scispace - formally typeset
Search or ask a question

Showing papers in "EJNMMI Physics in 2019"


Journal ArticleDOI
TL;DR: This work states that quantitative SPECT offers the possibility to continue and expand the potential of quantitative nuclear medicine applications, but the time is now to ensure that the community works together to make this potential a reality.
Abstract: Quantification is one of the key benefits of nuclear medicine imaging. Recently, driven by the demand for post radionuclide therapy imaging, quantitative SPECT has moved from relative and semiquantitative measures to absolute quantification in terms of activity concentration, and yet further to normalised uptake using the standard uptake value (SUV). This expansion of quantitative SPECT has the potential to be a useful tool in the nuclear medicine armoury, but key factors must be addressed before it can meet its full potential. Quantitative SPECT should address an unmet clinical need and give metrics that are clinically meaningful. Using the technique in a similar manner to PET with longitudinal assessments of disease in terms of SUV is one example that meets these criteria. Having metrics that are evaluated to ensure that they are correct, that are optimised to maximise their sensitivity, and that are transferrable to allow multi-centre learning and applicability to all users of the technology are other areas of quantitative SPECT that need to be addressed and that have specific challenges associated with them. Finally, ensuring quantitative SPECT is cost-effective in times when healthcare budgets are being squeezed is also very important. Quantitative SPECT offers the possibility to continue and expand the potential of quantitative nuclear medicine applications. The time is now to ensure that our community works together to make this potential a reality.

48 citations


Journal ArticleDOI
TL;DR: Absolute SPECT quantification in a multi-center and multi-vendor setting is feasible, especially when reconstruction protocols are standardized, paving the way for a standard for absolute quantitative SPECT.
Abstract: Absolute quantification of radiotracer distribution using SPECT/CT imaging is of great importance for dosimetry aimed at personalized radionuclide precision treatment. However, its accuracy depends on many factors. Using phantom measurements, this multi-vendor and multi-center study evaluates the quantitative accuracy and inter-system variability of various SPECT/CT systems as well as the effect of patient size, processing software and reconstruction algorithms on recovery coefficients (RC). Five SPECT/CT systems were included: Discovery™ NM/CT 670 Pro (GE Healthcare), Precedence™ 6 (Philips Healthcare), Symbia Intevo™, and Symbia™ T16 (twice) (Siemens Healthineers). Three phantoms were used based on the NEMA IEC body phantom without lung insert simulating body mass indexes (BMI) of 25, 28, and 47 kg/m2. Six spheres (0.5–26.5 mL) and background were filled with 0.1 and 0.01 MBq/mL 99mTc-pertechnetate, respectively. Volumes of interest (VOI) of spheres were obtained by a region growing technique using a 50% threshold of the maximum voxel value corrected for background activity. RC, defined as imaged activity concentration divided by actual activity concentration, were determined for maximum (RCmax) and mean voxel value (RCmean) in the VOI for each sphere diameter. Inter-system variability was expressed as median absolute deviation (MAD) of RC. Acquisition settings were standardized. Images were reconstructed using vendor-specific 3D iterative reconstruction algorithms with institute-specific settings used in clinical practice and processed using a standardized, in-house developed processing tool based on the SimpleITK framework. Additionally, all data were reconstructed with a vendor-neutral reconstruction algorithm (Hybrid Recon™; Hermes Medical Solutions). RC decreased with decreasing sphere diameter for each system. Inter-system variability (MAD) was 16 and 17% for RCmean and RCmax, respectively. Standardized reconstruction decreased this variability to 4 and 5%. High BMI hampers quantification of small lesions (< 10 ml). Absolute SPECT quantification in a multi-center and multi-vendor setting is feasible, especially when reconstruction protocols are standardized, paving the way for a standard for absolute quantitative SPECT.

41 citations


Journal ArticleDOI
TL;DR: Application of EARL2 standards can result in higher SUVs, reduced MATV and slightly changed TLG values relative to EARL1, but differences in MATV as well as TLG were observed.
Abstract: Recently, updated EARL specifications (EARL2) have been developed and announced. This study aims at investigating the impact of the EARL2 specifications on the quantitative reads of clinical PET–CT studies and testing a method to enable the use of the EARL2 standards whilst still generating quantitative reads compliant with current EARL standards (EARL1). Thirteen non-small cell lung cancer (NSCLC) and seventeen lymphoma PET–CT studies were used to derive four image datasets—the first dataset complying with EARL1 specifications and the second reconstructed using parameters as described in EARL2. For the third (EARL2F6) and fourth (EARL2F7) dataset in EARL2, respectively, 6 mm and 7 mm Gaussian post-filtering was applied. We compared the results of quantitative metrics (MATV, SUVmax, SUVpeak, SUVmean, TLG, and tumor-to-liver and tumor-to-blood pool ratios) obtained with these 4 datasets in 55 suspected malignant lesions using three commonly used segmentation/volume of interest (VOI) methods (MAX41, A50P, SUV4). We found that with EARL2 MAX41 VOI method, MATV decreases by 22%, TLG remains unchanged and SUV values increase by 23–30% depending on the specific metric used. The EARL2F7 dataset produced quantitative metrics best aligning with EARL1, with no significant differences between most of the datasets (p>0.05). Different VOI methods performed similarly with regard to SUV metrics but differences in MATV as well as TLG were observed. No significant difference between NSCLC and lymphoma cancer types was observed. Application of EARL2 standards can result in higher SUVs, reduced MATV and slightly changed TLG values relative to EARL1. Applying a Gaussian filter to PET images reconstructed using EARL2 parameters successfully yielded EARL1 compliant data.

38 citations


Journal ArticleDOI
TL;DR: FBP with an image enhancement neural network provides SPECT reconstructions with quality close to that obtained with Monte Carlo-based reconstruction within seconds, which is currently not commonly used in daily clinical practice.
Abstract: Monte Carlo-based iterative reconstruction to correct for photon scatter and collimator effects has been proven to be superior over analytical correction schemes in single-photon emission computed tomography (SPECT/CT), but it is currently not commonly used in daily clinical practice due to the long associated reconstruction times. We propose to use a convolutional neural network (CNN) to upgrade fast filtered back projection (FBP) image quality so that reconstructions comparable in quality to the Monte Carlo-based reconstruction can be obtained within seconds. A total of 128 technetium-99m macroaggregated albumin pre-treatment SPECT/CT scans used to guide hepatic radioembolization were available. Four reconstruction methods were compared: FBP, clinical reconstruction, Monte Carlo-based reconstruction, and the neural network approach. The CNN generated reconstructions in 5 sec, whereas clinical reconstruction took 5 min and the Monte Carlo-based reconstruction took 19 min. The mean squared error of the neural network approach in the validation set was between that of the Monte Carlo-based and clinical reconstruction, and the lung shunting fraction difference was lower than 2 percent point. A phantom experiment showed that quantitative measures required in radioembolization were accurately retrieved from the CNN-generated reconstructions. FBP with an image enhancement neural network provides SPECT reconstructions with quality close to that obtained with Monte Carlo-based reconstruction within seconds.

