scispace - formally typeset
Search or ask a question

Showing papers in "Electrophoresis in 2004"


Journal ArticleDOI
TL;DR: A modified Neuhoff's colloidal Coomassie Blue G‐250 stain is reported, dubbed “blue silver” on account of its considerably higher sensitivity, approaching the one of conventional silver staining, and its full compatibility with mass spectrometry of eluted polypeptide chains is confirmed.
Abstract: A modified Neuhoff's colloidal Coomassie Blue G-250 stain is reported, dubbed "blue silver" on account of its considerably higher sensitivity, approaching the one of conventional silver staining. The main modifications, as compared to Neuhoff's protocol, were: a 20% increment in dye concentration (from 0.1% up to 0.12%) and a much higher level of phosphoric acid in the recipe (from 2% up to 10%). The "blue silver" exhibits a much faster dye uptake (80% during the first hour of coloration, vs. none with a commercial preparation from Sigma). Even at equilibrium (24 h staining), the "blue silver" exhibits a much higher sensitivity than all other recipes, approaching (but lower than) the one of the classical silver stain. Measurements of stain sensitivity after sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of bovine serum albumin (BSA) gave a detection limit (signal-to-noise ratio > 3) of 1 ng in a single zone. The somewhat lower sensitivity of "blue silver" as compared to classical silvering protocols in the presence of aldehydes is amply compensated for by its full compatibility with mass spectrometry of eluted polypeptide chains, after a two-dimensional map analysis, thus confirming that no dye is covalently bound (or permanently modifies) to any residue in the proteinaceous material. It is believed that the higher level of phosphoric acid in the recipe, thus its lower final pH, helps in protonating the last dissociated residues of Asp and Glu in the polypeptide coils, thus greatly favoring ionic anchoring of dye molecules to the protein moiety. Such a binding, though, must be followed by considerable hydrophobic association with the aromatic and hydrophobic residues along the polypeptide backbone.

1,843 citations


Journal ArticleDOI
TL;DR: It is shown that for most situations relevant to microchip separations, the high‐ζ limit is most applicable, leading to the conclusion that the zeta potential on silica substrates is approximately proportional to the logarithm of the molar counterion concentration.
Abstract: This paper summarizes theory, experimental techniques, and the reported data pertaining to the zeta potential of silica and silicon with attention to use as microfluidic substrate materials, particularly for microchip chemical separations. Dependence on cation concentration, buffer and cation type, pH, cation valency, and temperature are discussed. The Debye-Huckel limit, which is often correctly treated as a good approximation for describing the ion concentration in the double layer, can lead to serious errors if it is extended to predict the dependence of zeta potential on the counterion concentration. For indifferent univalent electrolytes (e.g., sodium and potassium), two simple scalings for the dependence of zeta potential on counterion concentration can be derived in high- and low-z limits of the nonlinear Poisson-Boltzman equation solution in the double layer. It is shown that for most situations relevant to microchip separations, the high-z limit is most applicable, leading to the conclusion that the zeta potential on silica substrates is approximately proportional to the logarithm of the molar counterion concentration. The z vs. pH dependence measurements from several experiments are compared by normalizing the z based on concentration.

923 citations


Journal ArticleDOI
TL;DR: PC (the negative logarithm of the counterion concentration) is proposed as a useful normalization for the ζ potential on polymer substrates in contact with indifferent univalent counterions to allow improved ability to predict ε potential performance on microfluidic substrates and compare results observed with different parameters.
Abstract: Zeta potential data are reviewed for a variety of polymeric microfluidic substrate materials. Many of these materials currently used for microchip fabrication have only recently been employed for generation of electroosmotic flow. Despite their recent history, polymeric microfluidic substrates are currently used extensively for microchip separations and other techniques, and understanding of the surface zeta potential is crucial for experimental design. This paper proposes the use of pC (the negative logarithm of the counterion concentration) as a useful normalization for the zeta potential on polymer substrates in contact with indifferent univalent counterions. Normalizing zeta by pC facilitates comparison of results from many investigators. The sparseness of available data for polymeric substrates prevents complete and rigorous justification for this normalization; however, it is consistent with double layer and adsorption theory. For buffers with indifferent univalent cations, normalization with the logarithm of the counterion concentration in general collapses data onto a single zeta/pC vs. pH curve, and (with the exception of PMMA) the repeatability of the data is quite encouraging. Normalization techniques should allow improved ability to predict zeta potential performance on microfluidic substrates and compare results observed with different parameters.

