scispace - formally typeset
Search or ask a question

Showing papers in "Electronic Journal of Combinatorics in 2013"


Journal ArticleDOI
TL;DR: The degree/diameter problem is to determine the largest graphs or digraphs of given maximum degree and given diameter as mentioned in this paper, which is a largely unexplored area. But it is possible to obtain Moore-like upper bounds for the order of such graphs.
Abstract: The degree/diameter problem is to determine the largest graphs or digraphs of given maximum degree and given diameter. General upper bounds - called Moore bounds - for the order of such graphs and digraphs are attainable only for certain special graphs and digraphs. Finding better (tighter) upper bounds for the maximum possible number of vertices, given the other two parameters, and thus attacking the degree/diameter problem 'from above', remains a largely unexplored area. Constructions producing large graphs and digraphs of given degree and diameter represent a way of attacking the degree/diameter problem 'from below'. This survey aims to give an overview of the current state-of-the-art of the degree/diameter problem. We focus mainly on the above two streams of research. However, we could not resist mentioning also results on various related problems. These include considering Moore-like bounds for special types of graphs and digraphs, such as vertex-transitive, Cayley, planar, bipartite, and many others, on the one hand, and related properties such as connectivity, regularity, and surface embeddability, on the other hand.

390 citations


Journal ArticleDOI
TL;DR: A survey of the rich variety of crossing number variants that have been introduced in the literature for purposes that range from studying the theoretical underpinnings of the crossing number to crossing minimization for visualization problems.
Abstract: The crossing number is a popular tool in graph drawing and visualization, but there is not really just one crossing number; there is a large family of crossing number notions of which the crossing number is the best known. We survey the rich variety of crossing number variants that have been introduced in the literature for purposes that range from studying the theoretical underpinnings of the crossing number to crossing minimization for visualization problems.

165 citations


Journal ArticleDOI
TL;DR: In this article, a simple bijection between tree-like tableaux and permutation tableaux is proposed to satisfy the generalized pattern 2-31, and the insertion procedure allows to define two simple new bijections between trees and permutations: the first one is conceived specifically to respect the generalized 3-31 and the second one respects the underlying tree of a treelike tableau.
Abstract: In this work we introduce and study tree-like tableaux, which are certain fillings of Ferrers diagrams in simple bijection with permutation tableaux and alternative tableaux. We exhibit an elementary insertion procedure on our tableaux which gives a clear proof that tree-like tableaux of size $n$ are counted by $n!$ and which moreover respects most of the well-known statistics studied originally on alternative and permutation tableaux. Our insertion procedure allows to define in particular two simple new bijections between tree-like tableaux and permutations: the first one is conceived specifically to respect the generalized pattern 2-31, while the second one respects the underlying tree of a tree-like tableau.

62 citations


Journal ArticleDOI
TL;DR: In this article, the first moment method was applied to the number of covers, a physics-inspired concept, to show that the graph G(n,m) is not colorable with high probability if d>2k\ln k-1+o_k(1).
Abstract: Let $G(n,m)$ be the random graph on $n$ vertices with $m$ edges. Let $d=2m/n$ be its average degree. We prove that $G(n,m)$ fails to be $k$-colorable with high probability if $d>2k\ln k-\ln k-1+o_k(1)$. This matches a conjecture put forward on the basis of sophisticated but non-rigorous statistical physics ideas (Krzakala, Pagnani, Weigt: Phys. Rev. E 70 (2004)). The proof is based on applying the first moment method to the number of "covers", a physics-inspired concept. By comparison, a standard first moment over the number of $k$-colorings shows that $G(n,m)$ is not $k$-colorable with high probability if $d>2k\ln k-k$.

