scispace - formally typeset
Search or ask a question

Showing papers in "Ecology in 2021"


Journal ArticleDOI
01 Jun 2021-Ecology
TL;DR: In this article, the authors argue that much confusion surrounding statistical model selection results from failing to first clearly specify the purpose of the analysis is due to the fact that many possible approaches and techniques for model selection, and the conflicting recommendations for their use, can be confusing.
Abstract: Selecting among competing statistical models is a core challenge in science. However, the many possible approaches and techniques for model selection, and the conflicting recommendations for their use, can be confusing. We contend that much confusion surrounding statistical model selection results from failing to first clearly specify the purpose of the analysis. We argue that there are three distinct goals for statistical modeling in ecology: data exploration, inference, and prediction. Once the modeling goal is clearly articulated, an appropriate model selection procedure is easier to identify. We review model selection approaches and highlight their strengths and weaknesses relative to each of the three modeling goals. We then present examples of modeling for exploration, inference, and prediction using a time series of butterfly population counts. These show how a model selection approach flows naturally from the modeling goal, leading to different models selected for different purposes, even with exactly the same data set. This review illustrates best practices for ecologists and should serve as a reminder that statistical recipes cannot substitute for critical thinking or for the use of independent data to test hypotheses and validate predictions.

94 citations


Journal ArticleDOI
01 Jun 2021-Ecology
TL;DR: The first comprehensive list of vascular epiphyte species is presented in this article, which includes obligate, facultative, and hemiepiphytes, as well as several other taxa.
Abstract: Epiphytes make up roughly 10% of all vascular plant species globally and play important functional roles, especially in tropical forests. However, to date, there is no comprehensive list of vascular epiphyte species. Here, we present EpiList 1.0, the first global list of vascular epiphytes based on standardized definitions and taxonomy. We include obligate epiphytes, facultative epiphytes, and hemiepiphytes, as the latter share the vulnerable epiphytic stage as juveniles. Based on 978 references, the checklist includes >31,000 species of 79 plant families. Species names were standardized against World Flora Online for seed plants and against the World Ferns database for lycophytes and ferns. In cases of species missing from these databases, we used other databases (mostly World Checklist of Selected Plant Families). For all species, author names and IDs for World Flora Online entries are provided to facilitate the alignment with other plant databases, and to avoid ambiguities. EpiList 1.0 will be a rich source for synthetic studies in ecology, biogeography, and evolutionary biology as it offers, for the first time, a species-level overview over all currently known vascular epiphytes. At the same time, the list represents work in progress: species descriptions of epiphytic taxa are ongoing and published life form information in floristic inventories and trait and distribution databases is often incomplete and sometimes even wrong. Since the epiphytic growth blends into soil-rooted growth and vice versa, the inclusion or exclusion of particular species in the current list will sometimes be contentious. Thus, initiating a well-founded discussion was one of the motivations for compiling this database; our list represents 31,311 hypotheses on the life form of plant species, and we welcome feedback on possible omission or erroneous inclusions. We release these data into the public domain under a Creative Commons Zero license waiver. When you use the data in your publication, we request that you cite this data paper. If EpiList 1.0 is a major part of the data analyzed in your study, you may consider inviting the EpiList 1.0 core team as collaborators.

53 citations


Journal ArticleDOI
01 Feb 2021-Ecology
TL;DR: It is suggested that short-term experiments may underestimate the long-term nutrient enrichment effects on global, grassland ecosystems, as nutrient effects on live biomass increased more slowly at sites where litter was also increasing, regardless of plant diversity.
Abstract: Human activities are enriching many of Earth’s ecosystems with biologically limiting mineral nutrients such as nitrogen (N) and phosphorus (P). In grasslands, this enrichment generally reduces plant diversity and increases productivity. The widely demonstrated positive effect of diversity on productivity suggests a potential negative feedback, whereby nutrient-induced declines in diversity reduce the initial gains in productivity arising from nutrient enrichment. In addition, plant productivity and diversity can be inhibited by accumulations of dead biomass, which may be altered by nutrient enrichment. Over longer time frames, nutrient addition may increase soil fertility by increasing soil organic matter and nutrient pools. We examined the effects of 5–11 yr of nutrient addition at 47 grasslands in 12 countries. Nutrient enrichment increased aboveground live biomass and reduced plant diversity at nearly all sites, and these effects became stronger over time. We did not find evidence that nutrient-induced losses of diversity reduced the positive effects of nutrients on biomass; however, nutrient effects on live biomass increased more slowly at sites where litter was also increasing, regardless of plant diversity. This work suggests that short-term experiments may underestimate the long-term nutrient enrichment effects on global grassland ecosystems.

49 citations


Journal ArticleDOI
01 Jun 2021-Ecology
TL;DR: In this article, the effects of local biodiversity loss on ecosystem stability are well documented, but the consequences of biodiversity changes at larger spatial scales, in particular biotic homogenization, that is, reduced species turnover across space (β diversity), remain poorly known.
Abstract: Our planet is facing significant changes of biodiversity across spatial scales. Although the negative effects of local biodiversity (α diversity) loss on ecosystem stability are well documented, the consequences of biodiversity changes at larger spatial scales, in particular biotic homogenization, that is, reduced species turnover across space (β diversity), remain poorly known. Using data from 39 grassland biodiversity experiments, we examine the effects of β diversity on the stability of simulated landscapes while controlling for potentially confounding biotic and abiotic factors. Our results show that higher β diversity generates more asynchronous dynamics among local communities and thereby contributes to the stability of ecosystem productivity at larger spatial scales. We further quantify the relative contributions of α and β diversity to ecosystem stability and find a relatively stronger effect of α diversity, possibly due to the limited spatial scale of our experiments. The stabilizing effects of both α and β diversity lead to a positive diversity-stability relationship at the landscape scale. Our findings demonstrate the destabilizing effect of biotic homogenization and suggest that biodiversity should be conserved at multiple spatial scales to maintain the stability of ecosystem functions and services.

