scispace - formally typeset
Search or ask a question

Showing papers in "Ecology in 2014"


Journal ArticleDOI
01 Jul 2014-Ecology
TL;DR: A global species-level compilation of key attributes for all 9993 and 5400 extant bird and mammal species derived from key literature sources enables a much finer distinction of species' foraging ecology than typical categorical guild assignments allow.
Abstract: Species are characterized by physiological, behavioral, and ecological attributes that are all subject to varying evolutionary and ecological constraints and jointly determine species' role and function in ecosystems. Attributes such as diet, foraging strata, foraging time, and body size, in particular, characterize a large portion of the “Eltonian” niches of species. Here we present a global species-level compilation of these key attributes for all 9993 and 5400 extant bird and mammal species derived from key literature sources. Global handbooks and monographs allowed the consistent sourcing of attributes for most species. For diet and foraging stratum we followed a defined protocol to translate the verbal descriptions into standardized, semiquantitative information about relative importance of different categories. Together with body size (continuous) and activity time (categorical) this enables a much finer distinction of species' foraging ecology than typical categorical guild assignments allow. Attri...

1,116 citations


Journal ArticleDOI
01 Mar 2014-Ecology
Abstract: Ecologists frequently ask questions that are best addressed with a model comparison approach. Under this system, the merit of several models is considered without necessarily requiring that (1) models are nested, (2) one of the models is true, and (3) only current data be used. This is in marked contrast to the pragmatic blend of Neyman-Pearson and Fisherian significance testing conventionally emphasized in biometric texts (Christensen 2005), in which (1) just two hypotheses are under consideration, representing a pairwise comparison of models, (2) one of the models, H0, is assumed to be true, and (3) a single data set is used to quantify evidence concerning H0. As Murtaugh (2014) noted, null hypothesis testing can be extended to certain highly structured multi-model situations (nested with a clear sequence of tests), such as extra sums of squares approaches in general linear models, and drop in deviance tests in generalized linear models. This is especially true when there is the expectation that higher order interactions are not significant or nonexistent, and the testing of main effects does not depend on the order of the tests (as with completely balanced designs). There are, however, three scientific frameworks that are poorly handled by traditional hypothesis testing. First, in questions requiring model comparison and selection, the null hypothesis testing paradigm becomes strained. Candidate models may be non-nested, a wide number of plausible models may exist, and all of the models may be approximations to reality. In this context, we are not assessing which model is correct (since none are correct), but which model has the best predictive accuracy, in particular, which model is expected to fit future observations well. Extensive ecological examples can be found in Johnson and Omland (2004), Burnham and Anderson (2002), and Anderson (2008). Second, the null hypothesis testing paradigm is often inadequate for making inferences concerning the falsification or confirmation of scientific claims because it does not explicitly consider prior information. Scientists often do not consider a single data set to be adequate for research hypothesis rejection (Quinn and Keough 2002:35), particularly for complex hypotheses with a low degree of falsifiability (i.e., Popper 1959:266). Similarly, the support of hypotheses in the generation of scientific theories requires repeated corroboration (Ayala et al. 2008). Third, ecologists and other scientists are frequently concerned with the plausibility of existing or default models, what statistician would consider null hypotheses (e.g., the ideal free distribution, classic insular biogeography, mathematic models for species interactions, archetypes for community succession and assembly, etc.). However, null hypothesis testing is structured in such a way that the null hypothesis cannot be directly supported by evidence. Introductory statistical and biometric textbooks go to great lengths to make this conceptual point (e.g., DeVeaux et al. 2013:511, 618, Moore 2010:376, Devore and Peck 1997:300–303).

859 citations


Journal ArticleDOI
01 Sep 2014-Ecology
TL;DR: In this article, the authors experimentally imposed extreme drought and a mid-summer heat wave over two years in a central U.S. grassland and found that the dominant forb was negatively impacted by the drought more than the dominant grass, and this led to a reordering of species abundances within the plant community.
Abstract: Climate change forecasts of more frequent climate extremes suggest that such events will become increasingly important drivers of future ecosystem dynamics and function. Because the rarity and unpredictability of naturally occurring climate extremes limits assessment of their ecological impacts, we experimentally imposed extreme drought and a mid-summer heat wave over two years in a central U.S. grassland. While the ecosystem was resistant to heat waves, it was not resistant to extreme drought, which reduced aboveground net primary productivity (ANPP) below the lowest level measured in this grassland in almost 30 years. This extreme reduction in ecosystem function was a consequence of reduced productivity of both C4 grasses and C3 forbs. However, the dominant forb was negatively impacted by the drought more than the dominant grass, and this led to a reordering of species abundances within the plant community. Although this change in community composition persisted post-drought, ANPP recovered completely t...

439 citations


Journal ArticleDOI
01 Jan 2014-Ecology
TL;DR: How the complementarity between the fourth-corner and RLQ methods can be exploited to promote new ecological knowledge and to improve the study of trait-environment relationships is illustrated.
Abstract: Assessing trait responses to environmental gradients requires the simultaneous analysis of the information contained in three tables: L (species distribution across samples), R (environmental characteristics of samples), and Q (species traits). Among the available methods, the so-called fourth-corner and RLQ methods are two appealing alternatives that provide a direct way to test and estimate trait-environment relationships. Both methods are based on the analysis of the fourth-corner matrix, which crosses traits and environmental variables weighted by species abundances. However, they differ greatly in their outputs: RLQ is a multivariate technique that provides ordination scores to summarize the joint structure among the three tables, whereas the fourth-corner method mainly tests for individual trait- environment relationships (i.e., one trait and one environmental variable at a time). Here, we illustrate how the complementarity between these two methods can be exploited to promote new ecological knowledge and to improve the study of trait-environment relationships. After a short description of each method, we apply them to real ecological data to present their different outputs and provide hints about the gain resulting from their combined use.

