.

Journal ArticleDOI
01 Jun 2009-Ecology
TL;DR: Coral reef ecosystems appear to be more resistant to macroalgal blooms than assumed, which has important implications for reef management.
Abstract: Many marine scientists have concluded that coral reefs are moving toward or are locked into a seaweed-dominated state. However, because there have been no regional- or global-scale analyses of such coral reef “phase shifts,” the magnitude of this phenomenon was unknown. We analyzed 3581 quantitative surveys of 1851 reefs performed between 1996 and 2006 to determine the frequency, geographical extent, and degree of macroalgal dominance of coral reefs and of coral to macroalgal phase shifts around the world. Our results indicate that the replacement of corals by macroalgae as the dominant benthic functional group is less common and less geographically extensive than assumed. Although we found evidence of moderate local increases in macroalgal cover, particularly in the Caribbean, only 4% of reefs were dominated by macroalgae (i.e., >50% cover). Across the Indo-Pacific, where regional averages of macroalgal cover were 9–12%, macroalgae only dominated 1% of the surveyed reefs. Between 1996 and 2006, phase shi...

Journal ArticleDOI
01 Aug 2009-Ecology
TL;DR: It is found that habitat specialists responded primarily to environmental factors and habitat generalists responded mainly to spatial factors, which infer that a natural metacommunity can exhibit complicated dynamics, with some groups of species governed according to environmental processes and other groups governed mainly by dispersal processes.
Abstract: Emergence of the metacommunity concept has made a substantial contribution to better understanding of the community composition and dynamics in a regional context. However, long-term field data for testing of available metacommunity models are still scarce, and the extent to which these models apply to the real world remains unknown. Tests conducted so far have largely sought to fit data on the entire regional set of species to one of several metacommunity models, implicitly assuming that all species operate similarly over the same set of sites. However, species differ in their habitat use. These differences can, in the most general terms, be expressed as a gradient of habitat specialization (ranging from habitat specialists to habitat generalists). We postulate that such differences in habitat specialization will have implications for metacommunity dynamics. Specifically, we predict that specialists respond more to local processes and generalists respond to regional spatial processes. We tested these predictions using natural microcosm communities for which long-term (nine-year) environmental and population dynamics data were available. We used redundancy analysis to determine the proportion of variation explained by environmental and spatial factors. We repeated this analysis to explain variation in the entire regional set of species, in generalist species only, and in specialists only. We further used ANOVA to test for differences in the proportions of explained variation. We found that habitat specialists responded primarily to environmental factors and habitat generalists responded mainly to spatial factors. Thus, from the metacommunity perspective, the dynamics of habitat specialists are best explained by a combination of species sorting and mass effects, while that of habitat generalists are best explained by patch dynamics and neutral models. Consequently, we infer that a natural metacommunity can exhibit complicated dynamics, with some groups of species (e.g., habitat specialists) governed according to environmental processes and other groups (e.g., habitat generalists) governed mainly by dispersal processes.

Journal ArticleDOI
01 Aug 2009-Ecology
TL;DR: It is hypothesized that parasite spillback could occur when a nonindigenous species is a competent host for a native parasite, with the presence of the additional host increasing disease impacts in native species, and called for greater recognition of parasite spill back as a potential threat to native species.
Abstract: While there is good evidence linking animal introductions to impacts on native communities via disease emergence, our understanding of how such impacts occur is incomplete. Invasion ecologists have focused on the disease risks to native communities through "spillover" of infectious agents introduced with nonindigenous hosts, while overlooking a potentially more common mechanism of impact, that of "parasite spillback." We hypothesize that parasite spillback could occur when a nonindigenous species is a competent host for a native parasite, with the presence of the additional host increasing disease impacts in native species. Despite its lack of formalization in all recent reviews of the role of parasites in species introductions, aspects of the invasion process actually favor parasite spillback over spillover. We specifically review the animal-parasite literature and show that native species (arthropods, parasitoids, protozoa, and helminths) account for 67% of the parasite fauna of nonindigenous animals from a range of taxonomic groups. We show that nonindigenous species can be highly competent hosts for such parasites and provide evidence that infection by native parasites does spillback from nonindigenous species to native host species, with effects at both the host individual and population scale. We conclude by calling for greater recognition of parasite spillback as a potential threat to native species, discuss possible reasons for its neglect by invasion ecologists, and identify future research directions.