56 citations


Journal ArticleDOI
TL;DR: The Turan number of a graph is the maximum number of edges in a graph on $n$ vertices which does not have $H$ as a subgraph as discussed by the authors.
Abstract: The Turan number of a graph $H$, $\mathrm{ex}(n,H)$, is the maximum number of edges in a graph on $n$ vertices which does not have $H$ as a subgraph. We determine the Turan number and find the unique extremal graph for forests consisting of paths when $n$ is sufficiently large. This generalizes a result of Bushaw and Kettle [Combinatorics, Probability and Computing 20:837--853, 2011]. We also determine the Turan number and extremal graphs for forests consisting of stars of arbitrary order.

51 citations


Journal ArticleDOI
M. A. Ollis1
TL;DR: A survey of the current situation concerning sequencings, including details of the most important constructions, is given in this article, where the authors also consider some concepts closely related to sequenceable groups: harmonious groups, supersequenceable groups, terraces and the Gordon game.
Abstract: In 1980, about 20 years after sequenceable groups were introduced by Gordon to construct row-complete latin squares, Keedwell published a survey of all the available results concerning sequencings. This was updated (jointly with Denes) in 1991 and a short overview, including results about complete mappings and R-sequencings, was given in the CRC Handbook of Combinatorial Designs in 1995. In Sections 1 and 2 we give a survey of the current situation concerning sequencings, including details of the most important constructions. In Section 3 we consider some concepts closely related to sequenceable groups: R-sequencings, harmonious groups, supersequenceable groups (also known as super P-groups), terraces and the Gordon game. We also look at constructions for row-complete latin squares that do not use sequencings.

46 citations


Journal ArticleDOI
TL;DR: It is shown that the mixing time of this Markov chain is bounded above by a polynomial in $n$ in case of half-regular degree sequence.
Abstract: In this paper we consider a simple Markov chain for bipartite graphs with given degree sequence on $n$ vertices. We show that the mixing time of this Markov chain is bounded above by a polynomial in $n$ in case of half-regular degree sequence. The novelty of our approach lies in the construction of the multicommodity flow in Sinclair's method.

46 citations


Journal ArticleDOI
TL;DR: A lower bound is given for the Castelnuovo-Mumford regularity of any binomial edge ideal $J_{G_1,G_2}$ and hence the ideal of adjacent $2$-minors of a generic matrix.
Abstract: We characterize all pairs of graphs $(G_1,G_2)$, for which the binomial edge ideal $J_{G_1,G_2}$ has linear relations. We show that $J_{G_1,G_2}$ has a linear resolution if and only if $G_1$ and $G_2$ are complete and one of them is just an edge. We also compute some of the graded Betti numbers of the binomial edge ideal of a pair of graphs with respect to some graphical terms. In particular, we show that for every pair of graphs $(G_1,G_2)$ with girth (i.e. the length of a shortest cycle in the graph) greater than 3, $\beta_{i,i+2}(J_{G_1,G_2})=0$, for all $i$. Moreover, we give a lower bound for the Castelnuovo-Mumford regularity of any binomial edge ideal $J_{G_1,G_2}$ and hence the ideal of adjacent $2$-minors of a generic matrix. We also obtain an upper bound for the regularity of $J_{G_1,G_2}$, if $G_1$ is complete and $G_2$ is a closed graph.

46 citations


Journal ArticleDOI
TL;DR: Oliveira and Chung-Radcliffe as mentioned in this paper improved the hidden constant in the error term using a new Chernoff-type inequality for random matrices and showed that asymptotically almost surely Θ(n 2 + o(1) ) is the minimum expected degree of a random graph.
Abstract: Let $G$ be a random graph on the vertex set $\{1,2,\ldots, n\}$ such that edges in $G$ are determined by independent random indicator variables, while the probabilities $p_{ij}$ for $\{i,j\}$ being an edge in $G$ are not assumed to be equal. Spectra of the adjacency matrix and the normalized Laplacian matrix of $G$ are recently studied by Oliveira and Chung-Radcliffe. Let $A$ be the adjacency matrix of $G$, $\bar A={\rm E}(A)$, and $\Delta$ be the maximum expected degree of $G$. Oliveira first proved that asymptotically almost surely $\|A-\bar A\|=O(\sqrt{\Delta \ln n})$ provided $\Delta\geq C \ln n$ for some constant $C$. Chung-Radcliffe improved the hidden constant in the error term using a new Chernoff-type inequality for random matrices. Here we prove that asymptotically almost surely $\|A-\bar A\|\leq (2+o(1))\sqrt{\Delta}$ with a slightly stronger condition $\Delta\gg \ln^4 n$. For the Laplacian matrix $L$ of $G$, Oliveira and Chung-Radcliffe proved similar results $\|L-\bar L\|=O(\sqrt{\ln n}/\sqrt{\delta})$ provided the minimum expected degree $\delta\geq C' \ln n$ for some constant $C'$; we also improve their results by removing the $\sqrt{\ln n}$ multiplicative factor from the error term under some mild conditions. Our results naturally apply to the classical Erdős–Renyi random graphs, random graphs with given expected degree sequences, and bond percolation of general graphs.