46 citations


Journal ArticleDOI
01 Jun 2021-Ecology
TL;DR: In this paper, the authors used soil from a detritus input and removal treatment experiment in an old-growth coniferous forest, where above and belowground litter inputs have been manipulated for 20 years.
Abstract: Fungi and bacteria are the two principal microbial groups in soil, responsible for the breakdown of organic matter (OM). The relative contribution of fungi and bacteria to decomposition is thought to impact biogeochemical cycling at the ecosystem scale, whereby bacterially dominated decomposition supports the fast turnover of easily available substrates, whereas fungal-dominated decomposition leads to the slower turnover of more complex OM. However, empirical support for this is lacking. We used soils from a detritus input and removal treatment experiment in an old-growth coniferous forest, where above- and belowground litter inputs have been manipulated for 20 yr. These manipulations have generated variation in OM quality, as defined by energetic content and proxied as respiration per g soil organic matter (SOM) and the δ13C signature in respired CO2 and microbial PLFAs. Respiration per g SOM reflects the availability and lability of C substrate to microorganisms, and the δ13C signature indicates whether the C used by microorganisms is plant derived and higher quality (more δ13C depleted) or more microbially processed and lower quality (more δ13C enriched). Surprisingly, higher quality C did not disproportionately benefit bacterial decomposers. Both fungal and bacterial growth increased with C quality, with no systematic change in the fungal-to-bacterial growth ratio, reflecting the relative contribution of fungi and bacteria to decomposition. There was also no difference in the quality of C targeted by bacterial and fungal decomposers either for catabolism or anabolism. Interestingly, respired CO2 was more δ13C enriched than soil C, suggesting preferential use of more microbially processed C, despite its lower quality. Gross N mineralization and consumption were also unaffected by differences in the ratio of fungal-to-bacterial growth. However, the ratio of C to gross N mineralization was lower than the average C/N of SOM, meaning that microorganisms specifically targeted N-rich components of OM, indicative of selective microbial N-mining. Consistent with the δ13C data, this reinforces evidence for the use of more microbially processed OM with a lower C/N ratio, rather than plant-derived OM. These results challenge the widely held assumption that microorganisms favor high-quality C sources and suggest that there is a trade-off in OM use that may be related to the growth-limiting factor for microorganisms in the ecosystem. (Less)

39 citations


Journal ArticleDOI
01 Feb 2021-Ecology
TL;DR: It is demonstrated that inorganic carbon is rapidly fixed and released by N. luetkeana blades as 13 DOC, within hours, indicating that isotope studies that rely on tracer production alone may underestimate total DOC release, as it is decoupled from recent kelp productivity.
Abstract: Canopy-forming kelps are foundational species in coastal ecosystems, fixing tremendous amounts of carbon, yet we know little about the ecological and physiological determinants of dissolved organic carbon (DOC) release by kelps. We examined DOC release by the bull kelp, Nereocystis luetkeana, in relation to carbon fixation, nutrient uptake, tissue nitrogen content, and light availability. DOC release was approximately 3.5 times greater during the day than at night. During the day, N. luetkeana blades released an average of 16.2% of fixed carbon as DOC. Carbon fixation increased with light availability but DOC release did not, leading to a lower proportion of fixed carbon released as DOC at high light levels. We found no relationship between carbon fixation and DOC release rates measured concurrently. Rather, DOC release by N. luetkeana blades declined with marginal significance as blade tissue nitrogen content increased and with experimental nitrate addition, supporting the role of stoichiometric relationships in DOC release. Using a stable isotope (13 C) tracer method, we demonstrated that inorganic carbon is rapidly fixed and released by N. luetkeana blades as 13 DOC, within hours. However, recently fixed carbon (13 DOC) comprised less than 20% of the total DOC released, indicating that isotope studies that rely on tracer production alone may underestimate total DOC release, as it is decoupled from recent kelp productivity. Comparing carbon and nitrogen assimilation dynamics of the annual kelp N. luetkeana with the perennial kelp Macrocystis pyrifera revealed that N. luetkeana had significantly higher carbon fixation, DOC production and nitrogen uptake rates per unit dry mass. Both kelp species were able to perform light-independent carbon fixation at night. Carbon fixation by the annual kelp N. luetkeana is as high as 2.35 kg C·m-2 ·yr-1 , but an average of 16% of this carbon (376 g C·m-2 ·yr-1 ) is released as DOC. As kelp forests are increasingly viewed as vehicles for carbon sequestration, it is important to consider the fate of this substantial quantity of DOC released by canopy-forming kelps.

31 citations


Journal ArticleDOI
01 Jan 2021-Ecology
TL;DR: It is suggested that prolonged exposure of plant populations to a particular community context and abiotic site conditions can increase ecosystem temporal stability and resilience due to short-term evolution.
Abstract: Understanding factors that maintain ecosystem stability is critical in the face of environmental change. Experiments simulating species loss from grassland have shown that losing biodiversity decreases ecosystem stability. However, as the originally sown experimental communities with reduced biodiversity develop, plant evolutionary processes or the assembly of interacting soil organisms may allow ecosystems to increase stability over time. We explored such effects in a long‐term grassland biodiversity experiment with plant communities with either a history of co‐occurrence (selected communities) or no such history (naive communities) over a 4‐yr period in which a major flood disturbance occurred. Comparing communities of identical species composition, we found that selected communities had temporally more stable biomass than naive communities, especially at low species richness. Furthermore, selected communities showed greater biomass recovery after flooding, resulting in more stable post‐flood productivity. In contrast to a previous study, the positive diversity–stability relationship was maintained after the flooding. Our results were consistent across three soil treatments simulating the presence or absence of co‐selected microbial communities. We suggest that prolonged exposure of plant populations to a particular community context and abiotic site conditions can increase ecosystem temporal stability and resilience due to short‐term evolution. A history of co‐occurrence can in part compensate for species loss, as can high plant diversity in part compensate for the missing opportunity of such adaptive adjustments.