Journal ArticleDOI
01 Jan 2009-Ecology
TL;DR: This work identifies and defines a rapidly emerging alternative approach, which it formalize as "space as a surrogate" for unmeasured processes, that is used to maximize inference about ecological processes through the analysis of spatial patterns or spatial residuals alone.
Abstract: The ecological processes that create spatial patterns have been examined by direct measurement and through measurement of patterns resulting from experimental manipulations. But in many situations, creating experiments and direct measurement of spatial processes can be difficult or impossible. Here, we identify and define a rapidly emerging alternative approach, which we formalize as "space as a surrogate" for unmeasured processes, that is used to maximize inference about ecological processes through the analysis of spatial patterns or spatial residuals alone. This approach requires three elements to be successful: a priori hypotheses, ecological theory and/or knowledge, and precise spatial analysis. We offer new insights into a long-standing debate about process-pattern links in ecology and highlight six recent studies that have successfully examined spatial patterns to understand a diverse array of processes: competition in forest-stand dynamics, dispersal of freshwater fish, movement of American marten, invasion mechanisms of exotic trees, dynamics of natural disturbances, and tropical-plant diversity. Key benefits of using space as a surrogate can be found where experimental manipulation or direct measurements are difficult or expensive to obtain or not possible. We note that, even where experiments can be performed, this procedure may aid in measuring the in situ importance of the processes uncovered through experiments.

Journal ArticleDOI
01 May 2009-Ecology
TL;DR: The forests studied here appear to be much more resilient to occasional incursion of fire from the savanna, despite being unable to invade frequently burned savannas, and rapid growth will be particularly important for forest species to escape the fire trap, so forests should be restricted to high-resource sites.
Abstract: Tropical savanna and forest are recognized to represent alternate stable states, primarily determined by feedbacks with fire. Vegetation-fire dynamics in each of these vegetation types are largely determined by the influence of the vegetation on fire behavior, as well as the effects of fire behavior on tree mortality, topkill (defined here as complete death of the aerial biomass, regardless of whether the plant recovers by resprouting), and rate of growth of resprouts. We studied the effect of fire on three savanna-forest boundaries in central Brazil. Fire intensity was greater in savanna than forest, as inferred by a twofold greater height of stem charring. Despite lower fire intensity, forest tree species exhibited higher rates of topkill, which was best explained by their thinner bark, relative to savanna species. Following topkill, there was no tendency for sprouts of savanna trees to grow faster than those of forest species, contrary to expectations, nor was whole-plant mortality higher in forest than in savanna. This contrasts with observations of high rates of postburn mortality in many other tropical forests. The low tree mortality in these transitional forests suggests that the dynamic of these natural savanna-forest boundaries is fundamentally different from that of forest boundaries originating from deforestation in the humid tropics. The forests studied here appear to be much more resilient to occasional incursion of fire from the savanna, despite being unable to invade frequently burned savanna. The thin bark of forest species makes them particularly susceptible to the "fire trap," whereby repeated topkill of small trees prevents recruitment into adult size classes. Rapid growth will be particularly important for forest species to escape the fire trap, so we predict that, where fire is frequent, forests should be restricted to high-resource sites. Here, Mg2+ and Ca2+ concentrations had particularly strong effects on postburn growth rates, suggesting that these elements may most strongly limit the distribution of forest in these fire-prone savannas.