33 citations


Journal ArticleDOI
TL;DR: Reconstructions applying point-spread-function modeling yielded the highest CRC and CNR in general, and PET/CT demonstrated slightly higher values than PET/ MRI for most sphere sizes, although for an increased acquisition time for the PET/MRI.
Abstract: The technology of modern positron emission tomography (PET) systems continuously improving, and with it the possibility to detect smaller lesions. Since first introduced in 2010, the number of hybrid PET/magnetic resonance imaging (MRI) systems worldwide is constantly increasing. It is therefore important to assess and compare the image quality, in terms of detectability, between the PET/MRI and the well-established PET/computed tomography (CT) systems. For this purpose, a PET image quality phantom (Esser) with hot spheres, ranging from 4 to 20 mm in diameter, was prepared with fluorodeoxyglucose and sphere-to-background activity concentrations of 8:1 and 4:1, to mimic clinical conditions. The phantom was scanned on a PET/MRI and a PET/CT system for both concentrations to obtain contrast recovery coefficients (CRCs) and contrast-to-noise ratios (CNRs), for a range of reconstruction settings. The detectability of the spheres was scored by three human observers for both systems and concentrations and all reconstructions. Furthermore, the impact of acquisition time on CNR and observer detectability was investigated. Reconstructions applying point-spread-function modeling (and time-of-flight for the PET/CT) yielded the highest CRC and CNR in general, and PET/CT demonstrated slightly higher values than PET/MRI for most sphere sizes. CNR was dependent on reconstruction settings and was maximized for 2 iterations, a pixel size of less than 2 mm and a 4 mm Gaussian filter. Acquisition times of 97 s (PET/MRI) and 150 s (PET/CT) resulted in similar total net true counts. For these acquisition times, the smallest detected spheres by the human observers in the 8:1 activity concentration was the 6-mm sphere with PET/MRI (CNR = 5.6) and the 5-mm sphere with PET/CT (CNR = 5.5). With an acquisition time of 180 s, the 5-mm sphere was also detected with PET/MRI (CNR = 5.8). The 8-mm sphere was the smallest detected sphere in the 4:1 activity concentration for both systems. In this experimental study, similar detectability was found for the PET/MRI and the PET/CT, although for an increased acquisition time for the PET/MRI.

33 citations


Journal ArticleDOI
TL;DR: System sensitivity and NECR are lower and IQ phantom’s BV is higher compared with larger axial FOV (AFOV) scanners like the 4-ring discovery MI, as expected from the smaller solid angle of the 3-ring system.
Abstract: This paper describes the National Electrical Manufacturers Association (NEMA) system performance of the Discovery MI 3-ring PET/CT (GE Healthcare) installed in Bruges, Belgium. This time-of-flight (TOF) PET camera is based on silicon photomultipliers instead of photomultiplier tubes. The NEMA NU2-2012 standard was used to evaluate spatial resolution, sensitivity, image quality (IQ) and count rate curves of the system. Timing and energy resolution were determined. Full width at half maximum (FWHM) of spatial resolution in radial, tangential and axial direction was 4.69, 4.08 and 4.68 mm at 1 cm; 5.58, 4.64 and 5.83 mm at 10 cm; and 7.53, 5.08 and 5.47 mm at 20 cm from the centre of the field of view (FOV) for the filtered backprojection reconstruction. For non-TOF ordered subset expectation maximization (OSEM) reconstruction without point spread function (PSF) correction, FWHM was 3.87, 3.69 and 4.15 mm at 1 cm; 4.80, 3.81 and 4.87 mm at 10 cm; and 7.38, 4.16 and 3.98 mm at 20 cm. Sensitivity was 7.258 cps/kBq at the centre of the FOV and 7.117 cps/kBq at 10-cm radial offset. Contrast recovery (CR) using the IQ phantom for the TOF OSEM reconstruction without PSF correction was 47.4, 59.3, 67.0 and 77.0% for the 10-, 13-, 17- and 22-mm radioactive spheres and 82.5 and 85.1% for the 28- and 37-mm non-radioactive spheres. Background variability (BV) was 16.4, 12.1, 9.1, 6.6, 5.1 and 3.8% for the 10-, 13-, 17-, 22-, 28- and 37-mm spheres. Lung error was 8.5%. Peak noise equivalent count rate (NECR) was 102.3 kcps at 23.0 kBq/ml with a scatter fraction of 41.2%. Maximum accuracy error was 3.88%. Coincidence timing resolution was 375.6 ps FWHM. Energy resolution was 9.3% FWHM. Q.Clear reconstruction significantly improved CR and reduced BV compared with OSEM. System sensitivity and NECR are lower and IQ phantom’s BV is higher compared with larger axial FOV (AFOV) scanners like the 4-ring discovery MI, as expected from the smaller solid angle of the 3-ring system. The other NEMA performance parameters are all comparable with those of the larger AFOV scanners.

27 citations


Journal ArticleDOI
TL;DR: Proposed precautions for inpatient and outpatient 177Lu-DOTATATE therapy protocols restrict the dose received to less than the limit imposed by the UK legislation.
Abstract: 177Lu-DOTATATE peptide receptor radionuclide therapy is administered to patients on an inpatient and outpatient basis for the treatment of well-differentiated, metastatic neuroendocrine tumours. Following administration, these patients present an external radiation hazard due to the gamma emissions of lutetium-177. The purpose of this study was to determine precautions to be observed by 177Lu-DOTATATE patients to restrict the dose received by patients’ family members to less than 5 mSv in 5 years and members of the public to less than 1 mSv per year in line with the current UK legislation. Retrospective data from therapeutic administrations of 177Lu-DOTATATE (Mallinckrodt Pharmaceuticals) and Lutathera® (Advanced Accelerator Applications) were analysed to measure activity retention at discharge. Patient dose rate measurements were assumed to follow the same activity decay curve as that derived from a least squares fit of geometric mean counts in planar whole-body scans performed at four time points post-administration. Combining this with social contact times, the cumulative dose received through contact with the patient was estimated and an iterative process used to determine the length of contact restrictions to ensure the relevant dose constraints are not exceeded. On average, 36% of the administered activity was retained at the time of discharge for inpatients receiving 177Lu-DOTATATE (Mallinckrodt). Retentions of 24% and 38% were measured for Lutathera® inpatients and outpatients respectively. Inpatients should restrict day contact and sleep separately from their partner for 15 days and remain off work for 5 days post-therapy. Contact with children for whom the patient is the main carer should be restricted for 16, 13 and 9 days for children below 2, 2–5 and 5–11 years respectively. One additional day is added to outpatient restriction periods, except for children aged 2–5 years which remains 13 days. No private transport restrictions are required. Patients should limit travel by public transport to 1 h on the day of discharge. Restrictions are necessary to limit radiation dose to members of patients’ household and the public. Proposed precautions for inpatient and outpatient 177Lu-DOTATATE therapy protocols restrict the dose received to less than the limit imposed by the UK legislation.