30 citations


Journal ArticleDOI
01 Mar 2021-Ecology
TL;DR: Integration between herbivore defenses in a model Si-accumulating plant, which potentially allows it to avoid unnecessary activation of other costly defenses, is suggested.
Abstract: Plants deploy an arsenal of chemical and physical defenses against arthropod herbivores, but it may be most cost efficient to produce these only when attacked. Herbivory activates complex signaling pathways involving several phytohormones, including jasmonic acid (JA), which regulate production of defensive compounds. The Poaceae also have the capacity to take up large amounts of silicon (Si), which accumulates in plant tissues. Si accumulation has antiherbivore properties, but it is poorly understood how Si defenses relate to defense hormone signaling. Here we show that Si enrichment causes the model grass Brachypodium distachyon to show lower levels of JA induction when attacked by chewing herbivores. Triggering this hormone even at lower concentrations, however, prompts Si uptake and physical defenses (e.g., leaf hairs), which negatively impact chewing herbivores. Removal of leaf hairs restored performance. Crucially, activation of such Si‐based defense is herbivore‐specific and occurred only in response to chewing and not fluid‐feeding (aphid) herbivores. This aligned with our meta‐analysis of 88 studies that showed Si defenses were more effective against chewing herbivores than fluid feeders. Our results suggest integration between herbivore defenses in a model Si‐accumulating plant, which potentially allows it to avoid unnecessary activation of other costly defenses.

27 citations


Journal ArticleDOI
Michael V. Cove1, Roland Kays2, Roland Kays3, Helen Bontrager1  +153 moreInstitutions (79)
01 Jun 2021-Ecology
TL;DR: The SNAPSHOT USA project as discussed by the authors is a collaborative survey of terrestrial wildlife populations using camera traps across the United States, collecting data across all 50 states during a 14-week period (17 August-24 November 2019).
Abstract: With the accelerating pace of global change, it is imperative that we obtain rapid inventories of the status and distribution of wildlife for ecological inferences and conservation planning. To address this challenge, we launched the SNAPSHOT USA project, a collaborative survey of terrestrial wildlife populations using camera traps across the United States. For our first annual survey, we compiled data across all 50 states during a 14‐week period (17 August–24 November of 2019). We sampled wildlife at 1,509 camera trap sites from 110 camera trap arrays covering 12 different ecoregions across four development zones. This effort resulted in 166,036 unique detections of 83 species of mammals and 17 species of birds. All images were processed through the Smithsonian’s eMammal camera trap data repository and included an expert review phase to ensure taxonomic accuracy of data, resulting in each picture being reviewed at least twice. The results represent a timely and standardized camera trap survey of the United States. All of the 2019 survey data are made available herein. We are currently repeating surveys in fall 2020, opening up the opportunity to other institutions and cooperators to expand coverage of all the urban–wild gradients and ecophysiographic regions of the country. Future data will be available as the database is updated at eMammal.si.edu/snapshot‐usa, as will future data paper submissions. These data will be useful for local and macroecological research including the examination of community assembly, effects of environmental and anthropogenic landscape variables, effects of fragmentation and extinction debt dynamics, as well as species‐specific population dynamics and conservation action plans. There are no copyright restrictions; please cite this paper when using the data for publication.

26 citations


Journal ArticleDOI
01 Jun 2021-Ecology
TL;DR: The COMBINE dataset as mentioned in this paper contains information on 54 traits for 6,234 extant and recently extinct mammal species, including information on morphology, reproduction, diet, biogeography, life habit, phenology, behavior, home range, and density.
Abstract: The use of species' traits in macroecological analyses has gained popularity in the last decade, becoming an important tool to understand global biodiversity patterns. Currently, trait data can be found across a wide variety of data sets included in websites, articles, and books, each one with its own taxonomic classification, set of traits, and data management methodology. Mammals, in particular, are among the most studied taxa, with large sources of trait information readily available. To facilitate the use of these data, we did an extensive review of published mammal trait data sources between 1999 and May 2020 and produced COMBINE: a COalesced Mammal dataBase of INtrinsic and Extrinsic traits. Our aim was to create a taxonomically integrated database of mammal traits that maximized trait number and coverage without compromising data quality. COMBINE contains information on 54 traits for 6,234 extant and recently extinct mammal species, including information on morphology, reproduction, diet, biogeography, life habit, phenology, behavior, home range, and density. Additionally, we calculated other relevant traits such as habitat and altitudinal breadths for all species and dispersal for terrestrial non-volant species. All data are compatible with the taxonomies of the IUCN Red List v. 2020-2 and PHYLACINE v. 1.2. Missing data were adequately flagged and imputed for non-biogeographical traits with 20% or more data available. We obtained full data sets for 21 traits such as female maturity, litter size, maximum longevity, trophic level, and dispersal, providing imputation performance statistics for all. This data set will be especially useful for those interested in including species' traits in large-scale ecological and conservation analyses. There are no copyright or proprietary restrictions; we request citation of this publication and all relevant underlying data sources (found in Data S1: trait_data_sources.csv), upon using these data.

26 citations


Journal ArticleDOI
01 Jan 2021-Ecology
TL;DR: If biodiversity ameliorates hot/dry conditions and therefore improves performance of drought sensitive species during periods of low rainfall, this may mean biodiversity can be used as a tool to protect individual species from drought conditions.
Abstract: Climate change will increase the likelihood and severity of droughts into the future. Although diversity may buffer plant communities against the negative effects of drought, the mechanisms underlying this pattern remain unclear. Higher-diversity plant communities may have a higher likelihood of including more drought-resistant species that can compensate for drought-sensitive species ("insurance effects"). Alternatively, higher-diversity communities may alter environmental conditions and improve performance of even drought-sensitive species. Here we planted nonleguminous forbs and grasses into monocultures and four- and eight-species mixtures, and measured species and plot productivity every year from 2000 to 2010. We found that six of our eight species were suppressed when growing in monoculture during dry years. These same species were unaffected by drought when growing in higher-diversity mixtures. Because of this poor performance in monoculture (not insurance effects), the biodiversity productivity relationship was strongest during the driest years. If biodiversity ameliorates hot/dry conditions and therefore improves performance of drought-sensitive species during periods of low rainfall, this may mean biodiversity can be used as a tool to protect individual species from drought conditions.