Journal ArticleDOI
01 Aug 2009-Ecology
TL;DR: The results suggest that both relative species abundance and complementarity in spatiotemporal distribution contribute substantially to generate observed network patters, but that this information is by no means sufficient to predict the occurrence and frequency of pairwise interactions.
Abstract: The structure of mutualistic networks is likely to result from the simultaneous influence of neutrality and the constraints imposed by complementarity in species phenotypes, phenologies, spatial distributions, phylogenetic relationships, and sampling artifacts. We develop a conceptual and methodological framework to evaluate the relative contributions of these potential determinants. Applying this approach to the analysis of a plant-pollinator network, we show that information on relative abundance and phenology suffices to predict several aggregate network properties (connectance, nestedness, interaction evenness, and interaction asymmetry). However, such information falls short of predicting the detailed network structure (the frequency of pairwise interactions), leaving a large amount of variation unexplained. Taken together, our results suggest that both relative species abundance and complementarity in spatiotemporal distribution contribute substantially to generate observed network patters, but that this information is by no means sufficient to predict the occurrence and frequency of pairwise interactions. Future studies could use our methodological framework to evaluate the generality of our findings in a representative sample of study systems with contrasting ecological conditions.

Journal ArticleDOI
01 Aug 2009-Ecology
TL;DR: A meta-analysis of 34 published and unpublished studies on mycorrhizal colonization of host plants found that the magnitude and direction of the effect depend upon the feeding mode and diet breadth of the insect and the identity of fungi.
Abstract: Mycorrhizal status of the host plant is often ignored in studies on plant-herbivore interactions, but mycorrhizal colonization is known to induce many morphological, physiological, and biochemical changes in host plants, which in turn may alter plant quality as a host for insect herbivores. Both positive and negative effects of mycorrhizal colonization of the host plant on performance and density of insect herbivores have been reported in previous studies. We have conducted a meta-analysis of 34 published and unpublished studies on this topic in order to find out the sources of variation in mycorrhizae effects on insect herbivores. Effects of mycorrhizae on chewing insects depended upon the parameter measured and the degree of herbivore feeding specialization. Density and consumption of chewing insects were higher on mycorrhizal plants, but this did not lead to greater plant damage, presumably because herbivore survival tended to be lower on mycorrhizal plants. Mono- and oligophagous chewers benefited from mycorrhizal colonization of their host plants, whereas performance of polyphagous chewers was reduced on mycorrhizal plants. Among sucking insects, phloem feeders benefited from mycorrhizal infection, but performance of mesophyll feeders was lower on mycorrhizal plants. The type of mycorrhiza was not important for chewing insects, but performance of sucking insects was increased more by arbuscular mycorrhizal fungi (AM) than by ectomycorrhizae (ECM). Among AM inoculation studies, the most commonly used fungal species, Glomus intraradices, tended to have a negative effect on chewer performance, whereas all other fungal species tended to have a positive effect. There was no significant difference in results between studies using inoculation and fungicides, field and laboratory studies, and published and unpublished studies. Mycorrhizal status of the host plant thus influences insect herbivore performance, but the magnitude and direction of the effect depend upon the feeding mode and diet breadth of the insect and the identity of fungi.

Journal ArticleDOI
01 Dec 2009-Ecology
TL;DR: It is concluded that transgressive overyielding between functional groups and species richness effects within functional groups caused the positive biodiversity effects on aboveground community biomass in the large-scale biodiversity experiment near Jena, Germany.
Abstract: Plant diversity has been shown to increase community biomass in experimental communities, but the mechanisms resulting in such positive biodiversity effects have remained largely unknown. We used a large-scale six-year biodiversity experiment near Jena, Germany, to examine how aboveground community biomass in grasslands is affected by different components of plant diversity and thereby infer the mechanisms that may underlie positive biodiversity effects. As components of diversity we defined the number of species (1-16), number of functional groups (1-4), presence of functional groups (legumes, tall herbs, small herbs, and grasses) and proportional abundance of functional groups. Using linear models, replacement series on the level of functional groups, and additive partitioning on the level of species, we explored whether the observed biodiversity effects originated from disproportion- ate effects of single functional groups or species or from positive interactions between them. Aboveground community biomass was positively related to the number of species measured across functional groups as well as to the number of functional groups measured across different levels of species richness. Furthermore, increasing the number of species within functional groups increased aboveground community biomass, indicating that species within functional groups were not redundant with respect to biomass production. A positive relationship between the number of functional groups and aboveground community biomass within a particular level of species richness suggested that complementarity was larger between species belonging to different rather than to the same functional groups. The presence of legumes or tall herbs had a strong positive impact on aboveground community biomass whereas the presence of small herbs or grasses had on average no significant effect. Two- and three-way interactions between functional group presences were weak, suggesting that their main effects were largely additive. Replacement series analyses on the level of functional groups revealed strong transgressive overyielding and relative yields .1, indicating facilitation. On the species level, we found strong complementarity effects that increased over time while selection effects due to disproportionate contributions of particular species decreased over time. We conclude that transgressive overyielding between functional groups and species richness effects within functional groups caused the positive biodiversity effects on aboveground community biomass in our experiment.