389 citations


Journal ArticleDOI
01 Mar 2014-Ecology
TL;DR: It is shown that P values are intimately linked to confidence intervals and to differences in Akaike's information criterion (deltaAIC), two metrics that have been advocated as replacements for the P value.
Abstract: Statistical hypothesis testing has been widely criticized by ecologists in recent years. I review some of the more persistent criticisms of P values and argue that most stem from misunderstandings or incorrect interpretations, rather than from intrinsic shortcomings of the P value. I show that P values are intimately linked to confidence intervals and to differences in Akaike's information criterion (ΔAIC), two metrics that have been advocated as replacements for the P value. The choice of a threshold value of ΔAIC that breaks ties among competing models is as arbitrary as the choice of the probability of a Type I error in hypothesis testing, and several other criticisms of the P value apply equally to ΔAIC. Since P values, confidence intervals, and ΔAIC are based on the same statistical information, all have their places in modern statistical practice. The choice of which to use should be stylistic, dictated by details of the application rather than by dogmatic, a priori considerations.

276 citations


Journal ArticleDOI
01 Mar 2014-Ecology
TL;DR: The mechanisms by which phenology determines invasion success in a California annual plant community are explored by quantifying how the seasonal timing of growth relates to niche differences that stabilize coexistence, and the competitive ability differences that drive dominance and exclusion.
Abstract: Ecologists have identified a growing number of functional traits that promote invasion. However, whether trait differences between exotic and native species promote invasion success by enhancing niche differences or giving invaders competitive advantages is poorly understood. We explored the mechanisms by which phenology determines invasion success in a California annual plant community by quantifying how the seasonal timing of growth relates to niche differences that stabilize coexistence, and the competitive ability differences that drive dominance and exclusion. We parameterized models of community dynamics from experimentally assembled annual communities in which exotic plants displayed earlier, coincident, or later phenology than native residents. Using recent theoretical advances from the coexistence literature, we found that differences in phenology promote stabilizing niche differences between exotic and native species. However, phenology was more strongly related to competitive ability differences, allowing later invaders to outcompete earlier native competitors and native residents to outcompete earlier invaders in field experiments. Few of these insights could be inferred by comparing the competitive outcomes across invaders, highlighting the need to quantify niche and competitive ability differences when disentangling how species differences drive invasion success.

217 citations


Journal ArticleDOI
01 Jun 2014-Ecology
TL;DR: More rigor needs to be applied to SGH tests to identify actual exceptions rather than those due to failures to meet its underlying assumptions, so that the general principles of the SGH and its exceptions can be incorporated into ecological theory, conservation strategies, and environmental change predictions.
Abstract: Since proposed two decades ago, the stress-gradient hypothesis (SGH), suggesting that species interactions shift from competition to facilitation with stress, has been widely examined. Despite broad support across species and ecosystems, ecologists debate whether the SGH applies to extreme environments, arguing that species interactions switch to competition or collapse under extreme stress. We show that facilitation often expands distributions on species borders. SGH exceptions occur when weak stress gradients or stresses outside of species' niches are examined, multiple stresses co-occur canceling out their effects, temporally dependent effects are involved, or results are improperly analyzed. We suggest that ecologists resolve debates by standardizing key SGH terms, such as fundamental and realized niche, stress gradients vs. environmental gradients, by quantitatively defining extreme stress, and by critically evaluating the functionality of stress gradients. We also suggest that new research examine the breadth and relevance of the SGH. More rigor needs to be applied to SGH tests to identify actual exceptions rather than those due to failures to meet its underlying assumptions, so that the general principles of the SGH and its exceptions can be incorporated into ecological theory, conservation strategies, and environmental change predictions.

211 citations


Journal ArticleDOI
01 Sep 2014-Ecology
TL;DR: In this article, the authors review these criticisms in the context of the continuing tension between logic and empiricism in the development of ecological theory and conclude that most of the criticisms are misguided because they fail to recognize the inherent connections between these two hypotheses, and consequently fail to test them appropriately.
Abstract: The “intermediate disturbance hypothesis” and the “intermediate productivity hypothesis” have been widely recognized concepts for explaining patterns of species diversity for the past 40 years. While these hypotheses have generated numerous reviews and meta-analyses, as well as persistent criticism, two prominent papers have recently concluded that both of these hypotheses should be abandoned because of theoretical weaknesses and failure to predict observed diversity patterns. I review these criticisms in the context of the continuing tension between logic and empiricism in the development of ecological theory, and conclude that most of the criticisms are misguided because they fail to recognize the inherent connections between these two hypotheses, and consequently fail to test them appropriately. The logic of every hypothesis is based on the underlying assumptions. In the case of these two hypotheses, the assumptions on which the criticisms of their logic depend are falsified by the strong empirical sup...