Journal ArticleDOI
01 Aug 2021-Ecology
TL;DR: In this paper, the authors used stable isotope analysis and metabolic regressions to describe size structure and energy use in eight belowground communities with consumers spanning 12 orders of magnitude in living body mass, from protists to earthworms.
Abstract: Size-structured food webs form integrated trophic systems where energy is channeled from small to large consumers. Empirical evidence suggests that size structure prevails in aquatic ecosystems, whereas in terrestrial food webs trophic position is largely independent of body size. Compartmentalization of energy channeling according to size classes of consumers was suggested as a mechanism that underpins functioning and stability of terrestrial food webs including those belowground, but their structure has not been empirically assessed across the whole size spectrum. Here we used stable isotope analysis and metabolic regressions to describe size structure and energy use in eight belowground communities with consumers spanning 12 orders of magnitude in living body mass, from protists to earthworms. We showed a negative correlation between trophic position and body mass in invertebrate communities and a remarkable nonlinearity in community metabolism and trophic positions across all size classes. Specifically, we found that the correlation between body mass and trophic level is positive in the small-sized (protists, nematodes, arthropods below 1 μg in body mass), neutral in the medium-sized (arthropods of 1 μg to 1 mg), and negative in the large-sized consumers (large arthropods, earthworms), suggesting that these groups form compartments with different trophic organization. Based on this pattern, we propose a concept of belowground food webs being composed of (1) size-structured micro-food web driving fast energy channeling and nutrient release, for example in microbial loop; (2) arthropod macro-food web with no clear correlation between body size and trophic level, hosting soil arthropod diversity and subsidizing aboveground predators; and (3) "trophic whales," sequestering energy in their large bodies and restricting its propagation to higher trophic levels in belowground food webs. The three size compartments are based on a similar set of basal resources, but contribute to different ecosystem-level functions and respond differently to variations in climate, soil characteristics and land use. We suggest that the widely used vision of resource-based energy channeling in belowground food webs can be complemented with size-based energy channeling, where ecosystem multifunctionality, biodiversity, and stability are supported by a balance across individual size compartments.

Journal ArticleDOI
01 Mar 2021-Ecology
TL;DR: Differences in climate sensitivity based on canopy position of four common tree species using growth information from 1084 trees across eight sites in the northeastern United States contradict the prevailing assumption that climate responses of understory trees are buffered by the overstory.
Abstract: The response of understory trees to climate variability is key to understanding current and future forest dynamics. However, analyses of climatic effects on tree growth have primarily focused on the upper canopy, leaving understory dynamics unresolved. We analyzed differences in climate sensitivity based on canopy position of four common tree species (Acer rubrum, Fagus grandifolia, Quercus rubra, and Tsuga canadensis) using growth information from 1,084 trees across eight sites in the northeastern United States. Effects of canopy position on climate response varied, but were significant and often nonlinear, for all four species. Compared to overstory trees, understory trees showed stronger reductions in growth at high temperatures and varied shifts in precipitation response. This contradicts the prevailing assumption that climate responses, particularly to temperature, of understory trees are buffered by the overstory. Forest growth trajectories are uncertain in compositionally and structurally complex forests, and future demography and regeneration dynamics may be misinferred if not all canopy levels are represented in future forecasts.

Journal ArticleDOI
01 Jun 2021-Ecology
TL;DR: In this article, the authors uncover differences in the bleaching response between sympatric cryptic species of the common Indo-Pacific coral, Pocillopora, and reveal that size-dependent bleaching and mortality at the genus level was caused instead by differences among cryptic species.
Abstract: Variation among functionally similar species in their response to environmental stress buffers ecosystems from changing states. Functionally similar species may often be cryptic species representing evolutionarily distinct genetic lineages that are morphologically indistinguishable. However, the extent to which cryptic species differ in their response to stress, and could therefore provide a source of response diversity, remains unclear because they are often not identified or are assumed to be ecologically equivalent. Here, we uncover differences in the bleaching response between sympatric cryptic species of the common Indo-Pacific coral, Pocillopora. In April 2019, prolonged ocean heating occurred at Moorea, French Polynesia. 72% of pocilloporid colonies bleached after 22 days of severe heating (>8°C-days) at 10 m depth on the north shore fore reef. Colony mortality ranged from 11% to 42% around the island four months after heating subsided. The majority (86%) of pocilloporids that died from bleaching belonged to a single haplotype, despite twelve haplotypes, representing at least five species, being sampled. Mitochondrial (open reading frame) sequence variation was greater between the haplotypes that experienced mortality versus haplotypes that all survived than it was between nominal species that all survived. Colonies >30 cm in diameter were identified as the haplotype experiencing the most mortality, and in 1125 colonies that were not genetically identified, bleaching and mortality increased with colony size. Mortality did not increase with colony size within the haplotype suffering the highest mortality, suggesting that size-dependent bleaching and mortality at the genus level was caused instead by differences among cryptic species. The relative abundance of haplotypes shifted between February and August, driven by declines in the same common haplotype for which mortality was estimated directly, at sites where heat accumulation was greatest, and where larger colony sizes occurred. The identification of morphologically indistinguishable species that differ in their response to thermal stress, but share a similar ecological function in terms of maintaining a coral-dominated state, has important consequences for uncovering response diversity that drives resilience, especially in systems with low or declining functional diversity.

Journal ArticleDOI
01 Jun 2021-Ecology
TL;DR: In this paper, the authors used community models to examine how complementarity and selection, the two major biodiversity mechanisms known to enhance ecosystem biomass production, affect ecosystem stability, and they found that although complementarity promotes stability, selection impairs it.
Abstract: The biotic mechanisms underlying ecosystem functioning and stability have been extensively-but separately-explored in the literature, making it difficult to understand the relationship between functioning and stability. In this study, we used community models to examine how complementarity and selection, the two major biodiversity mechanisms known to enhance ecosystem biomass production, affect ecosystem stability. Our analytic and simulation results show that although complementarity promotes stability, selection impairs it. The negative effects of selection on stability operate through weakening portfolio effects and selecting species that have high productivity but low tolerance to perturbations ("risk-prone" species). In contrast, complementarity enhances stability by increasing portfolio effects and reducing the relative abundance of risk-prone species. Consequently, ecosystem functioning and stability exhibit either a synergy, if complementarity effects prevail, or trade-off, if selection effects prevail. Across species richness levels, ecosystem functioning and stability tend to be positively related, but negative relationships can occur when selection co-varies with richness. Our findings provide novel insights for understanding the functioning-stability relationship, with potential implications for both ecological research and ecosystem management.