Journal ArticleDOI
01 Feb 2009-Ecology
TL;DR: The hypothesis that plant-herbivore interaction strength increases with temperature is experimentally tested using a common species of marine macroalga and the grazing amphipod Ampithoe longimana to study the effects of changing conditions on trophic interactions.
Abstract: Temperature has strong, predictable effects on metabolism. Through this mechanism, environmental temperature affects individuals and populations of poikilotherms by determining rates of resource use, growth, reproduction, and mortality. Predictable variation in metabolic processes such as growth and reproduction could affect the strength of species interactions, but the community-level consequences of metabolic temperature dependence are virtually unexplored. I experimentally tested the hypothesis that plant-herbivore interaction strength increases with temperature using a common species of marine macroalga (Sargassum filipendula) and the grazing amphipod Ampithoe longimana. Increasing temperature increased per capita interaction strength in two independent experiments and reversed a positive effect of temperature on plant growth. Temperature did not alter palatability of plant tissue to herbivores or average herbivore feeding rate. A predictable effect of temperature on herbivore-plant interaction strength could provide key information toward understanding local food web responses to changing temperatures at different spatial and temporal scales. Efforts to extend the effects of physiological mechanisms to larger scale patterns, including projections of the ecological effects of climate change, must be expanded to include the effects of changing conditions on trophic interactions.

Journal ArticleDOI
01 Mar 2009-Ecology
TL;DR: This study demonstrates that landscape-level habitat composition modifies the trade-off between food and cover for large herbivorous mammals, Consequently, landscapes are likely to differ in their vulnerability to crop damage and threat to biodiversity from grazing.
Abstract: Animals selecting habitats often have to consider many factors, e.g., food and cover for safety. However, each habitat type often lacks an adequate mixture of these factors. Analyses of habitat selection using resource selection functions (RSFs) for animal radiotelemetry data typically ignore trade-offs, and the fact that these may change during an animal's daily foraging and resting rhythm on a short-term basis. This may lead to changes in the relative use of habitat types if availability differs among individual home ranges, called functional responses in habitat selection. Here, we identify such functional responses and their underlying behavioral mechanisms by estimating RSFs through mixed-effects logistic regression of telemetry data on 62 female red deer (Cervus elaphus) in Norway. Habitat selection changed with time of day and activity, suggesting a trade-off in habitat selection related to forage quantity or quality vs. shelter. Red deer frequently used pastures offering abundant forage and little canopy cover during nighttime when actively foraging, while spending much of their time in forested habitats with less forage but more cover during daytime when they are more often inactive. Selection for pastures was higher when availability was low and decreased with increasing availability. Moreover, we show for the first time that in the real world with forest habitats also containing some forage, there was both increasing selection of pastures (i.e., not proportional use) and reduced time spent in pastures (i.e., not constant time use) with lowered availability of pastures within the home range. Our study demonstrates that landscape-level habitat composition modifies the trade-off between food and cover for large herbivorous mammals. Consequently, landscapes are likely to differ in their vulnerability to crop damage and threat to biodiversity from grazing.