207 citations


Journal ArticleDOI
01 Feb 2014-Ecology
TL;DR: This work used cross-validation techniques and a global data set to measure the predictive power of simple plant traits to estimate species' maximum dispersal distances and provided a function to be run in the software package R that enables researchers to estimate maximum disperseal distances with confidence intervals for plant species using measured traits as predictors.
Abstract: Many studies have shown plant species' dispersal distances to be strongly related to life-history traits, but how well different traits can predict dispersal distances is not yet known. We used cross-validation techniques and a global data set (576 plant species) to measure the predictive power of simple plant traits to estimate species' maximum dispersal distances. Including dispersal syndrome (wind, animal, ant, ballistic, and no special syndrome), growth form (tree, shrub, herb), seed mass, seed release height, and terminal velocity in different combinations as explanatory variables we constructed models to explain variation in measured maximum dispersal distances and evaluated their power to predict maximum dispersal distances. Predictions are more accurate, but also limited to a particular set of species, if data on more specific traits, such as terminal velocity, are available. The best model (R2 = 0.60) included dispersal syndrome, growth form, and terminal velocity as fixed effects. Reasonable predictions of maximum dispersal distance (R2 = 0.53) are also possible when using only the simplest and most commonly measured traits; dispersal syndrome and growth form together with species taxonomy data. We provide a function (dispeRsal) to be run in the software package R. This enables researchers to estimate maximum dispersal distances with confidence intervals for plant species using measured traits as predictors. Easily obtainable trait data, such as dispersal syndrome (inferred from seed morphology) and growth form, enable predictions to be made for a large number of species.

201 citations


Journal ArticleDOI
01 Apr 2014-Ecology
TL;DR: This study revealed that on green roofs community composition of high-mobility arthropod groups were mainly shaped by habitat connectivity, while low-mobilty arthropods groups were more influenced by local environmental conditions, and a similar but less pronounced pattern was found for ground communities.
Abstract: The installation of green roofs, defined here as rooftops with a shallow soil cover and extensive vegetation, has been proposed as a possible measure to mitigate the loss of green space caused by the steady growth of cities. However, the effectiveness of green roofs in supporting arthropod communities, and the extent to which they facilitate connectivity of these communities within the urban environment is currently largely unknown. We investigated the variation of species community composition (beta diversity) of four arthropod groups with contrasting mobility (Carabidae, Araneae, Curculionidae, and Apidae) on 40 green roofs and 40 extensively managed green sites on the ground in the city of Zurich, Switzerland. With redundancy analysis and variation partitioning, we (1) disentangled the relative importance of local environmental conditions, the surrounding land cover composition, and habitat connectivity on species community composition, (2) searched for specific spatial scales of habitat connectivity for the different arthropod groups, and (3) discussed the ecological and functional value of green roofs in cities. Our study revealed that on green roofs community composition of high-mobility arthropod groups (bees and weevils) were mainly shaped by habitat connectivity, while low-mobility arthropod groups (carabids and spiders) were more influenced by local environmental conditions. A similar but less pronounced pattern was found for ground communities. The high importance of habitat connectivity in shaping high-mobility species community composition indicates that these green roof communities are substantially connected by the frequent exchange of individuals among surrounding green roofs. On the other hand, low-mobility species communities on green roofs are more likely connected to ground sites than to other green roofs. The integration of green roofs in urban spatial planning strategies has great potential to enable higher connectivity among green spaces, so that eventually even communities of low-mobility species become connected. Furthermore, improving the design of green roofs (composition and configuration of vegetation and soil types) could enhance the ecological value, particularly for low-mobility species.

201 citations


Journal ArticleDOI
01 Apr 2014-Ecology
TL;DR: Overall, it is hypothesized that conditions for the dilution effect are unlikely to be met for most important diseases of humans, and biodiversity probably has little net effect on most human infectious diseases but, when it has an effect, observation and basic logic suggest that biodiversity will be more likely to increase than to decrease infectious disease risk.
Abstract: Control of human infectious disease has been promoted as a valuable ecosystem service arising from the conservation of biodiversity. There are two commonly discussed mechanisms by which biodiversity loss could increase rates of infectious disease in a landscape. First, loss of competitors or predators could facilitate an increase in the abundance of competent reservoir hosts. Second, biodiversity loss could disproportionately affect non-competent, or less competent reservoir hosts, which would otherwise interfere with pathogen transmission to human populations by, for example, wasting the bites of infected vectors. A negative association between biodiversity and disease risk, sometimes called the "dilution effect hypothesis," has been supported for a few disease agents, suggests an exciting win-win outcome for the environment and society, and has become a pervasive topic in the disease ecology literature. Case studies have been assembled to argue that the dilution effect is general across disease agents. Less touted are examples in which elevated biodiversity does not affect or increases infectious disease risk for pathogens of public health concern. In order to assess the likely generality of the dilution effect, we review the association between biodiversity and public health across a broad variety of human disease agents. Overall, we hypothesize that conditions for the dilution effect are unlikely to be met for most important diseases of humans. Biodiversity probably has little net effect on most human infectious diseases but, when it does have an effect, observation and basic logic suggest that biodiversity will be more likely to increase than to decrease infectious disease risk.