Journal ArticleDOI
01 Oct 2021-Ecology
TL;DR: In this paper, the authors experimentally imposed an extreme 4-yr drought (2015-2018) in two C3 grasslands that differed in aridity, and found that the reduction in community mean plant height at both sites, resulting in a reduction in ANPP beyond that attributable to reduced soil moisture alone.
Abstract: Extreme drought decreases aboveground net primary production (ANPP) in most grasslands, but the magnitude of ANPP reductions varies especially in C3 -dominated grasslands. Because the mechanisms underlying such differential ecosystem responses to drought are not well resolved, we experimentally imposed an extreme 4-yr drought (2015-2018) in two C3 grasslands that differed in aridity. These sites had similar annual precipitation and dominant grass species (Leymus chinensis) but different annual temperatures and thus water availability. Drought treatments differentially affected these two semiarid grasslands, with ANPP of the drier site reduced more than at the wetter site. Structural equation modeling revealed that community-weighted means for some traits modified relationships between soil moisture and ANPP, often due to intraspecific variation. Specifically, drought reduced community mean plant height at both sites, resulting in a reduction in ANPP beyond that attributable to reduced soil moisture alone. Higher community mean leaf carbon content enhanced the negative effects of drought on ANPP at the drier site, and ANPP-soil-moisture relationships were influenced by soil C:N ratio at the wetter site. Importantly, neither species richness nor functional dispersion were significantly correlated with ANPP at either site. Overall, as expected, soil moisture was a dominant, direct driver of ANPP response to drought, but differential sensitivity to drought in these two grasslands was also related to soil fertility and plant traits.

Journal ArticleDOI
01 Jan 2021-Ecology
TL;DR: It is shown that survival trends over time are linked to species' elevational ranges in primary, but not in selectively-logged forest, which suggests that in response to climate change in the long term, individuals of the same species can maintain demographic vital rates in higher-elevation primary forest,but not in logged forest.
Abstract: Climate change and habitat degradation are amongst the two greatest threats to biodiversity. Together, they can interact to imperil species. However, how climate change and land-use change jointly affect the demographic vital rates that underpin population viability remains unknown. Here, using long-term data on birds from the increasingly degraded and rapidly warming Himalayas, we show that survival trends over time are linked to species' elevational ranges in primary, but not in selectively logged forest. In primary forest, populations at their cold-edge elevational range limit show increases in survival rates over time, whereas those at their warm-edge elevational range limit suffer survival declines. This pattern is consistent with species tracking favorable climatic conditions over time, leading to improved demographic outcomes at progressively higher elevations with climate change, which in turn lead to upslope range shifts. In logged forest, however, survival rates remain relatively constant over time. This suggests that, in response to climate change in the long term, individuals of the same species can maintain demographic vital rates in higher-elevation primary forest, but not in logged forest. This is the first demonstration of how two of the most disruptive anthropogenic influences on biodiversity interact to threaten survivorship in natural populations. Ignoring interactions between climate change and land-use change can potentially undermine accurate forecasting of the future of species in an increasingly warm and degraded world. Importantly, large tracts of well-protected primary forests across Earth's tropical elevational gradients may be essential to enable tropical montane species to persist in the face of climate change.

Journal ArticleDOI
01 Jan 2021-Ecology
TL;DR: Wind dispersal of three conifers after a stand-replacing fire that burned young and older P. contorta forest revealed that seed delivery from 18-yr-old edges was very low and concentrated within 10 m of the live edge, whereas seed Delivery from >100-yr old edges was >4.9 seeds m-2 out to 80 m.
Abstract: Subalpine forests that historically burned every 100-300 years are expected to burn more frequently as climate warms, perhaps before trees reach reproductive maturity or produce a serotinous seedbank. Tree regeneration after short-interval ( 100 yrs) P. contorta forest in Grand Teton National Park (Wyoming, USA). We asked how propagule pressure varied with time since last fire, how seed delivery into burned forest varied with age and structure of live forest edges, what variables explained seed delivery into burned forest, and how spatial patterns of delivery across the burned area could vary with alternate patterns of surrounding live forest age. Seeds were collected in traps along 100-m transects (n = 18) extending from live forest edges of varying age (18, 30 and >100 yrs) into areas of recent (2-yr) high-severity fire, and along transects in live forests to measure propagule pressure. Propagule pressure was low in 18-yr-old stands (~8 seeds m-2 ) and similarly greater in 30- and 100-yr old stands (~32 seeds m-2 ). Mean dispersal distance was lowest from 18-yr-old edges and greatest from >100-yr-old edges. Seed delivery into burned forest declined with increasing distance and increased with height of trees at live forest edges, and was consistently higher for P. contorta than for other conifers. Empirical dispersal kernels revealed that seed delivery from 18-yr-old edges was very low (≤2.4 seeds m-2 ) and concentrated within 10 m of the live edge, whereas seed delivery from >100-yr old edges was >4.9 seeds m-2 out to 80 m. When extrapolated throughout the burned landscape, estimated seed delivery was low ( 70% of areas that burned in short-interval fire (<30 yrs). As fire frequency increases, immaturity risk will be compounded in short-interval fires because seed dispersal from surrounding young trees is limited.

Journal ArticleDOI
01 Sep 2021-Ecology
TL;DR: In this paper, the authors re-examine factors that influence natal dispersal distances in British birds while taking into account the cost of transport as estimated from proxies of long-distance flight efficiency.
Abstract: The factors responsible for variation in dispersal distances across species remain poorly understood. Previous comparative studies found differing results and equivocal support for theoretical predictions. Here I re-examine factors that influence natal dispersal distances in British birds while taking into account the cost of transport as estimated from proxies of long-distance flight efficiency. First, I show that flight efficiency, as estimated by the hand-wing index, the aspect ratio, or the lift-to-drag ratio, is a strong predictor of dispersal distances among resident species. Most migratory species showed a similar pattern, but a group of species with relatively low aerodynamic efficiency showed longer-than-expected dispersal distances, making the overall trend independent of flight efficiency. Ecological, behavioral, and life history factors had a small or nil influence on dispersal distances, with most of their influence likely mediated by adaptations for the use of space reflected in flight efficiency. This suggests that dispersal distances in birds are not determined by adaptive strategies for dispersal per se, but are predominantly influenced by the energetic cost of movement.