25 citations


Journal ArticleDOI
TL;DR: The BPL algorithm performs better than the standard OSEM+PSF algorithm on small lesion detectability, SUV recovery, and noise suppression, and is very interesting for improving image quality, especially in small lesions detectability.
Abstract: Recently, a Bayesian penalized likelihood (BPL) reconstruction algorithm was introduced for a commercial PET/CT with the potential to improve image quality. We compared the performance of this BPL algorithm with conventional reconstruction algorithms under realistic clinical conditions such as daily practiced at many European sites, i.e. low 18F-FDG dose and short acquisition times. To study the performance of the BPL algorithm, regular clinical 18F-FDG whole body PET scans were made. In addition, two types of phantoms were scanned with 4-37 mm sized spheres filled with 18F-FDG at sphere-to-background ratios of 10-to-1, 4-to-1, and 2-to-1. Images were reconstructed using standard ordered-subset expectation maximization (OSEM), OSEM with point spread function (PSF), and the BPL algorithm using β-values of 450, 550 and 700. To quantify the image quality, the lesion detectability, activity recovery, and the coefficient of variation (COV) within a single bed position (BP) were determined. We found that when applying the BPL algorithm both smaller lesions in clinical studies as well as spheres in phantom studies can be detected more easily due to a higher SUV recovery, especially for higher contrast ratios. Under standard clinical scanning conditions, i.e. low number of counts, the COV is higher for the BPL (β=450) than the OSEM+PSF algorithm. Increase of the β-value to 550 or 700 results in a COV comparable to OSEM+PSF, however, at the cost of contrast, though still better than OSEM+PSF. At the edges of the axial field of view (FOV) where BPs overlap, COV can increase to levels at which bands become visible in clinical images, related to the lower local axial sensitivity of the PET/CT, which is due to the limited bed overlap of 23% such as advised by the manufacturer. The BPL algorithm performs better than the standard OSEM+PSF algorithm on small lesion detectability, SUV recovery, and noise suppression. Increase of the percentage of bed overlap, time per BP, administered activity, or the β-value, all have a direct positive impact on image quality, though the latter with some loss of small lesion detectability. Thus, BPL algorithms are very interesting for improving image quality, especially in small lesion detectability.

25 citations


Journal ArticleDOI
TL;DR: The BSREM reconstruction algorithm allowed a noise reduction without a loss of contrast by a factor of 2–4 compared to OSEM reconstructions for all data evaluated, which can be used to lower the injected dose or shorten the acquisition time.
Abstract: Q.Clear is a block sequential regularized expectation maximization (BSREM) penalized-likelihood reconstruction algorithm for PET. It tries to improve image quality by controlling noise amplification during image reconstruction. In this study, the noise properties of this BSREM were compared to the ordered-subset expectation maximization (OSEM) algorithm for both phantom and patient data acquired on a state-of-the-art PET/CT. The NEMA IQ phantom and a whole-body patient study were acquired on a GE DMI 3-rings system in list mode and different datasets with varying noise levels were generated. Phantom data was evaluated using four different contrast ratios. These were reconstructed using BSREM with different β-factors of 300–3000 and with a clinical setting used for OSEM including point spread function (PSF) and time-of-flight (TOF) information. Contrast recovery (CR), background noise levels (coefficient of variation, COV), and contrast-to-noise ratio (CNR) were used to determine the performance in the phantom data. Findings based on the phantom data were compared with clinical data. For the patient study, the SUV ratio, metabolic active tumor volumes (MATVs), and the signal-to-noise ratio (SNR) were evaluated using the liver as the background region. Based on the phantom data for the same count statistics, BSREM resulted in higher CR and CNR and lower COV than OSEM. The CR of OSEM matches to the CR of BSREM with β = 750 at high count statistics for 8:1. A similar trend was observed for the ratios 6:1 and 4:1. A dependence on sphere size, counting statistics, and contrast ratio was confirmed by the CNR of the ratio 2:1. BSREM with β = 750 for 2.5 and 1.0 min acquisition has comparable COV to the 10 and 5.0 min acquisitions using OSEM. This resulted in a noise reduction by a factor of 2–4 when using BSREM instead of OSEM. For the patient data, a similar trend was observed, and SNR was reduced by at least a factor of 2 while preserving contrast. The BSREM reconstruction algorithm allowed a noise reduction without a loss of contrast by a factor of 2–4 compared to OSEM reconstructions for all data evaluated. This reduction can be used to lower the injected dose or shorten the acquisition time.

24 citations


Journal ArticleDOI
TL;DR: The effective dose and organ doses from injection of [68Ga]PSMA-11 in a cohort of low-risk prostate cancer patients were determined, where the kidneys and lacrimal glands receiving the highest organ dose.
Abstract: 68Ga-labeled Glu-NH-CO-NH-Lys(Ahx)-HBED-CC ([68Ga]PSMA-11) has been increasingly used to image prostate cancer using positron emission tomography (PET)/computed tomography (CT) both during diagnosis and treatment planning. It has been shown to be of clinical value for patients both in the primary and secondary stages of prostate cancer. The aim of this study was to determine the effective dose and organ doses from injection of [68Ga]PSMA-11 in a cohort of low-risk prostate cancer patients. Six low-risk prostate cancer patients were injected with 133–178 MBq [68Ga]PSMA-11 and examined with four PET/CT acquisitions from injection to 255 min post-injection. Urine was collected up to 4 h post-injection, and venous blood samples were drawn at 45 min, 85 min, 175 min, and 245 min post-injection. Kidneys, liver, lungs, spleen, salivary and lacrimal glands, and total body where delineated, and cumulated activities and absorbed organ doses calculated. The software IDAC-Dose 2.1 was used to calculate absorbed organ doses according to the International Commission on Radiological Protection (ICRP) publication 107 using specific absorbed fractions published in ICRP 133 and effective dose according to ICRP Publication 103. We also estimated the absorbed dose to the eye lenses using Monte Carlo methods. [68Ga]PSMA-11 was rapidly cleared from the blood and accumulated preferentially in the kidneys and the liver. The substance has a biological half-life in blood of 6.5 min (91%) and 4.4 h (9%). The effective dose was calculated to 0.022 mSv/MBq. The kidneys received approximately 40 mGy after an injection with 160 MBq [68Ga]PSMA-11 while the lacrimal glands obtained an absorbed dose of 0.12 mGy per administered MBq. Regarding the eye lenses, the absorbed dose was low (0.0051 mGy/MBq). The effective dose for [68Ga]PSMA-11 is 0.022 mSv/MBq, where the kidneys and lacrimal glands receiving the highest organ dose.

20 citations


Journal ArticleDOI
TL;DR: In this first Nordic-wide study of CT doses in hybrid imaging, Nordic NDRL CT doses are suggested for PET/CT and SPECT/CT examinations specific to the clinical purpose of CT, and the scope for optimisation is evaluated.
Abstract: Computed tomography (CT) scans are routinely performed in positron emission tomography (PET) and single photon emission computed tomography (SPECT) examinations globally, yet few surveys have been conducted to gather national diagnostic reference level (NDRL) data for CT radiation doses in positron emission tomography/computed tomography (PET/CT) and single photon emission computed tomography/computed tomography (SPECT/CT). In this first Nordic-wide study of CT doses in hybrid imaging, Nordic NDRL CT doses are suggested for PET/CT and SPECT/CT examinations specific to the clinical purpose of CT, and the scope for optimisation is evaluated. Data on hybrid imaging CT exposures and clinical purpose of CT were gathered for 5 PET/CT and 8 SPECT/CT examinations via designed booklet. For each included dataset for a given facility and scanner type, the computed tomography dose index by volume (CTDIvol) and dose length product (DLP) was interpolated for a 75-kg person (referred to as CTDIvol,75kg and DLP75kg). Suggested NDRL (75th percentile) and achievable doses (50th percentile) were determined for CTDIvol,75kg and DLP75kg according to clinical purpose of CT. Differences in maximum and minimum doses (derived for a 75-kg patient) between facilities were also calculated for each examination and clinical purpose. Data were processed from 83 scanners from 43 facilities. Data were sufficient to suggest Nordic NDRL CT doses for the following: PET/CT oncology (localisation/characterisation, 15 systems); infection/inflammation (localisation/characterisation, 13 systems); brain (attenuation correction (AC) only, 11 systems); cardiac PET/CT and SPECT/CT (AC only, 30 systems); SPECT/CT lung (localisation/characterisation, 12 systems); bone (localisation/characterisation, 30 systems); and parathyroid (localisation/characterisation, 13 systems). Great variations in dose were seen for all aforementioned examinations. Greatest differences in DLP75kg for each examination, specific to clinical purpose, were as follows: SPECT/CT lung AC only (27.4); PET/CT and SPECT/CT cardiac AC only (19.6); infection/inflammation AC only (18.1); PET/CT brain localisation/characterisation (16.8); SPECT/CT bone localisation/characterisation (10.0); PET/CT oncology AC only (9.0); and SPECT/CT parathyroid localisation/characterisation (7.8). Suggested Nordic NDRL CT doses are presented according to clinical purpose of CT for PET/CT oncology, infection/inflammation, brain, PET/CT and SPECT/CT cardiac, and SPECT/CT lung, bone, and parathyroid. The large variation in doses suggests great scope for optimisation in all 8 examinations.