46 citations


Journal ArticleDOI
TL;DR: In this paper, the authors introduced hypergraph structures and techniques central to the extension of the circuit classication of signed graphs to oriented hypergraphs, and further decomposed them into three families: balanced, balanceable, and unbalanceable.
Abstract: An oriented hypergraph is an oriented incidence structure that extends the concept of a signed graph. We introduce hypergraphic structures and techniques central to the extension of the circuit classication of signed graphs to oriented hypergraphs. Oriented hypergraphs are further decomposed into three families — balanced, balanceable, and unbalanceable — and we obtain a complete classification of the balanced circuits of oriented hypergraphs.

41 citations


Journal ArticleDOI
TL;DR: In this article, the authors show how to construct a simplicial complex that is balanced and vertex decomposable from a colouring of the simplicial coloring of a coloring.
Abstract: Given any finite simplicial complex $\Delta$, we show how to construct from a colouring $\chi$ of $\Delta$ a new simplicial complex $\Delta_{\chi}$ that is balanced and vertex decomposable. In addition, the $h$-vector of $\Delta_{\chi}$ is precisely the $f$-vector of $\Delta$. Our construction generalizes the "whiskering'' construction of Villarreal, and Cook and Nagel. We also reverse this construction to prove a special case of a conjecture of Cook and Nagel, and Constantinescu and Varbaro on the $h$-vectors of flag complexes.

Journal ArticleDOI
TL;DR: In this article, the authors investigated the metric dimension of the random graph G(n,p) for a wide range of probabilities, where p = p(n) and p =p(n).
Abstract: The metric dimension of a graph $G$ is the minimum number of vertices in a subset $S$ of the vertex set of $G$ such that all other vertices are uniquely determined by their distances to the vertices in $S$. In this paper we investigate the metric dimension of the random graph $G(n,p)$ for a wide range of probabilities $p=p(n)$.

Journal ArticleDOI
TL;DR: The Betti numbers of binomial edge ideal associated to some classes of graphs with large Castelnuovo-Mumford regularity are studied to give several lower bounds of the Castel nuovo-mumfordRegularity of arbitrary graphs depending on induced subgraphs.
Abstract: We study the Betti numbers of binomial edge ideal associated to some classes of graphs with large Castelnuovo-Mumford regularity. As an application we give several lower bounds of the Castelnuovo-Mumford regularity of arbitrary graphs depending on induced subgraphs.