Journal ArticleDOI
01 May 2021-Ecology
TL;DR: In this article, the authors combine temporally overlapping telemetry data from dominant lions and subordinate African wild dogs (Lycaon pictus) with high-resolution remote-sensing in an integrated step selection analysis to investigate how fine-scaled landscape heterogeneity might facilitate carnivore coexistence in South Africa's Hluhluwe-iMfolozi Park, where both predators occur at exceptionally high densities.
Abstract: Competitively dominant carnivore species can limit the population sizes and alter the behavior of inferior competitors. Established mechanisms that enable carnivore coexistence include spatial and temporal avoidance of dominant predator species by subordinates, and dietary niche separation. However, spatial heterogeneity across landscapes could provide inferior competitors with refuges in the form of areas with lower competitor density and/or locations that provide concealment from competitors. Here, we combine temporally overlapping telemetry data from dominant lions (Panthera leo) and subordinate African wild dogs (Lycaon pictus) with high-resolution remote-sensing in an integrated step selection analysis to investigate how fine-scaled landscape heterogeneity might facilitate carnivore coexistence in South Africa's Hluhluwe-iMfolozi Park, where both predators occur at exceptionally high densities. We ask whether the primary lion avoidance strategy of wild dogs is spatial avoidance of lions or areas frequented by lions, or if wild dogs selectively use landscape features to avoid detection by lions. Within this framework, we also test whether wild dogs rely on proactive or reactive responses to lion risk. In contrast to previous studies finding strong spatial avoidance of lions by wild dogs, we found that the primary wild dog lion-avoidance strategy was to select landscape features that aid in lion avoidance. This habitat selection was routinely used by wild dogs, and especially when in areas and during times of high lion encounter risk, suggesting a proactive response to lion risk. Our findings suggest that spatial landscape heterogeneity could represent an alternative mechanism for carnivore coexistence, especially as ever-shrinking carnivore ranges force inferior competitors into increased contact with dominant species.

Journal ArticleDOI
01 Jan 2021-Ecology
TL;DR: It is shown that species pool size causes scale-dependent effects on diversity in grasslands undergoing restoration by altering the shape of the species-area relationship (SAR), suggesting that studies evaluating species pools at a single, small scale may underestimate their effects.
Abstract: The species pool concept has advanced our understanding for how biodiversity is coupled at local and regional scales. However, it remains unclear how species pool size, the number of species available to disperse to a site, influences community assembly across spatial scales. We provide one of the first studies that assesses diversity across scales after experimentally assembling grassland communities from species pools of different sizes. We show that species pool size causes scale-dependent effects on diversity in grasslands undergoing restoration by altering the shape of the species-area relationship (SAR). Specifically, larger species pools increased the slope of the SAR, but not the intercept, suggesting that dispersal from a larger pool causes species to be more spatially aggregated. This increased aggregation appears to be caused by sampling effects due to fewer individuals arriving per species, rather than stronger species sorting across variation in soil moisture. These scale-dependent effects suggest that studies evaluating species pools at a single, small scale may underestimate their effects, thereby contributing to uncertainty about the importance of regional processes for community assembly and their consequences for ecological restoration.

Journal ArticleDOI
01 Apr 2021-Ecology
TL;DR: In addition to the question of whether to migrate, decisions of where and when to migrate appear equally fundamental to individual migration tactics, but these three dimensions of plasticity have rarely been explored together.
Abstract: Migratory ungulates are thought to be declining globally because their dependence on large landscapes renders them highly vulnerable to environmental change. Yet recent studies reveal that many ungulate species can adjust their migration propensity in response to changing environmental conditions to potentially improve population persistence. In addition to the question of whether to migrate, decisions of where and when to migrate appear equally fundamental to individual migration tactics, but these three dimensions of plasticity have rarely been explored together. Here, we expand the concept of migratory plasticity beyond individual switches in migration propensity to also include spatial and temporal adjustments to migration patterns. We develop a novel typological framework that delineates every potential change type within the three dimensions, then use this framework to guide a literature review. We discuss broad patterns in migratory plasticity, potential drivers of migration change, and research gaps in the current understanding of this trait. Our result reveals 127 migration change events in direct response to natural and human-induced environmental changes across 27 ungulate species. Species that appeared in multiple studies showed multiple types of change, with some exhibiting the full spectrum of migratory plasticity. This result highlights that multidimensional migratory plasticity is pervasive in ungulates, even as the manifestation of plasticity varies case by case. However, studies thus far have rarely been able to determine the fitness outcomes of different types of migration change, likely due to the scarcity of long-term individual-based demographic monitoring as well as measurements encompassing a full behavioral continuum and environmental gradient for any given species. Recognizing and documenting the full spectrum of migratory plasticity marks the first step for the field of migration ecology to employ quantitative methods, such as reaction norms, to predict migration change along environmental gradients. Closer monitoring for changes in migratory propensity, routes, and timing may improve the efficacy of conservation strategies and management actions in a rapidly changing world.

Journal ArticleDOI
01 Mar 2021-Ecology
TL;DR: It is demonstrated that resource tracking extends beyond resources directly related to foraging to those related to movement, and shows that snowmelt provides an environmental cue that may provide a buffer against changing environmental conditions.
Abstract: In northern climates, spring is a time of rapid environmental change: for migrating terrestrial animals, melting snow facilitates foraging and travel, and newly emergent vegetation provides a valuable nutritional resource. These changes result in selection on the timing of important life-history events such as migration and parturition occurring when high-quality resources are most abundant. We examined the timing of female caribou (Rangifer tarandus, n = 94) migration and parturition in five herds across 7 yr in Newfoundland, Canada, as a function of two measures of environmental change-snowmelt and vegetation green-up. We generated resource selection functions to test whether caribou selected for areas associated with snowmelt and green-up during migration and following calving. We found that caribou migrated approximately 1 wk prior to snowmelt, with the flush of emergent vegetation occurring during the weeks following parturition. The results indicate that caribou "jump" the green wave of emergent forage and do so by tracking the receding edge of melting snow, likely reducing movement and foraging costs related to snow cover. Our research further broadens the ecological scope of resource tracking in animals. We demonstrate that resource tracking extends beyond resources directly related to foraging to those related to movement. We also show that snowmelt provides an environmental cue that may provide a buffer against changing environmental conditions.

