scispace - formally typeset
JournalISSN: 0272-6343

Electromagnetics 

About: Electromagnetics is an academic journal. The journal publishes majorly in the area(s): Antenna (radio) & Microstrip. It has an ISSN identifier of 0272-6343. Over the lifetime, 1478 publication(s) have been published receiving 12833 citation(s).


Papers
More filters
Journal ArticleDOI
TL;DR: A variety of configurations and formats have been devised to exploit the phenomenon of surface plasmon on metal dielectric interfaces for sensing a variety of significant analytes, such as pesticides and explosives, pathogens and toxins, and diseased tissue as discussed by the authors.
Abstract: A variety of configurations and formats have been devised to exploit the phenomenon of surface plasmon on metal dielectric interfaces for sensing a variety of significant analytes, such as pesticides and explosives, pathogens and toxins, and diseased tissue. Researchers continue to aim at detecting lower concentrations in smaller volumes of samples in real time. A new research field, called nanoplasmnonics, has emerged in this regard.

355 citations

Journal ArticleDOI
TL;DR: In this article, a uniaxial anisotropic perfectly matched layer (PML) absorbing material is presented for the truncation of finite-difference time-domain (FDTD) lattices for the simulation of electromagnetic fields in lossy and dispersive material media.
Abstract: A uniaxial anisotropic perfectly matched layer (PML) absorbing material is presented for the truncation of finite-difference time-domain (FDTD) lattices for the simulation of electromagnetic fields in lossy and dispersive material media. It is shown that by properly choosing the constitutive parameters of the uniaxial media both propagating and evanescent waves can be highly attenuated within the PML medium. This resolves the concern that the original Berenger's formulation for a PML medium does not attenuate evanescent waves. FDTD formulations for the uniaxial PML method are presented for lossy and dispersive medium. Based on this formulation an equivalent modified representation of Berenger's split equations is also derived. Through numerical examples, it is demonstrated that the uniaxial PML method provides a nearly reflectionless absorbing boundary for the FDTD simulation of evanescent and propagating waves encountered in highly dispersive and lossy medium.

266 citations

Journal ArticleDOI
TL;DR: In this paper, the differential form of the time-domain Maxwell's equations are first cast in a conservation form and then solved using a finite-volume discretization procedure derived from proven Computational Fluid Dynamics (CFD) methods.
Abstract: For computation of electromagnetic scattering from layered objects, the differential form of the time-domain Maxwell's equations are first cast in a conservation form and then solved using a finite-volume discretization procedure derived from proven Computational Fluid Dynamics (CFD) methods 1 . The formulation accounts for any variations in the material properties (time, space, and frequency dependent), and can handle thin resistive sheets and lossy coatings by positioning them at finite-volume cell boundaries. The time-domain approach handles both continuous wave (single frequency) and pulse (broadband frequency) incident excitation. Arbitrarily shaped objects are modeled by using a body-fitted coordinate transformation. For treatment of complex internal/external structures with many material layers, a multizone framework with ability to handle any type of zonal boundary conditions (perfectly conducting, flux through, zero flux, periodic, nonreflecting outer boundary, resistive card, and lossy ...

168 citations

Journal ArticleDOI
TL;DR: In this article, a modified finite volume method for solving Maxwell's equations in the time domain is presented, which allows the use of general nonorthogonal mixed-polyhedral grids, is a direct generalisation of the canonical staggered-grid finite difference method.
Abstract: A modified finite volume method for solving Maxwell's equations in the time-domain is presented. This method, which allows the use of general nonorthogonal mixed-polyhedral grids, is a direct generalisation of the canonical staggered-grid finite difference method. Employing mixed polyhedral cells, (hexahedral, tetrahedral, etc.) this method allows more accurate modeling of non-rectangular structures. The traditional “stair-stepped” boundary approximations associated with the orthogonal grid based finite difference methods ate avoided. Numerical results demonstrating the accuracy of this new method are presented.

152 citations

Journal ArticleDOI
TL;DR: In this paper, a more general and rigorous form of the physical theory of diffraction (PTD) is presented, which is based on the conception of elementary edge waves (EEWs), the waves scattered by the vicinity of an edge infinitesimal element.
Abstract: A more general and rigorous form of the physical theory of diffraction (PTD) is presented. This theory is concerned with the field scattered by perfectly conducting bodies whose surfaces have sharp edges and whose linear dimensions and curvature radii are large in comparison with a wavelength. The PTD proposed here is based on the conception of elementary edge waves (EEWs). These are the waves scattered by the vicinity of an edge infinitesimal element. Their high-frequency asymptotics are given. Various definitions of EEWs (Maggi, Bateman, Rubinowicz, Mitzner, Michaeli) are discussed. Total edge waves (TEWs) scattered by the whole edge are found to be a linear superposition of all EEWs. PTD enables one to determine correctly the first (leading) term in the high-frequency asymptotic expansions for primary and multiple TEWs both in ray regions and diffraction regions such as caustics, shadow boundaries, and focal lines. Some examples of these asymptotics are given. The connection of PTD with other ...

144 citations

Network Information
Related Journals (5)
IEEE Transactions on Antennas and Propagation
22K papers, 818K citations
92% related
IEEE Antennas and Wireless Propagation Letters
7.2K papers, 182.1K citations
91% related
Microwave and Optical Technology Letters
18K papers, 139.9K citations
90% related
IEEE Transactions on Microwave Theory and Techniques
19.4K papers, 689.7K citations
85% related
Radio Science
7.2K papers, 161.2K citations
84% related
Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
202133
202048
201941
201851
201745
201646