Journal ArticleDOI
TL;DR: The rational associahedron of as mentioned in this paper is a simplicial complex of dimension $a-2, whose maximal faces are represented by rational Narayana numbers and rational Kirkman numbers.
Abstract: Each positive rational number $x>0$ can be written uniquely as $x=a/(b-a)$ for coprime positive integers $0 0$ a simplicial complex $\mathsf{Ass}(x)=\mathsf{Ass}(a,b)$ called the rational associahedron . It is a pure simplicial complex of dimension $a-2$, and its maximal faces are counted by the rational Catalan number $$\mathsf{Cat}(x)=\mathsf{Cat}(a,b):=\frac{(a+b-1)!}{a!\,b!}.$$The cases $(a,b)=(n,n+1)$ and $(a,b)=(n,kn+1)$ recover the classical associahedron and its "Fuss-Catalan" generalization studied by Athanasiadis-Tzanaki and Fomin-Reading. We prove that $\mathsf{Ass}(a,b)$ is shellable and give nice product formulas for its $h$-vector (the rational Narayana numbers ) and $f$-vector (the rational Kirkman numbers ). We define $\mathsf{Ass}(a,b)$ via rational Dyck paths : lattice paths from $(0,0)$ to $(b,a)$ staying above the line $y = \frac{a}{b}x$. We also use rational Dyck paths to define a rational generalization of noncrossing perfect matchings of $[2n]$. In the case $(a,b) = (n, mn+1)$, our construction produces the noncrossing partitions of $[(m+1)n]$ in which each block has size $m+1$.

Journal ArticleDOI
TL;DR: The problem of finding the maximum time a $2 -neighbour bootstrap percolation process on $[n]^2$ with $n$ initially infected vertices can take to eventually infect the entire vertex set is considered.
Abstract: Bootstrap percolation, one of the simplest cellular automata, can be seen as a model of the spread of infection. In $r$ -neighbour bootstrap percolation on a graph $G$ we assign a state, infected or healthy, to every vertex of $G$ and then update these states in successive rounds, according to the following simple local update rule: infected vertices of $G$ remain infected forever and a healthy vertex becomes infected if it has at least $r$ already infected neighbours. We say that percolation occurs if eventually every vertex of $G$ becomes infected. A well known and celebrated fact about the classical model of $2$ -neighbour bootstrap percolation on the $n \times n$ square grid is that the smallest size of an initially infected set which percolates in this process is $n$ . In this paper we consider the problem of finding the maximum time a $2$ -neighbour bootstrap process on $[n]^2$ with $n$ initially infected vertices can take to eventually infect the entire vertex set. Answering a question posed by Bollob a s we compute the exact value for this maximum showing that, for $n \ge 4$ , it is equal to the integer nearest to $(5n^2-2n)/8$ .

Journal ArticleDOI
TL;DR: This work presents sharp sufficient conditions for $k-graphicality based on a sequence's length and degree sum and gives several applications of edge exchanges in hypergraphs, including generalizing a result of Busch et al. on packing graphic sequences.
Abstract: A sequence of nonnegative integers is $k$-graphic if it is the degree sequence of a $k$-uniform hypergraph. The only known characterization of $k$-graphic sequences is due to Dewdney in 1975. As this characterization does not yield an efficient algorithm, it is a fundamental open question to determine a more practical characterization. While several necessary conditions appear in the literature, there are few conditions that imply a sequence is $k$-graphic. In light of this, we present sharp sufficient conditions for $k$-graphicality based on a sequence's length and degree sum. Kocay and Li gave a family of edge exchanges (an extension of 2-switches) that could be used to transform one realization of a 3-graphic sequence into any other realization. We extend their result to $k$-graphic sequences for all $k \geq 3$. Finally we give several applications of edge exchanges in hypergraphs, including generalizing a result of Busch et al. on packing graphic sequences.

Journal ArticleDOI
TL;DR: It is demonstrated that each subgraph of an optimal 1-planar graph can be decomposed into a planar graph and a forest, and an upper bound on the number of edges of bipartite 1- Planar graphs is derived.
Abstract: A graph is called 1-planar if it can be drawn in the plane so that each of its edges is crossed by at most one other edge. We show that every 1-planar drawing of any 1-planar graph on $n$ vertices has at most $n-2$ crossings; moreover, this bound is tight. By this novel necessary condition for 1-planarity, we characterize the 1-planarity of Cartesian product $K_m\times P_n$. Based on this condition, we also derive an upper bound on the number of edges of bipartite 1-planar graphs, and we show that each subgraph of an optimal 1-planar graph (i.e., a 1-planar graph with $n$ vertices and $4n-8$ edges) can be decomposed into a planar graph and a forest.