Journal ArticleDOI
TL;DR: Attenuation properties of SLM tungsten are superior to the lead alternative and the opportunity for bespoke collimator design is appealing.
Abstract: The aim of this work was to characterise the attenuation properties of 3D-printed tungsten and to assess the feasibility for its use in gamma camera collimator manufacture. 3D-printed tungsten disks were produced using selective laser melting (SLM). Measurements of attenuation were made through increasing numbers of disks for a Tc-99m (140 keV) and I-131 (364 keV) source. The technique was validated by repeating the measurements with lead samples. Resolution measurements were also made with a SLM tungsten collimator and compared to Monte Carlo simulations of the experimental setup. Different collimator parameters were simulated and compared against the physical measurements to investigate the effect on image quality. The measured disk thicknesses were on average 20% above the specified disk thicknesses. The measured attenuation for the tungsten samples were lower than the theoretical value determined from the National Institute of Standards and Technology (NIST) cross-sectional database (Berger and Hubbell, XCOM: photon cross-sections on a personal computer, 1987). The laser scan strategy had a significant influence on material attenuation (up to 40% difference). Results of these attenuation measurements indicate that the density of the SLM material is lower than the raw tungsten density. However, an improved performance compared to a lead collimator was observed. The SLM tungsten collimator was adequately simulated as 80% density and 110% septal thickness. Scatter and septal penetration were 17% less than a similar lead collimator and 33% greater than tungsten at 100% density. SLM manufacture of tungsten collimators is feasible. Attenuation properties of SLM tungsten are superior to the lead alternative and the opportunity for bespoke collimator design is appealing.

Journal ArticleDOI
TL;DR: The system performance of GE Signa integrated PET/MR was substantially different, in terms of NEMA spatial resolution, image quality, and NECR for 68Ga and 90Y compared to 18F.
Abstract: Fully integrated PET/MR systems are being used frequently in clinical research and routine. National Electrical Manufacturers Association (NEMA) characterization of these systems is generally done with 18F which is clinically the most relevant PET isotope. However, other PET isotopes, such as 68Ga and 90Y, are gaining clinical importance as they are of specific interest for oncological applications and for follow-up of 90Y-based radionuclide therapy. These isotopes have a complex decay scheme with a variety of prompt gammas in coincidence. 68Ga and 90Y have higher positron energy and, because of the larger positron range, there may be interference with the magnetic field of the MR compared to 18F. Therefore, it is relevant to determine the performance of PET/MR for these clinically relevant and commercially available isotopes. NEMA NU 2–2007 performance measurements were performed for characterizing the spatial resolution, sensitivity, image quality, and the accuracy of attenuation and scatter corrections for 18F, 68Ga, and 90Y. Scatter fraction and noise equivalent count rate (NECR) tests were performed using 18F and 68Ga. All phantom data were acquired on the GE Signa integrated PET/MR system, installed in UZ Leuven, Belgium. 18F, 68Ga, and 90Y NEMA performance tests resulted in substantially different system characteristics. In comparison with 18F, the spatial resolution is about 1 mm larger in the axial direction for 68Ga and no significative effect was found for 90Y. The impact of this lower resolution is also visible in the recovery coefficients of the smallest spheres of 68Ga in image quality measurements, where clearly lower values are obtained. For 90Y, the low number of counts leads to a large variability in the image quality measurements. The primary factor for the sensitivity change is the scale factor related to the positron emission fraction. There is also an impact on the peak NECR, which is lower for 68Ga than for 18F and appears at higher activities. The system performance of GE Signa integrated PET/MR was substantially different, in terms of NEMA spatial resolution, image quality, and NECR for 68Ga and 90Y compared to 18F. But these differences are compensated by the PET/MR scanner technologies and reconstructions methods.

Journal ArticleDOI
TL;DR: 44gSc demonstrates intermediate behavior relative to 18F and 68Ga with regard to RC and contrast measurements, and is a promising radionuclide for preclinical imaging.
Abstract: The decay characteristics of radionuclides in PET studies can impact image reconstruction. 44gSc has been the topic of recent research due to potential theranostic applications and is a promising radiometal for PET imaging. In this study, the reconstructed images from phantom measurements with scandium in a small-animal PET scanner are compared with 18F and two prominent radiometals: 64Cu and 68Ga Three phantoms filled with 18F, 64C, 68Ga, and 44gSc were imaged in the Siemens Inveon PET scanner. The NEMA image quality phantom was used to determine the recovery coefficients (RCs), spill-over ratios (SORs), and noise (%SD) under typical pre-clinical imaging conditions. Image contrast was determined using a Derenzo phantom, while the coincidence characteristics were investigated using an NEC phantom. Three reconstruction algorithms were used, namely filtered back projection (FBP), ordered subset expectation maximization (OSEM), and maximum a-posteriori (MAP). Image quality parameters were measured for 18F, 64Cu, 68Ga, and 44gSc respectively; using FBP, the %SD are 5.65, 5.88, 7.28, and 7.70; the RCs for the 5-mm rod are 0.849, 1.01, 0.615, and 0.825; the SORs in water are 0.0473, 0.0595, 0.141, 0.0923; and the SORs in air are 0.0589, 0.0484, 0.0525, and 0.0509. The contrast measured in the 2.5-mm rods are 0.674, 0.637, 0.196, and 0.347. The NEC rate with 44gSc increased at a slower rate than 18F and 68Ga as a function of activity in the field of view. 44gSc demonstrates intermediate behavior relative to 18F and 68Ga with regard to RC and contrast measurements. It is a promising radionuclide for preclinical imaging.