422 citations


Journal ArticleDOI
TL;DR: Insulator‐based dielectrophoresis was utilized to separate and concentrate selectively mixtures of two species of live bacteria simultaneously and showed that iDEP has the potential to selectively concentrate and separate different species of bacteria.
Abstract: Insulator-based dielectrophoresis (iDEP) was utilized to separate and concentrate selectively mixtures of two species of live bacteria simultaneously. Four species of bacteria were studied: the Gram-negative Escherichia coli and the Gram-positive Bacillus subtilis, B. cereus, and B. megaterium. Under an applied direct current (DC) electric field all the bacterial species exhibited negative dielectrophoretic behavior. The dielectrophoretic separations were carried out in a glass microchannel containing an array of insulating posts. The insulating posts in the microchannel produced nonuniformities in the electric field applied along the channel. Mixtures of two species of bacteria were introduced into the microchannel and the electric field was applied. The bacterial species exhibited different dielectrophoretic mobilities under the influence of the nonuniform field. From these experiments a trapping order was established with E. coli trapping at the weakest applied electric field, while the Bacillus species were trapped at different characteristic threshold fields. At stronger applied electric fields, the two different species of bacteria in the microchannel were dielectrophoretically trapped into two spatially distinct bands. The results showed that iDEP has the potential to selectively concentrate and separate different species of bacteria.

362 citations


Journal ArticleDOI
TL;DR: In this article, immunoprecipitation was combined with microcapillary reversed-phase liquid chromatography (μRPLC) coupled on-line with tandem mass spectrometry (MS/MS) to investigate the low-molecular-weight proteins/peptides that associate with the most abundant species in serum.
Abstract: The protein content of human serum is composed of a millieu of proteins from almost every type of cell and tissue within the body. The serum proteome has been shown to contain information that directly reflects pathophysiological states and represents an invaluable source of diagnostic information for a variety of different diseases. Unfortunately, the dynamic range of protein abundance, ranging from ≫ mg/mL level to ≪ pg/mL level, renders complete characterization of this proteome nearly impossible with current analytical methods. To study low-abundance proteins, which have potential value for clinical diagnosis, the high-abundant species, such as immunoglobulins and albumin, are generally eliminated as the first step in many analytical protocols. This step, however, is hypothesized to concomitantly remove proteins/peptides associated with the high-abundant proteins targeted for depletion. In this study, immunoprecipitation was combined with microcapillary reversed-phase liquid chromatography (μRPLC) coupled on-line with tandem mass spectrometry (MS/MS) to investigate the low-molecular-weight proteins/peptides that associate with the most abundant species in serum. By this targeted isolation of select highly abundant serum proteins, the associated proteins/peptides can be enriched and effectively identified by μRPLC-MS/MS. Among the 210 proteins identified, 73% and 67% were not found in previous studies of the low-molecular-weight or whole-serum proteome, respectively.

303 citations


Journal ArticleDOI
TL;DR: Needs for accurate typing of STR alleles are considered in the context of what future analysis platforms will need to increase sample throughput and ease of use.
Abstract: DNA typing with short tandem repeat (STR) markers is now widely used for a variety of applications including human identification. Capillary electrophoresis (CE) instruments, such as the ABI Prism 310 and ABI 3100 Genetic Analyzers, are the method of choice for many laboratories performing STR analysis. This review discusses issues surrounding sample preparation, injection, separation, detection, and interpretation of STR results using CE systems. Requirements for accurate typing of STR alleles are considered in the context of what future analysis platforms will need to increase sample throughput and ease of use.