Journal ArticleDOI
01 Dec 2009-Ecology
TL;DR: A model for step selection functions (SSF) that is composed of a resource-independent movement kernel and a resource selection function (RSF) is proposed and it is suggested that distance always be included as a covariate in SSF analyses.
Abstract: Patterns of resource selection by animal populations emerge as a result of the behavior of many individuals. Statistical models that describe these population-level patterns of habitat use can miss important interactions between individual animals and characteristics of their local environment; however, identifying these interactions is difficult. One approach to this problem is to incorporate models of individual movement into resource selection models. To do this, we propose a model for step selection functions (SSF) that is composed of a resource-independent movement kernel and a resource selection function (RSF). We show that standard case-control logistic regression may be used to fit the SSF; however, the sampling scheme used to generate control points (i.e., the definition of availability) must be accommodated. We used three sampling schemes to analyze simulated movement data and found that ignoring sampling and the resource-independent movement kernel yielded biased estimates of selection. The level of bias depended on the method used to generate control locations, the strength of selection, and the spatial scale of the resource map. Using empirical or parametric methods to sample control locations produced biased estimates under stronger selection; however, we show that the addition of a distance function to the analysis substantially reduced that bias. Assuming a uniform availability within a fixed buffer yielded strongly biased selection estimates that could be corrected by including the distance function but remained inefficient relative to the empirical and parametric sampling methods. As a case study, we used location data collected from elk in Yellowstone National Park, USA, to show that selection and bias may be temporally variable. Because under constant selection the amount of bias depends on the scale at which a resource is distributed in the landscape, we suggest that distance always be included as a covariate in SSF analyses. This approach to modeling resource selection is easily implemented using common statistical tools and promises to provide deeper insight into the movement ecology of animals.

Journal ArticleDOI
01 Aug 2009-Ecology
TL;DR: It is argued that while phylogenetic relatedness may be a good general multivariate proxy for ecological similarity, it may have a reduced capacity to depict the functional mechanisms behind species coexistence when coexisting species simultaneously converge and diverge in function.
Abstract: Species diversity is promoted and maintained by ecological and evolutionary processes operating on species attributes through space and time. The degree to which variability in species function regulates distribution and promotes coexistence of species has been debated. Previous work has attempted to quantify the relative importance of species function by using phylogenetic relatedness as a proxy for functional similarity. The key assumption of this approach is that function is phylogenetically conserved. If this assumption is supported, then the phylogenetic dispersion in a community should mirror the functional dispersion. Here we quantify functional trait dispersion along several key axes of tree life-history variation and on multiple spatial scales in a Neotropical dry-forest community. We next compare these results to previously reported patterns of phylogenetic dispersion in this same forest. We find that, at small spatial scales, coexisting species are typically more functionally clustered than expected, but traits related to adult and regeneration niches are overdispersed. This outcome was repeated when the analyses were stratified by size class. Some of the trait dispersion results stand in contrast to the previously reported phylogenetic dispersion results. In order to address this inconsistency we examined the strength of phylogenetic signal in traits at different depths in the phylogeny. We argue that: (1) while phylogenetic relatedness may be a good general multivariate proxy for ecological similarity, it may have a reduced capacity to depict the functional mechanisms behind species coexistence when coexisting species simultaneously converge and diverge in function; and (2) the previously used metric of phylogenetic signal provided erroneous inferences about trait dispersion when married with patterns of phylogenetic dispersion.

Journal ArticleDOI
01 Sep 2009-Ecology
TL;DR: It is reported that lack of adequate ectomycorrhizal fungi hinders invasion by exotic Pinaceae on Isla Victoria, Argentina, by reducing both the probability of establishment and growth of invading individuals.
Abstract: Why particular invasions succeed and others fail is not well understood. The role of soil biota has been proposed as important. However, the role of mutualists has received much less attention than that of pathogens. Here we report that lack of adequate ectomycorrhizal fungi hinders invasion by exotic Pinaceae on Isla Victoria, Argentina, by reducing both the probability of establishment and growth of invading individuals. More than one hundred exotic tree species were introduced to this island ca. 80 years ago, but invasive trees are found in high densities only in areas adjacent to plantations. With a series of greenhouse and field experiments we found lower mycorrhizal colonization levels and few fungal species far from original plantings, and key fungal mutualists are confined to areas near plantations, probably owing to dispersal limitations. Low inoculum levels far from the plantations are retarding the invasion. Our experiments indicate that positive interactions belowground can play a key but underappreciated role in invasion dynamics.