Journal ArticleDOI
TL;DR: In this article, the authors compared the performance of 68-Gallium (68Ga) and 18-Fluorine (18F) for intraoperative margin assessment in prostate cancer.
Abstract: Cerenkov Luminescence Imaging (CLI) is an emerging technology for intraoperative margin assessment. Previous research only evaluated radionuclide 18-Fluorine (18F); however, for future applications in prostate cancer, 68-Gallium (68Ga) seems more suitable, given its higher positron energy. Theoretical calculations predict that 68Ga should offer a higher signal-to-noise ratio than 18F; this is the first experimental confirmation. The aim of this study is to investigate the technical performance of CLI by comparing 68Ga to 18F. The linearity of the system, detection limit, spatial resolution, and uniformity were determined with the LightPath imaging system. All experiments were conducted with clinically relevant activity levels in vitro, using dedicated phantoms. For both radionuclides, a linear relationship between the activity concentration and detected light yield was observed (R2 = 0.99). 68Ga showed approximately 22 times more detectable Cerenkov signal compared to 18F. The detectable activity concentration after a 120 s exposure time and 2 × 2 binning of 18F was 23.7 kBq/mL and 1.2 kBq/mL for 68Ga. The spatial resolution was 1.31 mm for 18F and 1.40 mm for 68Ga. The coefficient of variance of the uniformity phantom was 0.07 for the central field of view. 68Ga was superior over 18F in terms of light yield and minimal detection limit. However, as could be expected, the resolution was 0.1 mm less for 68Ga. Given the clinical constraints of an acquisition time less than 120 s and a spatial resolution < 2 mm, CLI for intraoperative margin assessment using 68Ga could be feasible.

Journal ArticleDOI
TL;DR: To achieve acceptable image quality at 4 MBq/kg 18F-FCH, a β of 400-550 with a frame duration of 1.5 min should be used if a high CNR is desired and the higher if a low noise level is important.
Abstract: Recently, the block-sequential regularized expectation maximization (BSREM) reconstruction algorithm was commercially introduced (Q.Clear, GE Healthcare, Milwaukee, WI, USA). However, the combination of noise-penalizing factor (β), acquisition time, and administered activity for optimal image quality has not been established for 18F-fluorocholine (FCH). The aim was to compare image quality and diagnostic performance of different reconstruction protocols for patients with prostate cancer being examined with 18F-FCH on a silicon photomultiplier-based PET-CT. Thirteen patients were included, injected with 4 MBq/kg, and images were acquired after 1 h. Images were reconstructed with frame durations of 1.0, 1.5, and 2.0 min using β of 150, 200, 300, 400, 500, and 550. An ordered subset expectation maximization (OSEM) reconstruction with a frame duration of 2.0 min was used for comparison. Images were quantitatively analyzed regarding standardized uptake values (SUV) in metastatic lymph nodes, local background, and muscle to obtain contrast-to-noise ratios (CNR) as well as the noise level in muscle. Images were analyzed regarding image quality and number of metastatic lymph nodes by two nuclear medicine physicians. The highest median CNR was found for BSREM with a β of 300 and a frame duration of 2.0 min. The OSEM reconstruction had the lowest median CNR. Both the noise level and lesion SUVmax decreased with increasing β. For a frame duration of 1.5 min, the median quality score was highest for β 400-500, and for a frame duration of 2.0 min the score was highest for β 300-500. There was no statistically significant difference in the number of suspected lymph node metastases between the different image series for one of the physicians, and for the other physician the number of lymph nodes differed only for one combination of image series. To achieve acceptable image quality at 4 MBq/kg 18F-FCH, we propose using a β of 400-550 with a frame duration of 1.5 min. The lower β should be used if a high CNR is desired and the higher if a low noise level is important.

Journal ArticleDOI
TL;DR: Visual comparison between the images reconstructed by the two models for the block-type scanners shows that the new implementation enhances the image quality to the extent that the results before normalization correction are comparable with those afternormalization correction.
Abstract: Software for Tomographic Image Reconstruction (STIR) is an open-source library for PET and SPECT image reconstruction, implementing iterative reconstruction as well as 2D- and 3D-filtered back projection. Quantitative reconstruction of PET data requires the knowledge of the scanner geometry. Typical scanners, clinical as well as pre-clinical ones, use a block-type geometry. Several rectangular blocks of crystals are arranged into regular polygons. Multiple of such polygons are arranged along the scanner axis. However, the geometrical representation of a scanner provided by STIR is a cylinder made of rings of individual crystals equally distributed in axial and transaxial directions. The data of realistic scanners are projected onto such virtual scanners prior to image reconstruction. This results in reduced quality of the reconstructed image. In this study, we implemented the above-described block geometry into the STIR library, permitting the image reconstruction without the interpolation step. In order to evaluate the difference in image quality, we performed Monte Carlo simulation studies of three different scanner designs: two scanners with multiple crystals per block and one with a single crystal per block. Simulated data were reconstructed using the standard STIR method and the newly implemented block geometry. Visual comparison between the images reconstructed by the two models for the block-type scanners shows that the new implementation enhances the image quality to the extent that the results before normalization correction are comparable with those after normalization correction. The simulation result of a uniform cylinder shows that the coefficient of variation decreases from 25.8% to 20.9% by using the new implementation in STIR. Spatial resolution is enhanced resulting in a lower partial loss of intensity in sources of small size, e.g., the spill-over ratio for spherical sources of 1.8 mm diameter is 0.19 in the block and 0.34 in the cylindrical model. Results indicate a significant improvement for the new model in comparison with the old one which mapped the polygonal geometry into a cylinder. The new implementation was tested and is available for use via the library of Swiss Federal Institute of Technology in Zurich (ETH).

Journal ArticleDOI
TL;DR: The results demonstrate quantitative accuracy to better than 10%, and both consistent SUV calculation between 2 different SPECT/CT scanners for 9 tissues, and low intrapatient measurement variability for quantitative SPect/CT analysis in a pediatric population with neuroblastoma.
Abstract: To determine the accuracy of quantitative SPECT, intersystem and interpatient standardized uptake value (SUV) calculation consistency for a manufacturer-independent quantitative SPECT/CT reconstruction algorithm, and the range of SUVs of normal and neoplastic tissue. A NEMA body phantom with 6 spheres (ranging 10–37 mm) was filled with a known activity-to-volume ratio and used to determine the contrast recovery coefficient (CRC) for each visible sphere, and the measured SUV accuracy of those spheres and background water solution. One hundred eleven 123I-metaiodobenzylguanidine ([I-123] mIBG) SPECT/CT examinations from 43 patients were reconstructed using SUV SPECT® (HERMES Medical Solutions Inc.); 42 examinations were acquired using a GE Infinia Hawkeye 4 SPECT/CT, and 69 were acquired on a Siemens Symbia Intevo SPECT/CT. Inter scanner SUV analysis of 9 regions of normal [I-123] mIBG tissue uptake was conducted. Intrapatient mean SUV variability was calculated by measuring normal liver uptake within patients scanned on both cameras. The intensity of uptake by neoplastic tissue in the images was quantified using maximum SUV and, if present, compared over time. The phantom results of the visible spheres and background resulted in accuracy calculations better than 5–10% with CRC correction. Interscanner SUV variability showed no statistical difference (average p value 0.559; range 0.066–1.0) among the 9 normal tissues analyzed. Intrapatient liver mean SUV varied ≤ 16% as calculated for 28 patients (87 examinations) studied on both scanners. In one patient, a thoracic tumor evaluated over 10 time points (18 months) underwent a 74% (3.1/12.0) reduction in maximum SUV with treatment. The results demonstrate quantitative accuracy to better than 10%, and both consistent SUV calculation between 2 different SPECT/CT scanners for 9 tissues, and low intrapatient measurement variability for quantitative SPECT/CT analysis in a pediatric population with neuroblastoma. Quantitative SPECT/CT offers the opportunity for objective analysis of tumor response using [I-123] mIBG by normalizing the uptake to injected dose and patient weight, as is done for PET.