Journal ArticleDOI
01 Sep 2014-Ecology
TL;DR: In this article, a total of 292 increment cores from 211 birch trees at nine timberline sites were taken for dendroecological analysis and the synchronous occurrence of narrow rings and the high interseries correlations within and among sites evidenced a reliable cross-dating and a common climatic...
Abstract: Birch (Betula) trees and forests are found across much of the temperate and boreal zones of the Northern Hemisphere. Yet, despite being an ecologically significant genus, it is not well studied compared to other genera like Pinus, Picea, Larix, Juniperus, Quercus, or Fagus. In the Himalayas, Himalayan birch (Betula utilis) is a widespread broadleaf timberline species that survives in mountain rain shadows via access to water from snowmelt. Because precipitation in the Nepalese Himalayas decreases with increasing elevation, we hypothesized that the growth of birch at the upper timberlines between 3900 and 4150 m above sea level is primarily limited by moisture availability rather than by low temperature. To examine this assumption, a total of 292 increment cores from 211 birch trees at nine timberline sites were taken for dendroecological analysis. The synchronous occurrence of narrow rings and the high interseries correlations within and among sites evidenced a reliable cross-dating and a common climatic ...

Journal ArticleDOI
01 Jul 2014-Ecology
TL;DR: Using published data from terrestrial animal communities, it is shown that community-level properties were generally resilient under a suite of artificial and natural manipulations, and species responded readily to manipulation.
Abstract: Communities are comprised of individual species that respond to changes in their environment depending in part on their niche requirements. These species comprise the biodiversity of any given community. Common biodiversity metrics such as richness, evenness, and the species abundance distribution are frequently used to describe biodiversity across ecosystems and taxonomic groups. While it is increasingly clear that researchers will need to forecast changes in biodiversity, ecology currently lacks a framework for understanding the natural background variability in biodiversity or how biodiversity patterns will respond to environmental change. We predict that while species populations depend on local ecological mechanisms (e.g., niche processes) and should respond strongly to disturbance, community-level properties that emerge from these species should generally be less sensitive to disturbance because they depend on regional mechanisms (e.g., compensatory dynamics). Using published data from terrestrial animal communities, we show that community-level properties were generally resilient under a suite of artificial and natural manipulations. In contrast, species responded readily to manipulation. Our results suggest that community-level measures are poor indicators of change, perhaps because many systems display strong compensatory dynamics maintaining community-level properties. We suggest that ecologists consider using multiple metrics that measure composition and structure in biodiversity response studies.

Journal ArticleDOI
01 Jun 2014-Ecology
TL;DR: The importance of stability mechanisms varied along the environmental gradient: strong negative species covariance occurred in sites characterized by high precipitation variability, whereas portfolio effects increased in sites with high mean annual precipitation.
Abstract: Understanding how biotic mechanisms confer stability in variable environments is a fundamental quest in ecology, and one that is becoming increasingly urgent with global change. Several mechanisms, notably a portfolio effect associated with species richness, compensatory dynamics generated by negative species covariance and selection for stable dominant species populations can increase the stability of the overall community. While the importance of these mechanisms is debated, few studies have contrasted their importance in an environmental context. We analyzed nine long-term data sets of grassland species composition to investigate how two key environmental factors, precipitation amount and variability, may directly influence community stability and how they may indirectly influence stability via biotic mechanisms. We found that the importance of stability mechanisms varied along the environmental gradient: strong negative species covariance occurred in sites characterized by high precipitation variability, whereas portfolio effects increased in sites with high mean annual precipitation. Instead of questioning whether compensatory dynamics are important in nature, our findings suggest that debate should widen to include several stability mechanisms and how these mechanisms vary in importance across environmental gradients.

Journal ArticleDOI
01 Jan 2014-Ecology
TL;DR: Diets of six species of characiform fishes representing three genera changed according to seasonal fluctuations in food availability, and patterns of diet breadth and interspecific overlap during the peak flood pulse were consistent with predictions of optimal foraging theory.
Abstract: In response to temporal changes in the quality and availability of food resources, consumers should adjust their foraging behavior in a manner that maximizes energy and nutrient intake and, when resources are limiting, minimizes dietary overlap with other consumers. Floodplains of the Amazon and its lowland tributaries are characterized by strong, yet predictable, hydrological seasonality, seasonal availability of fruits, seeds, and other food resources of terrestrial origin, and diverse assemblages of frugivorous fishes, including morphologically similar species of several characiform families. Here, we investigated how diets of frugivorous fishes in the Amazon change in response to fluctuations in food availability, and how this influences patterns of interspecific dietary overlap. We tested predictions from classical theories of foraging and resource competition by estimating changes in diet breadth and overlap across seasons. We monitored fruiting phenology to assess food availability, and surveyed local fish populations during three hydrological seasons in an oligotrophic river and an adjacent oxbow lake in the Colombian Amazon. We analyzed stomach contents and stable isotope data to evaluate temporal and interspecific relationships for dietary composition, breadth, and overlap. Diets of six species of characiform fishes representing three genera changed according to seasonal fluctuations in food availability, and patterns of diet breadth and interspecific overlap during the peak flood pulse were consistent with predictions of optimal foraging theory. During times of high fruit abundance, fishes consumed items to which their functional morphological traits seemed best adapted, potentially enhancing net energy and nutritional gains. As the annual flood pulse subsided and availability of forest food resources in aquatic habitats changed, there was not a consistent pattern of diet breadth expansion or compression. Nonetheless, shifts in both diet composition and stable isotope ratios of consumer tissues during this period resulted in trophic niche segregation in a pattern consistent with competition theory.