Journal ArticleDOI
01 Aug 2009-Ecology
TL;DR: The value of the capital and income typology is considered with reference to three functions that it might serve: description, explanation, and prediction; it is found that interpretations of the terms have diversified and lack rigidity, leading to subjectivity in their definition.
Abstract: The life histories of organisms can show pronounced variation in the way that the costs of reproduction are financed To facilitate discussions of this variation, two terms are increasing in use: "capital breeding" describes the situation in which reproduction is financed using stored capital; "income breeding" refers to the use of concurrent intake to pay for a reproductive attempt We consider the value of the capital and income typology with reference to three functions that it might serve: description, explanation, and prediction We find that interpretations of the terms have diversified and lack rigidity, leading to subjectivity in their definition We recognize that time frames of interest will vary among taxa, but we urge consistency of use within those taxa We also urge consistency in the use of a single metric designed to measure the reliance of an organism on capital The concepts of capital and income breeding have served well as proximate explanations for behavioral or physiological diversity, but efforts to explain their adaptive value have been disproportionately focused on individual taxa Mapping cause to effect is difficult in ecology Nevertheless, further analyses, based on consistently applied measures of reliance on stored capital, may reveal which of the putative ecological, morphological, and physiological drivers have the most consistent and widespread effects The capital-income typology has yet to be applied to the question of prediction, and thus, it remains to be seen whether these concepts will be of use in identifying the likely responses of different populations to changes in their environment

Journal ArticleDOI
01 Dec 2009-Ecology
TL;DR: Although ungulates appear capable of balancing risk and forage at different spatial scales, risk avoidance at large landscape scales may be more effective in the absence of human-caused refugia from predation.
Abstract: Trade-offs between predation risk and forage fundamentally drive resource selection by animals. Among migratory ungulates, trade-offs can occur at large spatial scales through migration, which allows an "escape" from predation, but trade-offs can also occur at finer spatial scales. Previous authors suggest that ungulates will avoid predation risk at the largest scale, although few studies have examined multi-scale trade-offs to test for the relative benefits of risk avoidance across scales. Building on previously developed spatial models of forage and wolf predation risk, we tested for trade-offs at the broad landscape scale and at a finer, within-home-range scale for migratory and non-migratory resident elk (Cervus elaphus) during summer in the Canadian Rockies in Banff National Park (BNP) and adjacent Alberta, Canada. Migration reduced exposure to wolf predation risk by 70% relative to residents at the landscape scale; at the fine scale, migrants used areas that were, on average, 6% higher in forage digestibility. In contrast, by forgoing migration, resident elk were exposed to higher predation risk, but they reduced predation risk at fine scales to only 15% higher than migrants by using areas close to human activity, which wolves avoided. Thus, residents paid for trying to avoid predation risk with lower forage quality. Residents may have been able to compensate, however, by using areas of abundant forage close to human activity where they may have been able to forage more selectively while avoiding predation risk. Human activity effectively decoupled the positive correlation between high forage quality and wolf predation, providing an effective alternate strategy for residents, similar to recent findings in other systems. Although ungulates appear capable of balancing risk and forage at different spatial scales, risk avoidance at large landscape scales may be more effective in the absence of human-caused refugia from predation.