Journal ArticleDOI
TL;DR: 68Ga PET/CT quantification performs on the lower limits of the current EARL RC standards for 18F and 68Ga performance was 5% below mean EARL performance specifications.
Abstract: Performance standards for quantitative 18F-FDG PET/CT studies are provided by the EANM Research Ltd. (EARL) to enable comparability of quantitative PET in multicentre studies. Yet, such specifications are not available for 68Ga. Therefore, our aim was to evaluate 68Ga-PET/CT quantification variability in a multicentre setting. A survey across Dutch hospitals was performed to evaluate differences in clinical 68Ga PET/CT study protocols. 68Ga and 18F phantom acquisitions were performed by 8 centres with 13 different PET/CT systems according to EARL protocol. The cylindrical phantom and NEMA image quality (IQ) phantom were used to assess image noise and to identify recovery coefficients (RCs) for quantitative analysis. Both phantoms were used to evaluate cross-calibration between the PET/CT system and local dose calibrator. The survey across Dutch hospitals showed a large variation in clinical 68Ga PET/CT acquisition and reconstruction protocols. 68Ga PET/CT image noise was below 10%. Cross-calibration was within 10% deviation, except for one system to overestimate 18F and two systems to underestimate the 68Ga activity concentration. RC-curves for 18F and 68Ga were within and on the lower limit of current EARL standards, respectively. After correction for local 68Ga/18F cross-calibration, mean 68Ga performance was 5% below mean EARL performance specifications. 68Ga PET/CT quantification performs on the lower limits of the current EARL RC standards for 18F. Correction for local 68Ga/18F cross-calibration mismatch is advised, while maintaining the EARL reconstruction protocol thereby avoiding multiple EARL protocols.

Journal ArticleDOI
TL;DR: There is a high correlation between WM uptake and the measured SUVR due to spill-in effect, and that this effect is reduced when including WM in the reference region.
Abstract: We aim to provide a systematic study of the impact of white matter (WM) spill-in on the calculation of standardized uptake value ratios (SUVRs) on Aβ-negative subjects, and we study the effect of including WM in the reference region as a compensation. In addition, different partial volume correction (PVC) methods are applied and evaluated. We evaluated magnetic resonance imaging and 18F-AV-45 positron emission tomography data from 122 cognitively normal (CN) patients recruited at the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Cortex SUVRs were obtained by using the cerebellar grey matter (CGM) (SUVRCGM) and the whole cerebellum (SUVRWC) as reference regions. The correlations between the different SUVRs and the WM uptake (WM-SUVRCGM) were studied in patients, and in a well-controlled framework based on Monte Carlo (MC) simulation. Activity maps for the MC simulation were derived from ADNI patients by using a voxel-wise iterative process (BrainViset). Ten WM uptakes covering the spectrum of WM values obtained from patient data were simulated for different patients. Three different PVC methods were tested (a) the regional voxel-based (RBV), (b) the iterative Yang (iY), and (c) a simplified analytical correction derived from our MC simulation. WM-SUVRCGM followed a normal distribution with an average of 1.79 and a standard deviation of 0.243 (13.6%). SUVRCGM was linearly correlated to WM-SUVRCGM (r = 0.82, linear fit slope = 0.28). SUVRWC was linearly correlated to WM-SUVRCGM (r = 0.64, linear fit slope = 0.13). Our MC results showed that these correlations are compatible with those produced by isolated spill-in effect (slopes of 0.23 and 0.11). The impact of the spill-in was mitigated by using PVC for SUVRCGM (slopes of 0.06 and 0.07 for iY and RBV), while SUVRWC showed a negative correlation with SUVRCGM after PVC. The proposed analytical correction also reduced the observed correlations when applied to patient data (r = 0.27 for SUVRCGM, r = 0.18 for SUVRWC). There is a high correlation between WM uptake and the measured SUVR due to spill-in effect, and that this effect is reduced when including WM in the reference region. We also evaluated the performance of PVC, and we proposed an analytical correction that can be applied to preprocessed data.

Journal ArticleDOI
TL;DR: Data-driven motion correction in PET can be made even more practical, and likely more impactful, if further developed to fit within a real-time acquisition framework, as well as establish groundwork for developing similar innovations in the emerging digital innovation age.
Abstract: PET imaging has been, and continues to be, an evolving diagnostic technology. In recent years, the modernizing digital landscape has opened new opportunities for data-driven innovation. One such facet has been data-driven motion correction (DDMC) in PET. As both research and industry propel this technology forward, we can recognize prospects and opportunities for further development. The concept of clinical practicality is supported by DDMC approaches—it is what sets them apart from traditional hardware-driven motion correction strategies that have largely not gained acceptance in routine diagnostic PET; the ease of use of DDMC may help propel acceptance of motion correction solutions in clinical practice. As we reflect on the present field, we should consider that DDMC can be made even more practical, and likely more impactful, if further developed to fit within a real-time acquisition framework. This vision for development is not new, but has been made more feasible with contemporary electronics, and has begun to be revisited in contemporary literature. The opportunities for development lie on a new forefront of innovation where medical physics integrates with engineering, data science, and modern computing capacities. Real-time DDMC is a systems integration challenge, and achieving it will require cooperation between hardware and software developers, and likely academia and industry. While challenges for development do exist, it is likely that we will see real-time DDMC come to fruition in the coming years. This effort may establish groundwork for developing similar innovations in the emerging digital innovation age.

Journal ArticleDOI
TL;DR: A simple linear conversion of H/M ratios acquired with different collimators is demonstrated to be possible with high accuracy, which should greatly facilitate the exchange of normative data between settings and pooling of data from different institutions.
Abstract: The heart-to-mediastinum (H/M) ratio is a commonly used parameter to measure cardiac I-123 metaiodobenzylguanidine (MIBG) uptake. Since the H/M ratio is substantially influenced by the collimator type, we investigated whether an empirical linear conversion of H/M ratios between camera systems with low-energy (LE) and medium-energy (ME) collimator is possible. We included 18 patients with parkinsonism who were referred to one of the two participating molecular imaging facilities for the evaluation of cardiac sympathetic innervation by MIBG scintigraphy. Two consecutive planar image datasets were acquired with LE and ME collimators at 4 h after MIBG administration. Linear regression analyses were performed to describe the association between the H/M ratios gained with both collimator settings, and the accuracy of a linear transfer of the H/M ratio between collimators and across centers was assessed using a leave-one-out procedure. H/M ratios acquired with LE and ME collimators showed a strong linear relationship both within each imaging facility (R2 = 0.99, p < 0.001 and R2 = 0.90, p < 0.001) and across centers (H/M-LE = 0.41 × H/M-ME + 0.63, R2 = 0.97, p < 0.001). A linear conversion of H/M ratios between collimators and across centers was estimated to be very accurate (mean absolute error 0.05 ± 0.04; mean relative absolute error 3.2 ± 2.6%). The present study demonstrates that a simple linear conversion of H/M ratios acquired with different collimators is possible with high accuracy. This should greatly facilitate the exchange of normative data between settings and pooling of data from different institutions.