Journal ArticleDOI
01 Sep 2014-Ecology
TL;DR: This study mechanistically demonstrates that niche differences and phenotypic plasticity can generate significant biodiversity effects on ecosystem functioning in tropical forests, and shows that all three mechanisms enhanced light capture in mixtures.
Abstract: Light partitioning is often invoked as a mechanism for positive plant diversity effects on ecosystem functioning. Yet evidence for an improved distribution of foliage in space or time in diverse plant communities remains scarce, and restricted mostly to temperate grasslands. Here we identify the mechanisms through which tree species diversity affects community-level light capture in a biodiversity experiment with tropical trees that displays overyielding, i.e., enhanced biomass production in mixtures. Using a combination of empirical data, mechanistic models, and statistical tools, we develop innovative methods to test for the isolated and combined effects of architectural and temporal niche differences among species as well as plastic changes in crown shape within species. We show that all three mechanisms enhanced light capture in mixtures and that temporal niche differences were the most important driver of this result in our seasonal tropical system. Our study mechanistically demonstrates that niche differences and phenotypic plasticity can generate significant biodiversity effects on ecosystem functioning in tropical forests.

Journal ArticleDOI
01 Nov 2014-Ecology
TL;DR: Elevational diversity patterns exhibited by eukaryotic microorganisms are fundamentally different from those of plants, suggesting that differences in fundamental cell biology and/or body size strongly influence diversity patterns.
Abstract: The diversity of eukaryotic macroorganisms such as animals and plants usually declines with increasing elevation and latitude. By contrast, the community structure of prokaryotes such as soil bacteria does not generally correlate with elevation or latitude, suggesting that differences in fundamental cell biology and/or body size strongly influence diversity patterns. To distinguish the influences of these two factors, soil eukaryotic microorganism community structure was investigated in six representative vegetation sites along an elevational gradient from forest to alpine tundra on Changbai Mountain in Northeast China, and compared with our previous determination of soil bacterial community structure along the same gradient. Using bar-coded pyrosequencing, we found strong site differences in eukaryotic microbial community composition. However, diversity of the total eukaryotic microorganism community (or just the fungi or protists alone) did not correlate with elevation. Instead, the patterns of diversity and composition in the total eukaryotic microbial community (and in the protist community alone) were closely correlated with soil pH, suggesting that just as for bacteria, acidity is a particularly important determinant of eukaryotic microbial distributions. By contrast, as expected, plant diversity at the same sites declined along our elevational gradient. These results together suggest that elevational diversity patterns exhibited by eukaryotic microorganisms are fundamentally different from those of plants.

Journal ArticleDOI
01 May 2014-Ecology
TL;DR: The rapid disappearance of gene copies indicates that cell death, occurring either during the extreme dry down period (preceding five months) or during the rapid change in water potential due to wet-up, generates a significant pool of available C that likely contributes to the large pulse in CO2 associated with wet- up.
Abstract: The rapid increase in microbial activity that occurs when a dry soil is rewetted has been well documented and is of great interest due to implications of changing precipitation patterns on soil C dynamics. Several studies have shown minor net changes in microbial population diversity or abundance following wet-up, but the gross population dynamics of bacteria and fungi resulting from soil wet-up are virtually unknown. Here we applied DNA stable isotope probing with H218O coupled with quantitative PCR to characterize new growth, survival, and mortality of bacteria and fungi following the rewetting of a seasonally dried California annual grassland soil. Microbial activity, as determined by CO2 production, increased significantly within three hours of wet-up, yet new growth was not detected until after three hours, suggesting a pulse of nongrowth activity immediately following wet-up, likely due to osmo-regulation and resuscitation from dormancy in response to the rapid change in water potential. Total microbial abundance revealed little change throughout the seven-day post-wet incubation, but there was substantial turnover of both bacterial and fungal populations (49% and 52%, respectively). New growth was linear between 24 and 168 hours for both bacteria and fungi, with average growth rates of 2.3 x 10(8) bacterial 16S rRNA gene copies x [g dry mass](-1) x h(-1) and 4.3 x 10(7) fungal ITS copies x [g dry mass](-1) x h(-1). While bacteria and fungi differed in their mortality and survival characteristics during the seven-day incubation, mortality that occurred within the first three hours was similar, with 25% and 27% of bacterial and fungal gene copies disappearing from the pre-wet community, respectively. The rapid disappearance of gene copies indicates that cell death, occurring either during the extreme dry down period (preceding five months) or during the rapid change in water potential due to wet-up, generates a significant pool of available C that likely contributes to the large pulse in CO2 associated with wet-up. A dynamic assemblage of growing and dying organisms controlled the CO2 pulse, but the balance between death and growth resulted in relatively stable total population abundances, even after a profound and sudden change in environment.

Journal ArticleDOI
01 Feb 2014-Ecology
TL;DR: Losses in flower and pollinator diversity were linked, and mutual dependence between plants and pollinators accelerates the observed parallel declines in response to land-use intensification.
Abstract: Land use is known to reduce the diversity of species and complexity of biotic interactions. In theory, interaction networks can be used to predict the sensitivity of species against co-extinction, but this has rarely been applied to real ecosystems facing variable land-use impacts. We investigated plant-pollinator networks on 119 grasslands that varied quantitatively in management regime, yielding 25401 visits by 741 pollinator species on 166 plant species. Species-specific plant and pollinator responses to land use were significantly predicted by the weighted average land-use response of each species' partners. Moreover, more specialized pollinators were more vulnerable than generalists. Both predictions are based on the relative interaction strengths provided by the observed interaction network. Losses in flower and pollinator diversity were linked, and mutual dependence between plants and pollinators accelerates the observed parallel declines in response to land-use intensification. Our findings confirm that ecological networks help to predict natural community responses to disturbance and possible secondary extinctions.