Journal ArticleDOI
TL;DR: It is proved that in any $r-coloring of a $k-uniform hypergraph there is a partition of the vertex set into monochromatic loose cycles such that their number depends only on $r$ and $k$.
Abstract: Here we address the problem to partition edge colored hypergraphs by monochromatic paths and cycles generalizing a well-known similar problem for graphs. We show that $r$-colored $r$-uniform complete hypergraphs can be partitioned into monochromatic Berge-paths of distinct colors. Also, apart from $2k-5$ vertices, $2$-colored $k$-uniform hypergraphs can be partitioned into two monochromatic loose paths. In general, we prove that in any $r$-coloring of a $k$-uniform hypergraph there is a partition of the vertex set into monochromatic loose cycles such that their number depends only on $r$ and $k$.

Journal ArticleDOI
TL;DR: It is shown that one can associate a pseudoregulus with every scattered linear set of rank $3n$ in $\mathrm{PG}(2n-1,q^3)$.
Abstract: In this paper, we show that one can associate a pseudoregulus with every scattered linear set of rank $3n$ in $\mathrm{PG}(2n-1,q^3)$. We construct a scattered linear set having a given pseudoregulus as associated pseudoregulus and prove that there are $q-1$ different scattered linear sets that have the same associated pseudoregulus. Finally, we give a characterisation of reguli and pseudoreguli in $\mathrm{PG}(3,q^3)$.

Journal ArticleDOI
TL;DR: In this article, the authors define a simple matrix to be simple if it is a (0, 1)-matrix with no repeated columns and define the maximum number of columns of any simple (m, k)-rowed matrix which do not contain a sub-matrix of a given configuration.
Abstract: Let $F$ be a $k\times \ell$ (0,1)-matrix. We say a (0,1)-matrix $A$ has $F$ as a configuration if there is a submatrix of $A$ which is a row and column permutation of $F$. In the language of sets, a configuration is a trace and in the language of hypergraphs a configuration is a subhypergraph . Let $F$ be a given $k\times \ell$ (0,1)-matrix. We define a matrix to be simple if it is a (0,1)-matrix with no repeated columns. The matrix $F$ need not be simple. We define $\hbox{forb}(m,F)$ as the maximum number of columns of any simple $m$-rowed matrix $A$ which do not contain $F$ as a configuration. Thus if $A$ is an $m\times n$ simple matrix which has no submatrix which is a row and column permutation of $F$ then $n\le\hbox{forb}(m,F)$. Or alternatively if $A$ is an $m\times (\hbox{forb}(m,F)+1)$ simple matrix then $A$ has a submatrix which is a row and column permutation of $F$. We call $F$ a forbidden configuration . The fundamental result is due to Sauer, Perles and Shelah, Vapnik and Chervonenkis. For $K_k$ denoting the $k\times 2^k$ submatrix of all (0,1)-columns on $k$ rows, then $\hbox{forb}(m,K_k)=\binom{m}{k-1}+\binom{m}{k-2}+\cdots \binom{m}{0}$. We seek asymptotic results for $\hbox{forb}(m,F)$ for a fixed $F$ and as $m$ tends to infinity . A conjecture of Anstee and Sali predicts the asymptotically best constructions from which to derive the asymptotics of $\hbox{forb}(m,F)$. The conjecture has helped guide the research and has been verified for $k\times \ell$ $F$ with $k=1,2,3$ and for simple $F$ with $k=4$ as well as other cases including $\ell=1,2$. We also seek exact values for $\hbox{forb}(m,F)$.