Journal ArticleDOI
01 Feb 2021-Ecology
TL;DR: The observations suggest that interspecific coexistence has measurable consequences, and the experiments support the long-held, but previously untested belief that resident birds compete interspecifically with wintering migrants.
Abstract: The contribution of interspecific competition to structuring population and community dynamics remains controversial and poorly tested. Specifically, interspecific competition has long been thought to influence the structure of migrant-resident bird communities in winter, yet experimental evidence remains elusive. The arrival of billions of songbirds into Neotropical habitats, where they co-exist with residents, provides a unique opportunity to assess interspecific competition and its consequences. Working in 15 ha of Jamaican black mangrove forest, we used removal experiments to test whether dominant resident Yellow Warblers compete interspecifically with subordinate wintering American Redstarts; we also used observational evidence (interspecific territorial overlap) to understand whether this coexistence influences physical condition, spring departure dates or annual return rates. Consistent with interspecific competition, after experimental removal of the resident, yearling male redstarts (but not females or adult males) immediately into vacated Yellow Warbler territories, increasing their overlap with the space by 7.3%. Yearling redstarts also appeared to adjust their territorial space use by actively avoiding Yellow Warblers; for example, redstarts departing the wintering grounds as yearlings and returning the following winter shifted such that their territories overlapped 32% less with those of Yellow Warblers. Adult redstarts showed no such territorial flexibility. Adult male redstarts also showed evidence supporting the consequences of coexistence: territorial overlap with Yellow Warblers was negatively correlated with body condition and annual return rates. Adult male redstarts with <25% territorial overlap with Yellow Warblers were more than three times as likely to return between seasons than those with 100% overlap. We propose that the territorial inflexibility of adult male redstarts produces these consequences, which may be due to their years-long investment in that particular territory. More generally, the temporary nature of migrant-resident interspecific competition is likely what allows coexistence during winter, the most resource poor time of year. Our observations suggest that interspecific competition and the consequences of coexistence are age- and sex-specific and the product of intraspecific dominance hierarchy in redstarts. Our observations suggest that interspecific coexistence has measurable consequences, and our experiments support the long-held, but previously untested belief that resident birds compete interspecifically with wintering migrants.

Journal ArticleDOI
01 Jan 2021-Ecology
TL;DR: Compared functions of coral‐ and algae‐dominated communities in the central Red Sea bimonthly over an entire year suggest pronounced changes in community functioning associated with coral‐algal phase shifts, and suggests ocean warming may not only cause but also amplify coral–algalphase shifts in coral reefs.
Abstract: This is the data to "High summer temperatures amplify functional differences between coral- and algae-dominated reef communities". All information on how the dataset was collected can be found in the manuscript. Abstract of the manuscript: Shifts from coral to algal dominance are expected to increase in tropical coral reefs as a result of anthropogenic disturbances. The consequences for key ecosystem functions such as primary productivity, calcification, and nutrient recycling are poorly understood, particularly under changing environmental conditions. We used a novel in situ incubation approach to compare functions of coral- and algae-dominated communities in the central Red Sea bi-monthly over an entire year. In situ gross and net community primary productivity, calcification, dissolved organic carbon fluxes, dissolved inorganic nitrogen fluxes, and their respective activation energies were quantified to describe the effects of seasonal changes. Overall, coral-dominated communities exhibited 30% lower net productivity and 10 times higher calcification than algae-dominated communities. Estimated activation energies indicated a higher thermal sensitivity of coral-dominated communities. In these communities, net productivity and calcification were negatively correlated with temperature (>40% and >65% reduction, respectively, with +5°C increase from winter to summer), while carbon losses via respiration and dissolved organic carbon release were more than doubled at higher temperatures. In contrast, algae-dominated communities doubled net productivity in summer, while calcification and dissolved organic carbon fluxes were unaffected. These results suggest pronounced changes in community functioning associated with phase shifts. Algae-dominated communities may outcompete coral-dominated communities due to their higher productivity and carbon retention to support fast biomass accumulation while compromising the formation of important reef framework structures. Higher temperatures likely amplify these functional differences, indicating a high vulnerability of ecosystem functions of coral-dominated communities to temperatures even below coral bleaching thresholds. Our results suggest that ocean warming may not only cause but also amplify coral-algal phase shifts in coral reefs. Usage information: The data Excel file contains two data sheets: Sheet 1 (Community composition): This sheet gives the community composition of the assessed benthic communities in % cover of functional groups. Sheet 2 (Metabolism): This sheet contains the metabolic data of the benthic communities. All abbreviations and units are in the related publication.

Journal ArticleDOI
01 Jul 2021-Ecology
TL;DR: In this article, the authors synthesized 161 global sites to analyze how multiple factors influence consumer-resource interactions with fish in freshwater ecosystems, and they found no influence or even an increasing trophic cascade strength (e.g., phytoplankton) with increasing latitude.
Abstract: Top-down cascade effects are among the most important mechanisms underlying community structure and abundance dynamics in aquatic and terrestrial ecosystems worldwide. A current challenge is understanding the factors controlling trophic cascade strength under global environmental changes. Here, we synthesized 161 global sites to analyze how multiple factors influence consumer-resource interactions with fish in freshwater ecosystems. Fish have a profound negative effect on zooplankton and water clarity but positive effects on primary producers and water nutrients. Furthermore, fish trophic levels can modify the strength of trophic cascades, but an even number of food chain length does not have a negative effect on primary producers in real ecosystems. Eutrophication, warming, and predator abundance strengthen the trophic cascade effects on phytoplankton, suggesting that top-down control will be increasingly important under future global environmental changes. We found no influence or even an increasing trophic cascade strength (e.g., phytoplankton) with increasing latitude, which does not support the widespread view that the trophic cascade strength increases closer to the equator. With increasing temporal and spatial scales, the experimental duration has an accumulative effect, whereas the experimental size is not associated with the trophic cascade strength. Taken together, eutrophication, warming, temporal scale, and predator trophic level and abundance are pivotal to understanding the impacts of multiple environmental factors on the trophic cascade strength. Future studies should stress the possible synergistic effect of multiple factors on the food web structure and dynamics.