Journal ArticleDOI
01 Apr 2014-Ecology
TL;DR: It is found that spruce beetle outbreaks appear to be predicted best by interannual to multidecadal variability in drought, not by temperature alone, which may imply that spume beetle outbreaks are triggered by decreases in host tree defenses, which are hypothesized to occur with drought stress.
Abstract: This study examines influences of climate variability on spruce beetle (Dendroctonus rufipennis) outbreak across northwestern Colorado during the period 1650 2011 CE. Periods of broad-scale outbreak reconstructed using documentary records and tree rings were dated to 1843-1860, 1882-1889, 1931-1957, and 2004-2010. Periods of outbreak were compared with seasonal temperature, precipitation, vapor pressure deficit (VPD), the Palmer Drought Severity Index (PDSI), and indices of ocean-atmosphere oscillation that include the El Nino Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), and Atlantic Multidecadal Oscillation (AMO). Classification trees showed that outbreaks can be predicted most successfully from above average annual AMO values and above average summer VPD values, indicators of drought across Colorado. Notably, we find that spruce beetle outbreaks appear to be predicted best by interannual to multidecadal variability in drought, not by temperature alone. This finding may imply that spruce beetle outbreaks are triggered by decreases in host tree defenses, which are hypothesized to occur with drought stress. Given the persistence of the AMO, the shift to a positive AMO phase in the late 1990s is likely to promote continued spruce beetle disturbance.

Journal ArticleDOI
01 Jan 2014-Ecology
TL;DR: Overall, community and ecosystem convergence is found in NA and SA grasslands, where grazing and fire are as important as climate in controlling mesic grassland ecosystems on both continents.
Abstract: Grazing, fire, and climate shape mesic grassland communities. With global change altering all three factors, understanding how grasslands respond to changes in these combined drivers may aid in projecting future changes in grassland ecosystems. We manipulated rainfall and simulated grazing (clipping) in two long-term fire experiments in mesic grasslands in North America (NA) and South Africa (SA). Despite their common drivers, grasslands in NA and SA differ in evolutionary history. Therefore, we expected community structure and production in NA and SA to respond differently to fire, grazing, and drought. Specifically, we hypothesized that NA plant community composition and production would be more responsive than the SA plant communities to changes in the drivers and their interactions, and that despite this expected stability of SA grasslands, drought would be the dominant factor controlling production, but grazing would play the primary role in determining community composition at both sites. Contrary to our hypothesis, NA and SA grasslands generally responded similarly to grazing, drought, and fire. Grazing increased diversity, decreased grass cover and production, and decreased belowground biomass at both sites. Drought alone minimally impacted plant community structure, and we saw similar treatment interactions at the two sites. Drought was not the primary driver of grassland productivity, but instead drought effects were similar to or less than grazing and fire. Even though these grasslands differed in evolutionary history, they responded similarly to our fire, grazing, and climate manipulations. Overall, we found community and ecosystem convergence in NA and SA grasslands. Grazing and fire are as important as climate in controlling mesic grassland ecosystems on both continents.

Journal ArticleDOI
01 May 2014-Ecology
TL;DR: A model of herbivore responses to patches that consist of two plant types that are determined by a combination of patch-finding, within-patch redistribution, and patch-leaving is presented, finding that associational susceptibility should be commonly observed in experiments using replacement designs, whereas associational resistance will be the dominant pattern when using additive designs.
Abstract: Effects of neighboring plants on herbivore damage to a focal plant (associational effects) have been documented in many systems and can lead to either increased or decreased herbivore attack. Mechanistic models that explain the observed variety of herbivore responses to local plant community composition have, however, been lacking. We present a model of herbivore responses to patches that consist of two plant types, where herbivore densities on a focal plant are determined by a combination of patch-finding, within-patch redistribution, and patch-leaving. Our analyses show that the effect of plant neighborhood on herbivores depends both on how plant and herbivore traits combine to affect herbivore movement and on how experimental designs reveal the effects of plant density and plant relative frequency. Associational susceptibility should be the dominant pattern when herbivores have biased landing rates within patches. Other behavioral decision rules lead to mixed responses, but a common pattern is that in mixed patches, one plant type experiences associational resistance while the other plant experiences associational susceptibility. In some cases, the associational effect may shift sign along a gradient of plant frequency, suggesting that future empirical studies should include more than two plant frequencies to detect nonlinearities. Finally, we find that associational susceptibility should be commonly observed in experiments using replacement designs, whereas associational resistance will be the dominant pattern when using additive designs. Consequently, outcomes from one experimental design cannot be directly compared to studies with other designs. Our model can also be translated to other systems with foragers searching for multiple resource types.