Journal ArticleDOI
TL;DR: In this article, the authors extend the notion of pattern avoidance in permutations to the case of matchings and give a more direct proof of a formula of Bona for the number of $1342$-avoiding permutations, which greatly simplifies existing proofs by Backelin-West-Xin and Jelinek.
Abstract: Extending the notion of pattern avoidance in permutations, we study matchings and set partitions whose arc diagram representation avoids a given configuration of three arcs. These configurations, which generalize $3$-crossings and $3$-nestings, have an interpretation, in the case of matchings, in terms of patterns in full rook placements on Ferrers boards. We enumerate $312$-avoiding matchings and partitions, obtaining algebraic generating functions, in contrast with the known D-finite generating functions for the $321$-avoiding (i.e., $3$-noncrossing) case. Our approach provides a more direct proof of a formula of Bona for the number of $1342$-avoiding permutations. We also give a bijective proof of the shape-Wilf-equivalence of the patterns $321$ and $213$ which greatly simplifies existing proofs by Backelin-West-Xin and Jelinek, and provides an extension of work of Gouyou-Beauchamps for matchings with fixed points. Finally, we classify pairs of patterns of length 3 according to shape-Wilf-equivalence, and enumerate matchings and partitions avoiding a pair in most of the resulting equivalence classes.

Journal ArticleDOI
TL;DR: This work shows that in fact a much stronger statement holds true: greedy trees maximize the number of subtrees of any given order and obtains a number of corollaries from this fact and proves analogous results for related invariants, most notably theNumber of antichains of given cardinality in a rooted tree.
Abstract: Greedy trees are constructed from a given degree sequence by a simple greedy algorithm that assigns the highest degree to the root, the second-, third-, ... highest degrees to the root's neighbors, and so on. They have been shown to maximize or minimize a number of different graph invariants among trees with a given degree sequence. In particular, the total number of subtrees of a tree is maximized by the greedy tree. In this work, we show that in fact a much stronger statement holds true: greedy trees maximize the number of subtrees of any given order. This parallels recent results on distance-based graph invariants. We obtain a number of corollaries from this fact and also prove analogous results for related invariants, most notably the number of antichains of given cardinality in a rooted tree.

Journal ArticleDOI
TL;DR: In this article, Caro and Tuza showed that the maximum cardinality of a k-independent set of vertices of a graph G = (V,E) is at most k + 1 n.
Abstract: Let $G = (V,E)$ be a graph and $k \ge 0$ an integer. A $k$-independent set $S \subseteq V$ is a set of vertices such that the maximum degree in the graph induced by $S$ is at most $k$. With $\alpha_k(G)$ we denote the maximum cardinality of a $k$-independent set of $G$. We prove that, for a graph $G$ on $n$ vertices and average degree $d$, $\alpha_k(G) \ge \frac{k+1}{\lceil d \rceil + k + 1} n$, improving the hitherto best general lower bound due to Caro and Tuza [Improved lower bounds on $k$-independence, J. Graph Theory 15 (1991), 99-107].

Journal ArticleDOI
TL;DR: In this paper, the skew spectra of two orientations of the Cartesian products are discussed, as applications, new families of oriented bipartite graphs with skew-adjacency matrix of the underlying graph, and the orientation of a product graph with maximum skew energy is obtained.
Abstract: An oriented graph ${G^{\sigma}}$ is a simple undirected graph $G$ with an orientation, which assigns to each edge of $G$ a direction so that ${G^{\sigma}}$ becomes a directed graph. $G$ is called the underlying graph of ${G^{\sigma}}$ and we denote by $S({G^{\sigma}})$ the skew-adjacency matrix of ${G^{\sigma}}$ and its spectrum $Sp({G^{\sigma}})$ is called the skew-spectrum of ${G^{\sigma}}$. In this paper, the skew spectra of two orientations of the Cartesian products are discussed, as applications, new families of oriented bipartite graphs ${G^{\sigma}}$ with $Sp({G^{\sigma}})={\bf i} Sp(G)$ are given and the orientation of a product graph with maximum skew energy is obtained.