Journal ArticleDOI
TL;DR: Joint estimation of activity and attenuation from scattered and nonscattered emission data is proposed, combining MLEM-OSL or MLGA with scatter-MLEM as well as trues-MleM and the maximum-likelihood transmission (MLTR) algorithm.
Abstract: Attenuation correction in positron emission tomography remains challenging in the absence of measured transmission data. Scattered emission data may contribute missing information, but quantitative scatter-to-attenuation (S2A) reconstruction needs to input the reconstructed activity image. Here, we study S2A reconstruction as a building block for joint estimation of activity and attenuation. We study two S2A reconstruction algorithms, maximum-likelihood expectation maximization (MLEM) with one-step-late attenuation (MLEM-OSL) and a maximum-likelihood gradient ascent (MLGA). We study theoretical properties of these algorithms with a focus on convergence and convergence speed and compare convergence speeds and the impact of object size in simulations using different spatial scale factors. Then, we propose joint estimation of activity and attenuation from scattered and nonscattered (true) emission data, combining MLEM-OSL or MLGA with scatter-MLEM as well as trues-MLEM and the maximum-likelihood transmission (MLTR) algorithm. Shortcomings of MLEM-OSL inhibit convergence to the true solution with high attenuation; these shortcomings are related to the linearization of a nonlinear measurement equation and can be linked to a new numerical criterion allowing geometrical interpretations in terms of low and high attenuation. Comparisons using simulated data confirm that while MLGA converges largely independent of the attenuation scale, MLEM-OSL converges if low-attenuation data dominate, but not with high attenuation. Convergence of MLEM-OSL can be improved by isolating data satisfying the aforementioned low-attenuation criterion. In joint estimation of activity and attenuation, scattered data helps avoid local minima that nonscattered data alone cannot. Combining MLEM-OSL with trues-MLEM may be sufficient for low-attenuation objects, while MLGA, scatter-MLEM, and MLTR may additionally be needed with higher attenuation. The performance of S2A algorithms depends on spatial scales. MLGA provides lower computational complexity and convergence in more diverse setups than MLEM-OSL. Finally, scattered data may provide additional information to joint estimation of activity and attenuation through S2A reconstruction.

Journal ArticleDOI
TL;DR: TOSEM algorithm minimizes the HRV-related error and can be used to provide more robust phase analysis results.
Abstract: In ordered subsets expectation maximization (OSEM) reconstruction of electrocardiography (ECG)-gated myocardial perfusion single-photon emission computed tomography (SPECT), it is often assumed that the image acquisition time is constant for each projection angle and ECG bin. Due to heart rate variability (HRV), this assumption may lead to errors in quantification of left ventricular mechanical dyssynchrony with phase analysis. We hypothesize that a time-modified OSEM (TOSEM) algorithm provides more robust results. List-mode data of 44 patients were acquired with a dual-detector SPECT/CT system and binned to eight ECG bins. First, activity ratio (AR)—the ratio of total activity in the last OSEM-reconstructed ECG bin and first five ECG bins—was computed, as well as standard deviation SDR-R of the accepted R–R intervals; their association was evaluated with Pearson correlation analysis. Subsequently, patients whose AR was higher than 90% were selected, and their list-mode data were rebinned by omitting a part of the acquired counts to yield AR values of 90%, 80%, 70%, 60% and 50%. These data sets were reconstructed with OSEM and TOSEM algorithms, and phase analysis was performed. Reliability of both algorithms was assessed by computing concordance correlation coefficients (CCCs) between the 90% data and data corresponding to lower AR values. Finally, phase analysis results assessed from OSEM- and TOSEM-reconstructed images were compared. A strong negative correlation (r = -0.749) was found between SDR-R and AR. As AR decreased, phase analysis parameters obtained from OSEM images decreased significantly. On the contrary, reduction of AR had no significant effect on phase analysis parameters obtained from TOSEM images (CCC > 0.88). The magnitude of difference between OSEM and TOSEM results increased as AR decreased. TOSEM algorithm minimizes the HRV-related error and can be used to provide more robust phase analysis results.

Journal ArticleDOI
TL;DR: In this paper, the clinically acceptable level of reduction in the injected fluorine-18-labeled fluorodeoxyglucose (18F-FDG) dose in dedicated breast positron emission tomography (dbPET) was determined.
Abstract: To determine the clinically acceptable level of reduction in the injected fluorine-18 (18F)-labeled fluorodeoxyglucose (18F-FDG) dose in dedicated breast positron emission tomography (dbPET). A breast phantom with four spheres exhibiting various diameters (5, 7.5, 10, and 16 mm), a background 18F-FDG radioactivity of 2.28 kBq/mL, and a sphere-to-background radioactivity ratio of 8:1 was used. True dose-reduced dbPET images were obtained by data acquisition for 20 min in list mode at multiple time points over 7 h of radioactive decay. Simulated dose-reduced images were generated by reconstruction with a portion of the list mode acquisition data. True and simulated dose-reduced images were visually and quantitatively compared. On the basis of the phantom study, dbPET images for 32 breasts of 28 women with abnormal uptake were generated after simulated reduction of the injected 18F-FDG doses; these images were compared with those acquired using current clinical doses. There were no qualitative differences between true and simulated dose-reduced phantom images. The phantom study revealed that the minimal required dose was 12.5% for the detection of 5-mm spheres and 25% for precise semi-quantification of FDG in the spheres. The 7-min reconstruction with a 100% dose was defined as the reference for the clinical study. The image quality and lesion conspicuity were clinically acceptable for the 25% dose images. Lesion detectability on the 12.5% dose images was maintained despite image quality degradation. In summary, 25% of the standard 18F-FDG dose for dbPET can provide a clinically acceptable image quality, while 12.5% of the standard dose results in acceptable quality in terms of lesion detection when lesions are located at a sufficient distance from the edge of the dbPET detector.

Journal ArticleDOI
TL;DR: This paper addressed the unmet need for good reproducibility in pulmonary compartmental models of 18F-FDG by identifying the key drivers of this difference using an incremental approach: ROI methodology, modelling of the IDIF and time delay estimation.
Abstract: Compartmental modelling is an established method of quantifying 18F-FDG uptake; however, only recently has it been applied to evaluate pulmonary inflammation. Implementation of compartmental models remains challenging in the lung, partly due to the low signal-to-noise ratio compared to other organs and the lack of standardisation. Good reproducibility is a key requirement of an imaging biomarker which has yet to be demonstrated in pulmonary compartmental models of 18F-FDG; in this paper, we address this unmet need. Retrospective subject data were obtained from the EVOLVE observational study: Ten COPD patients (age =66±9; 8M/2F), 10 α1ATD patients (age =63±8; 7M/3F) and 10 healthy volunteers (age =68±8; 9M/1F) never smokers. PET and CT images were co-registered, and whole lung regions were extracted from CT using an automated algorithm; the descending aorta was defined using a manually drawn region. Subsequent stages of the compartmental analysis were performed by two independent operators using (i) a MIAKATTM based pipeline and (ii) an in-house developed pipeline. We evaluated the metabolic rate constant of 18F-FDG (Kim) and the fractional blood volume (Vb); Bland-Altman plots were used to compare the results. Further, we adjusted the in-house pipeline to identify the salient features in the analysis which may help improve the standardisation of this technique in the lung. The initial agreement on a subject level was poor: Bland-Altman coefficients of reproducibility for Kim and Vb were 0.0031 and 0.047 respectively. However, the effect size between the groups (i.e. COPD, α1ATD and healthy subjects) was similar using either pipeline. We identified the key drivers of this difference using an incremental approach: ROI methodology, modelling of the IDIF and time delay estimation. Adjustment of these factors led to improved Bland-Altman coefficients of reproducibility of 0.0015 and 0.027 for Kim and Vb respectively. Despite similar methodology, differences in implementation can lead to disparate results in the outcome parameters. When reporting the outcomes of lung compartmental modelling, we recommend the inclusion of the details of ROI methodology, input function fitting and time delay estimation to improve reproducibility.