Journal ArticleDOI
01 Jul 2014-Ecology
TL;DR: Investigating the relationship between plant diversity and aboveground obligate parasitic fungal pathogen diversity and infection in grasslands of a long-term, large-scale, biodiversity experiment concludes that plant community diversity promotes pathogen-community diversity while at the same time reducing pathogen infection levels of plant individuals.
Abstract: Fungal plant pathogens are common in natural communities where they affect plant physiology, plant survival, and biomass production. Conversely, pathogen transmission and infection may be regulated by plant community characteristics such as plant species diversity and functional composition that favor pathogen diversity through increases in host diversity while simultaneously reducing pathogen infection via increased variability in host density and spatial heterogeneity. Therefore, a comprehensive understanding of multi-host multi-pathogen interactions is of high significance in the context of biodiversity-ecosystem functioning. We investigated the relationship between plant diversity and aboveground obligate parasitic fungal pathogen ("pathogens" hereafter) diversity and infection in grasslands of a long-term, large-scale, biodiversity experiment with varying plant species (1-60 species) and plant functional group diversity (1-4 groups). To estimate pathogen infection of the plant communities, we visually assessed pathogen-group presence (i.e., rusts, powdery mildews, downy mildews, smuts, and leaf-spot diseases) and overall infection levels (combining incidence and severity of each pathogen group) in 82 experimental plots on all aboveground organs of all plant species per plot during four surveys in 2006. Pathogen diversity, assessed as the cumulative number of pathogen groups on all plant species per plot, increased log-linearly with plant species diversity. However, pathogen incidence and severity, and hence overall infection, decreased with increasing plant species diversity. In addition, co-infection of plant individuals by two or more pathogen groups was less likely with increasing plant community diversity. We conclude that plant community diversity promotes pathogen-community diversity while at the same time reducing pathogen infection levels of plant individuals.

Journal ArticleDOI
01 Feb 2014-Ecology
TL;DR: This study used comprehensive specific leaf area (SLA) data from a diverse Australian annual plant system to examine how individual species and whole communities respond to natural and anthropogenic gradients, and to climatically different growing seasons, and investigated the influence of different leaf-sampling strategies on community-level results.
Abstract: Plant communities can respond to environmental changes by altering their species composition and by individuals (within species) adjusting their physiology. These responses can be captured by measuring key functional traits among and within species along important environmental gradients. Some anthropogenic changes (such as fertilizer runoff) are known to induce distinct community responses, but rarely have responses across natural and anthropogenic gradients been compared in the same system. In this study, we used comprehensive specific leaf area (SLA) data from a diverse Australian annual plant system to examine how individual species and whole communities respond to natural and anthropogenic gradients, and to climatically different growing seasons. We also investigated the influence of different leaf-sampling strategies on community-level results. Many species had similar mean SLA values but differed in SLA responses to spatial and temporal environmental variation. At the community scale, we identified distinct SLA responses to natural and anthropogenic gradients. Along anthropogenic gradients, increased mean SLA, coupled with SLA convergence, revealed evidence of competitive exclusion. This was further supported by the dominance of species turnover (vs. intraspecific variation) along these gradients. We also revealed strong temporal changes in SLA distributions in response to increasing growing-season precipitation. These climate-driven changes highlight differences among co-occurring species in their adaptive capacity to exploit abundant water resources during favorable seasons, differences that are likely to be important for species coexistence in this system. In relation to leaf-sampling strategies, we found that using leaves from a climatically different growing season can lead to misleading conclusions at the community scale.

Journal ArticleDOI
01 May 2014-Ecology
TL;DR: The landscape-of-fear model does provide reasonable explanations for many of the reported studies and should be tested further to better understand the effects of bottom-up, top-down, and parallel factors on population dynamics.
Abstract: Identifying factors that may be responsible for regulating the size of animal populations is a cornerstone in understanding population ecology. The main factors that are thought to influence population size are either resources (bottom-up), or predation (top-down), or interspecific competition (parallel). However, there are highly variable and often contradictory results regarding their relative strengths and influence. These varied results are often interpreted as indicating "shifting control" among the three main factors, or a complex, nonlinear relationship among environmental variables, resource availability, predation, and competition. We argue here that there is a "missing link" in our understanding of predator-prey dynamics. We explore whether the landscape-of-fear model can help us clarify the inconsistencies and increase our understanding of the roles, extent, and possible interactions of top-down, bottom-up, and parallel factors on prey population abundance. We propose two main predictions derived from the landscape-of-fear model: (1) for a single species, we suggest that as the makeup of the landscape of fear changes from relatively safe to relatively risky, bottom-up impacts switch from strong to weak as top-down impacts go from weak to strong; (2) for two or more species, interspecific competitive interactions produce various combinations of bottom-up, top-down, and parallel impacts depending on the dominant competing species and whether the landscapes of fear are shared or distinctive among competing species. We contend that these predictions could successfully explain many of the complex and contradictory results of current research. We test some of these predictions based on long-term data for small mammals from the Chihuahuan Desert in the United States, and Mexico. We conclude that the landscape-of-fear model does provide reasonable explanations for many of the reported studies and should be tested further to better understand the effects of bottom-up, top-down, and parallel factors on population dynamics.

Journal ArticleDOI
01 Dec 2014-Ecology
TL;DR: This study recorded the visitation of hummingbirds to plant species over an entire year at three different elevations in Costa Rica and constructed quantitative networks based on interaction frequencies and tested the effects of avian morphological traits and abundance on ecological specialization of hummingbird species.
Abstract: Ecological communities are organized in complex ecological networks. Trait-based analyses of the structure of these networks in highly diversified species assemblages are crucial for improving our understanding of the ecological and evolutionary processes causing specialization in mutualistic networks. In this study, we assessed the importance of morphological traits for structuring plant–hummingbird networks in Neotropical forests by using a novel combination of quantitative analytical approaches. We recorded the visitation of hummingbirds to plant species over an entire year at three different elevations in Costa Rica and constructed quantitative networks based on interaction frequencies. Three morphological traits were measured in hummingbirds (bill length, bill curvature, and body mass) and plants (corolla length, curvature, and volume). We tested the effects of avian morphological traits and abundance on ecological specialization of hummingbird species. All three morphological traits of hummingbirds ...