Journal ArticleDOI
TL;DR: The purpose of this article is to improve existing lower bounds on the chromatic number chi by using a new technique of converting the adjacency matrix into the zero matrix by conjugating with unitary matrices and use majorization of spectra of self-adjoint matrices.
Abstract: The purpose of this article is to improve existing lower bounds on the chromatic number $\chi$. Let $\mu_1,\ldots,\mu_n$ be the eigenvalues of the adjacency matrix sorted in non-increasing order. First, we prove the lower bound $\chi \ge 1 + \max_m\{\sum_{i=1}^m \mu_i / -\sum_{i=1}^m \mu_{n - i +1}\}$ for $m=1,\ldots,n-1$. This generalizes the Hoffman lower bound which only involves the maximum and minimum eigenvalues, i.e., the case $m=1$. We provide several examples for which the new bound exceeds the Hoffman lower bound. Second, we conjecture the lower bound $\chi \ge 1 + s^+ / s^-$, where $s^+$ and $s^-$ are the sums of the squares of positive and negative eigenvalues, respectively. To corroborate this conjecture, we prove the bound $\chi \ge s^+/s^-$. We show that the conjectured lower bound is true for several families of graphs. We also performed various searches for a counter-example, but none was found. Our proofs rely on a new technique of considering a family of conjugates of the adjacency matrix, which add to the zero matrix, and use majorization of spectra of self-adjoint matrices. We also show that the above bounds are actually lower bounds on the normalized orthogonal rank of a graph, which is always less than or equal to the chromatic number. The normalized orthogonal rank is the minimum dimension making it possible to assign vectors with entries of modulus one to the vertices such that two such vectors are orthogonal if the corresponding vertices are connected. All these bounds are also valid when we replace the adjacency matrix $A$ by $W * A$ where $W$ is an arbitrary self-adjoint matrix and $*$ denotes the Schur product, that is, entrywise product of $W$ and $A$.

Journal ArticleDOI
TL;DR: In this article, it was shown that the Stirling number of classes in a uniformly chosen partition of a cycle into non-empty independent sets is asymptotically normal, meaning that suitably normalized it tends in distribution to the standard normal.
Abstract: For a graph $G$ and a positive integer $k$, the graphical Stirling number $S(G,k)$ is the number of partitions of the vertex set of $G$ into $k$ non-empty independent sets. Equivalently it is the number of proper colorings of $G$ that use exactly $k$ colors, with two colorings identified if they differ only on the names of the colors. If $G$ is the empty graph on $n$ vertices then $S(G,k)$ reduces to $S(n,k)$, the familiar Stirling number of the second kind. In this note we first consider Stirling numbers of forests. We show that if $(F^{c(n)}_n)_{n\geq 0}$ is any sequence of forests with $F^{c(n)}_n$ having $n$ vertices and $c(n)=o(\sqrt{n/\log n})$ components, and if $X^{c(n)}_n$ is a random variable that takes value $k$ with probability proportional to $S(F^{c(n)}_n,k)$ (that is, $X^{c(n)}_n$ is the number of classes in a uniformly chosen partition of $F^{c(n)}_n$ into non-empty independent sets), then $X^{c(n)}_n$ is asymptotically normal, meaning that suitably normalized it tends in distribution to the standard normal. This generalizes a seminal result of Harper on the ordinary Stirling numbers. Along the way we give recurrences for calculating the generating functions of the sequences $(S(F^c_n,k))_{k \geq 0}$, show that these functions have all real zeroes, and exhibit three different interlacing patterns between the zeroes of pairs of consecutive generating functions. We next consider Stirling numbers of cycles. We establish asymptotic normality for the number of classes in a uniformly chosen partition of $C_n$ (the cycle on $n$ vertices) into non-empty independent sets. We give a recurrence for calculating the generating function of the sequence $(S(C_n,k))_{k \geq 0}$, and use this to give a direct proof of a log-concavity result that had previously only been arrived at in a very indirect way.