Journal ArticleDOI
01 Mar 2021-Ecology
TL;DR: Comparisons of networks constructed under a range of sequence thresholds for assigning taxa demonstrate the need for caution when comparing networks that differ with respect to node resolution, even where taxonomic groups and interaction types are similar, and highlight the importance of classifying nodes to the greatest precision possible.
Abstract: Constructing ecological networks has become an indispensable approach in understanding how different taxa interact. However, the methods used to generate data in network research varies widely among studies, potentially limiting our ability to compare results meaningfully. In particular, methods of classifying nodes vary in their precision, likely altering the architecture of the network studied. For example, rather than being classified as Linnaean species, taxa are regularly assigned to morphospecies in observational studies, or to Molecular Operational Taxonomic Units (MOTUs) in molecular studies, with the latter defined based on an arbitrary threshold of sequence similarity. Although the use of MOTUs in ecological networks holds great potential, especially for allowing rapid construction of large datasets of interactions, it is unclear how the choice of clustering threshold can influence the conclusions obtained. To test the impact of taxonomic precision on network architecture, we obtained and analyzed 16 datasets of ecological interactions, inferred from metabarcoding and observations. Our comparisons of networks constructed under a range of sequence thresholds for assigning taxa demonstrate that even small changes in node resolution can cause wide variation in almost all key metric values. Moreover, relative values of commonly used metrics such as robustness were seen to fluctuate continuously with node resolution, thereby potentially causing error in conclusions drawn when comparing multiple networks. In observational networks, we found that changing node resolution could, in some cases, lead to substantial changes to measurements of network topology. Overall, our findings highlight the importance of classifying nodes to the greatest precision possible, and demonstrate the need for caution when comparing networks that differ with respect to node resolution, even where taxonomic groups and interaction types are similar. In such cases, we recommend that comparisons of networks should focus on relative differences rather than absolute values between the networks studied.

Journal ArticleDOI
01 Mar 2021-Ecology
TL;DR: This work proposes a genetic algorithm that minimizes any sensible, criteria-based objective function to produce near-optimal sampling designs and uses simulation to show that these designs out-perform those based on existing recommendations in terms of bias, precision, and accuracy in the estimation of population size.
Abstract: Spatial capture-recapture (SCR) has emerged as the industry standard for estimating population density by leveraging information from spatial locations of repeat encounters of individuals. The precision of density estimates depends fundamentally on the number and spatial configuration of traps. Despite this knowledge, existing sampling design recommendations are heuristic and their performance remains untested for most practical applications. To address this issue, we propose a genetic algorithm that minimizes any sensible, criteria-based objective function to produce near-optimal sampling designs. To motivate the idea of optimality, we compare the performance of designs optimized using three model-based criteria related to the probability of capture. We use simulation to show that these designs outperform those based on existing recommendations in terms of bias, precision, and accuracy in the estimation of population size. Our approach, available as a function in the R package oSCR, allows conservation practitioners and researchers to generate customized and improved sampling designs for wildlife monitoring.

Journal ArticleDOI
01 Jul 2021-Ecology
TL;DR: In this article, the authors extended general theory based on metabolic scaling and biomechanics to predict the scaling of five locomotor performance traits: routine speed, maximum speed, acceleration, minimum powered turn radius, and angular speed.
Abstract: Organismal locomotion mediates ecological interactions and shapes community dynamics. Locomotion is constrained by intrinsic and environmental factors and integrating these factors should clarify how locomotion affects ecology across scales. We extended general theory based on metabolic scaling and biomechanics to predict the scaling of five locomotor performance traits: routine speed, maximum speed, maximum acceleration, minimum powered turn radius, and angular speed. To test these predictions, we used phylogenetically informed analyses of a new database with 884 species and found support for our quantitative predictions. Larger organisms were faster but less maneuverable than smaller organisms. Routine and maximum speeds scaled with body mass to 0.20 and 0.17 powers, respectively, and plateaued at higher body masses, especially for maximum speed. Acceleration was unaffected by body mass. Minimum turn radius scaled to a 0.19 power, and the 95% CI included our theoretical prediction, as we predicted. Maximum angular speed scaled higher than predicted but in the same direction. We observed universal scaling among locomotor modes for routine and maximum speeds but the intercepts varied; flying organisms were faster than those that swam or ran. Acceleration was independent of size in flying and aquatic taxa but decreased with body mass in land animals, possibly due to the risk of injury large, terrestrial organisms face at high speeds and accelerations. Terrestrial mammals inhabiting structurally simple habitats tended to be faster than those in complex habitats. Despite effects of body size, locomotor mode, and habitat complexity, universal scaling of locomotory performance reveals the general ways organisms move across Earth's complex environments.

Journal ArticleDOI
01 Jan 2021-Ecology
TL;DR: It is demonstrated that eye size predicts (a) the ambient light microenvironment used by free-ranging birds, (b) their foraging niche, and (c) species-specific sensitivity to agricultural land use change.
Abstract: The role of light in partitioning ecological niche space remains a frontier in understanding the assembly of terrestrial vertebrate communities and their response to global change. Leveraging recent advances in biologging technology and intensive field surveys of cloud forest bird communities across an agricultural land use gradient in the Peruvian Andes, we demonstrate that eye size predicts (1) the ambient light microenvironment used by free-ranging birds, (2) their foraging niche, and (3) species-specific sensitivity to agricultural land use change. For 15 species carrying light sensors (N = 71 individuals), light intensity levels were best explained by eye size and foraging behavior, with larger-eyed species using darker microenvironments. Across the cloud forest bird community (N = 240 species), hyperopic ("far-sighted") foragers, (e.g., flycatchers), had larger eyes compared to myopic ("near-sighted") species (e.g., gleaners and frugivores); eye size was also larger for myopic insectivores that foraged in the forest understory. Eye size strongly predicted sensitivity to brightly lit habitats across an agricultural land use gradient. Species that increased in abundance in mixed intensity agriculture, including fencerows, silvopasture, and pasture, had smaller eyes, suggesting that light acts as an environmental filter when communities disassemble in a human-disturbed landscape. We suggest that eye size represents a novel functional trait contributing to terrestrial vertebrate community assembly and sensitivity to habitat disturbance.