Journal ArticleDOI
01 Aug 2014-Ecology
TL;DR: Results from the heuristic model indicated that shifting the pattern or timing of root production can impact estimates ofRoot turnover rates for root populations with life spans less than one year while estimates of root turnover rate for longer lived roots were unaffected by changes in root phenology.
Abstract: The timing of fine root production and turnover strongly influences both the seasonal potential for soil resource acquisition among competing root systems and the plant fluxes of root carbon into soil pools. However, basic patterns and variability in the rates and timing or fine root production and turnover are generally unknown among perennial plants species. We address this shortfall using a heuristic model relating root phenology to turnover together with three years of minirhizotron observations of root dynamics in 12 temperate tree species grown in a common garden. We specifically investigated how the amount and the timing of root production differ among species and how they impact estimates of fine root turnover. Across the 12 species, there was wide variation in the timing of root production with some species producing a single root flush in early summer and others producing roots either more uniformly over the growing season or in multiple pulses. Additionally, the pattern and timing of root production appeared to be consistent across years for some species but varied in others. Root turnover rate was related to total root production (P < 0.001) as species with greater root production typically had faster root turnover rates. We also found that, within species, annual root production varied up to a threefold increase between years, which led to large interannual differences in turnover rate. Results from the heuristic model indicated that shifting the pattern or timing of root production can impact estimates of root turnover rates for root populations with life spans less than one year while estimates of root turnover rate for longer lived roots were unaffected by changes in root phenology. Overall, we suggest that more detailed observations of root phenology and production will improve fidelity of root turnover estimates. Future efforts should link patterns of root phenology and production with whole-plant life history traits and variation in annual and seasonal climate.

Journal ArticleDOI
01 Apr 2014-Ecology
TL;DR: A strong contingency on the co-occurrence of AMF and rhizobia for the long-term fitness of A. canescens is demonstrated, and it is suggested that the belowground community is critical for the success of this species in tallgrass prairies.
Abstract: Biotic interactions play primary roles in major theories of the distribution and abundance of species, yet the nature of these biotic interactions can depend upon the larger ecological community. Leguminous plants, for example, commonly associate with both arbuscular mycorrhizal fungi (AMF) and rhizobia bacteria, and the pairwise interactions may depend upon the presence or identity of the third partner. To determine if the dynamics of plant-AMF and plant-rhizobia interactions are affected by the alternate symbiont, we manipulated the presence and identity of each symbiont, as well as levels of the nutrients supplied by each symbiont (nitrogen and phosphorus), on the growth of prairie legume Amorpha canescens. We found strong synergistic effects of AMF and rhizobia inoculation on plant biomass production that were independent of nutrient levels. AMF and rhizobia responses were each influenced by the other, but not in the same direction. AMF infection increased root nodule number and mass, but rhizobia inoculation decreased AMF hyphal colonization of roots. The relative benefits of each combination of symbionts depended upon phosphorus level. The effect of nitrogen was also contingent on the biotic environment where nitrogen addition decreased nodulation, but this decrease was reduced with coinfection by AMF. Our results demonstrate a strong contingency on the co-occurrence of AMF and rhizobia for the long-term fitness of A. canescens, and suggest that the belowground community is critical for the success of this species in tallgrass prairies.

Journal ArticleDOI
01 Dec 2014-Ecology
TL;DR: A quantitative review to determine if the degree of species sorting by the abiotic environment varied predictably between organism types and ecosystems concluded that SS was quantified as the relative fraction of community variation that is explained by environmental variables.
Abstract: The estimation of the relative roles of environment, space, and their interactions in structuring community composition is one of the central topics of community ecology. I conducted a quantitative review to determine if the degree of species sorting (SS) by the abiotic environment varied predictably between organism types and ecosystems. SS was quantified as the relative fraction of community variation that is explained by environmental variables. I integrated data from 326 variation partition analyses in a generalized linear model, and found that a mean of 26.1% (minimum 0%, maximum 88%) of the variance in community composition was explained by environmental variables. I also found that organism body size and dispersal group were not related to the degree of SS. SS varied among trophic positions, being highest in autotrophs and omnivores and lowest in herbivores and decomposers. SS also varied among ecosystem types: it was lowest in lakes and highest in estuaries and marine environments. Studies using a...

Journal ArticleDOI
01 Jan 2014-Ecology
TL;DR: The results stress that much of the subsidy remains near the stream, but also that subsidies are capable of long-distance dispersal into adjacent environments, and that the effective "biological stream width" of stream and river ecosystems is often much larger than has been defined by hydro-geomorphic metrics alone.
Abstract: The magnitude of cross-ecosystem resource subsidies is increasingly well recognized; however, less is known about the distance these subsidies travel into the recipient landscape. In streams and rivers, this distance can delimit the “biological stream width,” complementary to hydro-geomorphic measures (e.g., channel banks) that have typically defined stream ecosystem boundaries. In this study we used meta-analysis to define a “stream signature” on land that relates the stream-to-land subsidy to distance. The 50% stream signature, for example, identifies the point on the landscape where subsidy resources are still at half of their maximum (in- or near-stream) level. The decay curve for these data was best fit by a negative power function in which the 50% stream signature was concentrated near stream banks (1.5 m), but a non-trivial (10%) portion of the maximum subsidy level was still found >0.5 km from the water's edge. The meta-analysis also identified explanatory variables that affect the stream signatur...