Journal ArticleDOI
TL;DR: In this paper, the authors constructed the first simplicial 3-ball with 15 vertices that is not collapsible and showed that it can be constructed as a 3-edge subcomplex.
Abstract: We construct the first explicit example of a simplicial 3-ball $B_{15,66}$ that is not collapsible. It has only 15 vertices. We exhibit a second 3-ball $B_{12,38}$ with 12 vertices that is collapsible and not shellable, but evasive. Finally, we present the first explicit triangulation of a 3-sphere $S_{18, 125}$ (with only 18 vertices) that is not locally constructible. All these examples are based on knotted subcomplexes with only three edges; the knots are the trefoil, the double trefoil, and the triple trefoil, respectively. The more complicated the knot is, the more distant the triangulation is from being polytopal, collapsible, etc. Further consequences of our work are: (1) Unshellable 3-spheres may have vertex-decomposable barycentric subdivisions. (This shows the strictness of an implication proven by Billera and Provan.) (2) For $d$-balls, vertex-decomposable implies non-evasive implies collapsible, and for $d=3$ all implications are strict. (This answers a question by Barmak.) (3) Locally constructible 3-balls may contain a double trefoil knot as a 3-edge subcomplex. (This improves a result of Benedetti and Ziegler.) (4) Rudin's ball is non-evasive.

Journal ArticleDOI
TL;DR: A family of two-variable derivative polynomials for tangent and secant is introduced and a connection between these generating functions and Eulerian polynmials is established.
Abstract: In this paper we introduce a family of two-variable derivative polynomials for tangent and secant. Generating functions for the coefficients of this family of polynomials are studied. In particular, we establish a connection between these generating functions and Eulerian polynomials.

Journal ArticleDOI
TL;DR: An orientation of the Cartesian product of a bipartite graph and a graph is given, and the skew spectrum of the resulting oriented product graph is determined, which generalizes a result of Cui and Hou.
Abstract: A graph $G$ is said to have a parity-linked orientation $\phi$ if every even cycle $C_{2k}$ in $G^{\phi}$ is evenly (resp. oddly) oriented whenever $k$ is even (resp. odd). In this paper, this concept is used to provide an affirmative answer to the following conjecture of D. Cui and Y. Hou [D. Cui, Y. Hou, On the skew spectra of Cartesian products of graphs, Electronic J. Combin. 20(2):#P19, 2013]: Let $G=G(X,Y)$ be a bipartite graph. Call the $X\rightarrow Y$ orientation of $G,$ the canonical orientation. Let $\phi$ be any orientation of $G$ and let $Sp_S(G^{\phi})$ and $Sp(G)$ denote respectively the skew spectrum of $G^{\phi}$ and the spectrum of $G.$ Then $Sp_S(G^{\phi}) = {\bf{i}} Sp(G)$ if and only if $\phi$ is switching-equivalent to the canonical orientation of $G.$ Using this result, we determine the switch for a special family of oriented hypercubes $Q_d^{\phi},$ $d\geq 1.$ Moreover, we give an orientation of the Cartesian product of a bipartite graph and a graph, and then determine the skew spectrum of the resulting oriented product graph, which generalizes a result of Cui and Hou. Further this can be used to construct new families of oriented graphs with maximum skew energy.

Journal ArticleDOI
TL;DR: Applying the result of the study of products and sums divisible by central binomial coefficients to the Catalan number C_m, two sums are obtained.
Abstract: In this paper we study products and sums divisible by central binomial coefficients. We show that $$2(2n+1)\binom{2n}n\ \bigg|\ \binom{6n}{3n}\binom{3n}n\ \ \mbox{for all}\ n=1,2,3,\ldots.$$ Also, for any nonnegative integers $k$ and $n$ we have $$\binom {2k}k\ \bigg|\ \binom{4n+2k+2}{2n+k+1}\binom{2n+k+1}{2k}\binom{2n-k+1}n$$ and $$\binom{2k}k\ \bigg|\ (2n+1)\binom{2n}nC_{n+k}\binom{n+k+1}{2k},$$ where $C_m$ denotes the Catalan number $\frac1{m+1}\binom{2m}m=\binom{2m}m-\binom{2m}{m+1}$. On the basis of these results, we obtain certain sums divisible by central binomial coefficients.