Journal ArticleDOI
TL;DR: Even if SPECT image quantification remains challenging mostly due to partial volume effect, this study shows that it has potential for the Gd mass measurements in organ.
Abstract: Gadolinium nanoparticles (Gd-NP) combined with radiotherapy are investigated for radiation dose enhancement in radiotherapy treatment. Indeed, NPs concentrated in a tumor could enhance its radiosensitization. The noninvasive quantification of the NP concentration is a crucial task for radiotherapy treatment planning and post-treatment monitoring as it will determine the absorbed dose. In this work, we evaluate the achievable accuracy of in vivo SPECT-based Gd-NP organ concentration on rats. Gd-NPs were labeled with 111In radionuclide. SPECT images have been acquired on phantom and rats, with various Gd-NP injections. Images have been calibrated and corrected for attenuation, scatter, and partial volume effect. Image-based estimations were compared to both inductively coupled plasma mass spectrometer (ICP-MS) for Gd concentration and ex vivo organ activity measured by gamma counter. The accuracy for the Gd mass measurements in organ was within 10% for activity above 2 MBq or concentrations above ∼ 3–4 MBq/mL. The Gd mass calculation is based on In-Gd coefficient which defines the Gd detection limit. It was found to be in a range from 2 mg/MBq to 2 µg/MBq depending on the proportions of initial injection preparations. Measurement was also impaired by free Gd and 111In formed during metabolic processes. Even if SPECT image quantification remains challenging mostly due to partial volume effect, this study shows that it has potential for the Gd mass measurements in organ. The main limitation of the method is its indirectness, and a special care should be taken if the organ of interest could be influenced by different clearance rate of free Gd and 111In formed by metabolic processes. We also discuss the practical aspects, potential, and limitations of Gd-NP in vivo image quantification with a SPECT.

Journal ArticleDOI
TL;DR: The blood sample detector presented in this study allows fully automatic AIFs measurements during single- and multi-tracer PET studies, and shows to successfully separate individual signals emitted from a mixture of radioisotopes.
Abstract: Multi-tracer positron emission tomography (PET) imaging can be accomplished by applying multi-tracer compartment modeling. Recently, a method has been proposed in which the arterial input functions (AIFs) of the multi-tracer PET scan are explicitly derived. For that purpose, a gamma spectroscopic analysis is performed on blood samples manually withdrawn from the patient when at least one of the co-injected tracers is based on a non-pure positron emitter. Alternatively, these blood samples required for the spectroscopic analysis may be obtained and analyzed on site by an automated detection device, thus minimizing analysis time and radiation exposure of the operating personnel. In this work, a new automated blood sample detector based on silicon photomultipliers (SiPMs) for single- and multi-tracer PET imaging is presented, characterized, and tested in vitro and in vivo. The detector presented in this work stores and analyzes on-the-fly single and coincidence detected events. A sensitivity of 22.6 cps/(kBq/mL) and 1.7 cps/(kBq/mL) was obtained for single and coincidence events respectively. An energy resolution of 35% full-width-half-maximum (FWHM) at 511 keV and a minimum detectable activity of 0.30 ± 0.08 kBq/mL in single mode were obtained. The in vivo AIFs obtained with the detector show an excellent Pearson’s correlation (r = 0.996, p < 0.0001) with the ones obtained from well counter analysis of discrete blood samples. Moreover, in vitro experiments demonstrate the capability of the detector to apply the gamma spectroscopic analysis on a mixture of 68Ga and 18F and separate the individual signal emitted from each one. Characterization and in vivo evaluation under realistic experimental conditions showed that the detector proposed in this work offers excellent sensibility and stability. The device also showed to successfully separate individual signals emitted from a mixture of radioisotopes. Therefore, the blood sample detector presented in this study allows fully automatic AIFs measurements during single- and multi-tracer PET studies.

Journal ArticleDOI
TL;DR: The amount of 219Rn in the exhaled breath of patients treated with 223RaCl2 was quantitatively calculated using breath collection bags to estimate its effect on the internal exposure dose of caregivers.
Abstract: The α-emitting radionuclide radium-223 (223Ra) is widely used for the treatment of bone metastasis in patients with castration-resistant prostate cancer. However, 223Ra decays into radon-219 (219Rn) which is a noble-gas isotope, and 219Rn may escape from patients treated with 223Ra via their respiration. In this study, we quantified the amount of 219Rn contained in the breath of patients treated with 223Ra to estimate its effect on the internal exposure dose of caregivers. A total of 12 breath samples were collected using a breath collection bag from a total of six patients treated with 223RaCl2. Approximately 300 mL of exhaled breath was collected in a breath bag at 1 min and at 5 min after the start of 223RaCl2 administration. The contents of each bag were measured using an HPGe detector, and the amount of 219Rn was quantified based on the detection of the γ peak of 211Bi, which is a descendant nuclide of 219Rn, persisting in the breath bag. The effective dose to caregivers arising from the inhalation of 219Rn was estimated by referring to the scenario for the calculation of release criteria established for 131I therapy in Japan. A small peak for the 351-keV γ ray of 211Bi originating from the exhalation of 219Rn was observed. Using the observed γ peak of 211Bi, the average amounts of 219Rn per unit breath volume at 1 min and 5 min after the start of 223RaCl2 administration were calculated as 90 ± 56 Bq/mL and 28 ± 9 Bq/mL, respectively. The effective dose of 219Rn to caregivers was estimated to be 3.5 μSv per injection. The amount of 219Rn in the exhaled breath of patients treated with 223RaCl2 was quantitatively calculated using breath collection bags. The internal radiation exposure of caregivers from 219Rn in the exhaled breath of patients treated with 223RaCl2 is relatively small.

Journal ArticleDOI
TL;DR: Low specific activity setups, although exactly compensated by increasing the acquisition time in order to get the same number of detected true coincidences per millilitre, were impacted by significant noise and clearly discards the use of low specific activity phantoms intended to TOF-PET reconstruction parameter optimization.
Abstract: Volumes of usual PET phantoms are about four to sixfold that of a human liver. In order to avoid count rate saturation and handling of very high 90Y activity, reported TOF-PET phantom studies are performed using specific activities lower than those observed in liver radioembolization. However, due to the constant random coincidence rate induced by the natural crystal radioactivity, reduction of 90Y specific activity in TOF-PET imaging cannot be counterbalanced by increasing the acquisition time. As a result, most 90Y phantom studies reported images noisier than those obtained in whole-body 18F-FDG, and thus advised to use dedicated noise control in TOF-PET imaging post 90Y liver radioembolization. We performed acquisitions of the Jaszczak Deluxe phantom in which the hot rod insert was only partially filled with 2.6 GBq of 90Y. Standard reconstruction parameters recommended by the manufacturer for whole-body 18F-FDG PET were used. Low specific activity setups, although exactly compensated by increasing the acquisition time in order to get the same number of detected true coincidences per millilitre, were impacted by significant noise. On the other hand, specific activity and acquisition time setup similar to that used in post 90Y liver radioembolization provided image quality very close to that of whole-body 18F-FDG. This result clearly discards the use of low specific activity phantoms intended to TOF-PET reconstruction parameter optimization. Volume reduction of large phantoms can be achieved by vertically setting the phantoms or by adding Styrofoam inserts.