270 citations


Journal ArticleDOI
TL;DR: This review focuses on recent developments in integrating electrochemical (EC) detection with microchip capillary electrophoresis (CE) and applications for enzyme/immunoassays, clinical and environmental assays, as well as the detection of neurotransmitters.
Abstract: Significant progress in the development of miniaturized microfluidic systems has occurred since their inception over a decade ago. This is primarily due to the numerous advantages of microchip analysis, including the ability to analyze minute samples, speed of analysis, reduced cost and waste, and portability. This review focuses on recent developments in integrating electrochemical (EC) detection with microchip capillary electrophoresis (CE). These detection modes include amperometry, conductimetry, and potentiometry. EC detection is ideal for use with microchip CE systems because it can be easily miniaturized with no diminution in analytical performance. Advances in microchip format, electrode material and design, decoupling of the detector from the separation field, and integration of sample preparation, separation, and detection on-chip are discussed. Microchip CEEC applications for enzyme/immunoassays, clinical and environmental assays, as well as the detection of neurotransmitters are also described.

264 citations


Journal ArticleDOI
TL;DR: This review concentrates on the latest developments of optical detection methods and mass spectrometry in conjunction with microfluidic systems and focuses on electrospray emitters as interfaces between microsystem and spectrometer.
Abstract: Microfluidic systems have become more and more important in the field of analytical chemistry. Detection methods on these microsystems are essential for the identification and quantification of chemical species that are being analyzed. This review concentrates on the latest developments of optical detection methods and mass spectrometry in conjunction with microfluidic systems. Electrochemical methods are discussed in another review in the same issue of this journal. Within the optical detection section, topics such as multiplexed detection and the use of waveguides are discussed. Within the discussion of mass spectrometry, the main focus is on electrospray emitters as interfaces between microsystem and spectrometer. Apart from optical detection and mass spectrometry, other techniques such as flame ionization and nuclear magnetic resonance are also mentioned.

234 citations


Journal ArticleDOI
TL;DR: Variable number of tandem repeats (VNTRs) evolve 100–1000 times faster than scnDNA and provide a powerful tool for analyzing recent and contemporary events and DNA fingerprinting is powerful for distinguishing ESUs, MUs, AUs, and FNs.
Abstract: Conservation genetics focuses on the effects of contemporary genetic structuring on long-term survival of a species. It helps wildlife managers protect biodiversity by identifying a series of conservation units, which include species, evolutionarily significant units (ESUs), management units (MUs), action units (AUs), and family nets (FNs). Although mitochondrial DNA (mtDNA) evolves 5–10 times faster than single-copy nuclear DNA (scnDNA), it records few traces of contemporary events. Thus, mtDNA can be used to resolve taxonomic uncertainties and ESUs. Variable number of tandem repeats (VNTRs) evolve 100–1000 times faster than scnDNA and provide a powerful tool for analyzing recent and contemporary events. VNTR analysis techniques include polymerase chain reaction (PCR)-based microsatellite assays and oligonucleotide probing. Size homoplasy problems in PCR-based microsatellite assays can strongly affect the inference of recent population history. The high homozygosity in endangered species is reflected in a relatively low number and level of variability in microsatellite loci. This combined with “allelic dropout” and “misprinting” errors contributes to the generation of highly biased genetic data following analyses of natural populations. Thus, in conservation genetics, microsatellites are of limited use for identifying ESUs, MUs, and AUs. In contrast to PCR-based microsatellite analysis, oligonucleotide probing avoids errors resulting from PCR amplification. It is particularly suitable for inferring recent population history and contemporary gene flow between fragmented subpopulations. Oligonucleotide fingerprinting generates individual-specific DNA banding patterns and thus provides a highly precise tool for monitoring demography of natural populations. Hence, DNA fingerprinting is powerful for distinguishing ESUs, MUs, AUs, and FNs. The use of oligonucleotide fingerprinting and fecal DNA is opening new areas for conservation genetics.