Journal ArticleDOI
01 Apr 2009-Ecology
TL;DR: This work discusses candidate neurological, olfactory, and learning mechanisms for the emergence of Lévy flight patterns in some organisms, and notes that convergence of behaviors along such different evolutionary pathways is not surprising given the energetic efficiencies that Lévey flight movement patterns confer.
Abstract: Over recent years there has been an accumulation of evidence from a variety of experimental, theoretical, and field studies that many organisms use a movement strategy approximated by Levy flights when they are searching for resources. Levy flights are random movements that can maximize the efficiency of resource searches in uncertain environments. This is a highly significant finding because it suggests that Levy flights provide a rigorous mathematical basis for separating out evolved, innate behaviors from environmental influences. We discuss recent developments in random-search theory, as well as the many different experimental and data collection initiatives that have investigated search strategies. Methods for trajectory construction and robust data analysis procedures are presented. The key to prediction and understanding does, however, lie in the elucidation of mechanisms underlying the observed patterns. We discuss candidate neurological, olfactory, and learning mechanisms for the emergence of Levy flight patterns in some organisms, and note that convergence of behaviors along such different evolutionary pathways is not surprising given the energetic efficiencies that Levy flight movement patterns confer.

Journal ArticleDOI
01 Nov 2009-Ecology
TL;DR: A class of models for inference about abundance or density using spatial capture-recapture data from studies based on camera trapping and related methods is developed, showing that the models can be regarded as generalized linear mixed models, where the individual home range centers are random effects.
Abstract: We develop a class of models for inference about abundance or density using spatial capture-recapture data from studies based on camera trapping and related methods. The model is a hierarchical model composed of two components: a point process model describing the distribution of individuals in space (or their home range centers) and a model describing the observation of individuals in traps. We suppose that trap- and individual-specific capture probabilities are a function of distance between individual home range centers and trap locations. We show that the models can be regarded as generalized linear mixed models, where the individual home range centers are random effects. We adopt a Bayesian framework for inference under these models using a formulation based on data augmentation. We apply the models to camera trapping data on tigers from the Nagarahole Reserve, India, collected over 48 nights in 2006. For this study, 120 camera locations were used, but cameras were only operational at 30 locations during any given sample occasion. Movement of traps is common in many camera-trapping studies and represents an important feature of the observation model that we address explicitly in our application.

Journal ArticleDOI
01 Apr 2009-Ecology
TL;DR: Stable isotopes can provide an efficient tool for measuring individual- and population-level dietary breadth and may be useful for studying populations where longitudinal data on individuals would otherwise be impossible to acquire.
Abstract: Differences in diet composition among conspecifics (dietary specialization) have been documented across a broad range of taxonomic groups and habitats, and such variation at the individual level is increasingly recognized as an important component of diversity in trophic interactions. Accurate identification of individual dietary specialization, however, requires longitudinal dietary records that are labor-intensive and cost-prohibitive to obtain for many species. Here we explore the use of stable isotopes (d 13 C and d 15 N) as a promising technique for detecting and quantifying patterns of individual dietary specialization. Southern sea otters (Enhydra lutris nereis) offer a unique opportunity for testing this approach because (1) they consume a wide variety of prey that span multiple trophic levels, habitats, and ecologically defined functional groups; and (2) individual diet specialization can be validated with existing observational data. We analyzed the isotopic composition of sea otter vibrissae (n ¼ 31) in order to characterize inter- and intra-individual variation in sea otter diets at Monterey Bay, California, USA. At the population level, sea otters showed substantial variation in both d 13 C and d 15 N values, occupying nearly all of the ''isotopic space'' created by the diversity of isotopic signatures of potential prey taxa. Most of the variation in sea otter vibrissae was accounted for by differences between individuals, with much less contributed by within-individual variation. A majority of sea otters (;80%) showed relatively little temporal variability in isotopic composition, suggesting that the proportional composition of most individuals' diets is relatively constant over time; a few individuals (;20%) exhibited a high degree of intra-vibrissa isotopic variability, suggesting seasonal shifts in diet composition. These results and our interpretation of them were supported by long-term observational data on the diets of radio-tagged sea otters from the same population (n ¼ 23). Our results demonstrate that stable isotopes can provide an efficient tool for measuring individual- and population-level dietary breadth and may be useful for studying populations where longitudinal data on individuals would otherwise be impossible to acquire. This will be critical for examining the causes and consequences of dietary variation within and among consumer populations, thereby improving our understanding of these important ecological and evolutionary processes at the community level.