228 citations


Journal ArticleDOI
TL;DR: The current status of the development of the immobilized microfluidic enzymatic reactors (IMERs) technology is reviewed, with the potential to revolutionize analytical instrumentation for the analyses of very small sample amounts, single cells or even subcellular assemblies.
Abstract: The use of enzymes for cleavage, synthesis or chemical modification represents one of the most common processes used in biochemical and molecular biology laboratories. The continuing progress in medical research, genomics, proteomics, and related emerging biotechnology fields leads to exponential growth of the applications of enzymes and the development of modified or new enzymes with specific activities. Concurrently, new technologies are being developed to improve reaction rates and specificity or perform the reaction in a specific environment. Besides large-scale industrial applications, where typically a large processing capacity is required, there are other, much lower-scale applications, benefiting form the new developments in enzymology. One such technology is microfluidics with the potential to revolutionize analytical instrumentation for the analyses of very small sample amounts, single cells or even subcellular assemblies. This article aims at reviewing the current status of the development of the immobilized microfluidic enzymatic reactors (IMERs) technology.

227 citations


Journal ArticleDOI
TL;DR: The basic facts about EOF are reviewed from the perspective of fluid mechanics and its effect on separations in free solution capillary zone electrophoresis is discussed in the light of recent advances.
Abstract: Electroosmotic flow (EOF) usually accompanies electrophoretic migration of charged species in capillary electrophoresis unless special precautions are taken to suppress it. The presence of the EOF provides certain advantages in separations. It is an alternative to mechanical pumps, which are inefficient and difficult to build at small scales, for transporting reagents and analytes on microfluidic chips. The downside is that any imperfection that distorts the EOF profile reduces the separation efficiency. In this paper, the basic facts about EOF are reviewed from the perspective of fluid mechanics and its effect on separations in free solution capillary zone electrophoresis is discussed in the light of recent advances.

Journal ArticleDOI
TL;DR: The state of the art of on‐line CE‐MS for the analysis of molecules of biological origin is described, including the study of post‐translational modifications, intact proteins, oligonucleotides, and related interaction studies.
Abstract: Mass spectrometry (MS) has become a key tool for the characterization of biologically relevant molecules in the last decade. Due to the complexity of most biological samples an upstream separation is essential. Capillary electrophoresis (CE) has gained much interest due to its high separation efficiency, speed, and often complementary selectivity to liquid chromatography. We describe the state-of-the-art of on-line CE-MS for the analysis of molecules of biological origin. The characterization of peptides, including the study of post-translational modifications, intact proteins, oligonucleotides, and related interaction studies are reviewed. Relevant publications are summarized in tables, including some important method parameters. Key applications are discussed with respect to the advantages and limitations of CE-MS. Coupling interfaces, preconcentration techniques, capillary coatings, and the different CE techniques, e.g., capillary zone electrophoresis, capillary isoelectric focusing, capillary gel electrophoresis, etc. are briefly discussed against the background of their bioanalytical applications.

Journal ArticleDOI
TL;DR: A good fit between theoretical and experimental results shows that the axial contactless conductometric detector can effectively be described by the simplest possible equivalent circuitry consisting of a capacitor, resistor, and a second capacitor.
Abstract: A better understanding of the characteristics of the axial contactless conductivity cell could be obtained by carefully studying the effect of the cell geometry on its frequency behavior. A good fit between theoretical and experimental results shows that the axial contactless conductometric detector can effectively be described by the simplest possible equivalent circuitry consisting of a capacitor, resistor, and a second capacitor. The cell constant is largely defined by the length of the gap between the electrodes. The effective electrode size is thus not related to the dimensions of the real electrodes but more closely to the cross-sectional area of the internal diameter of the capillary. Typical experimental values of 20 MOmega and 0.1 pF were obtained for the resistance and capacitances, respectively, of a cell formed by a 2 mm gap between two 4 mm long electrodes fitted with a capillary of 50 microm ID. It could be shown that the diameter of the electrode is not critical and tight coupling of the electrodes to the outer wall of the capillary is not needed. The peak overshoot phenomenon, which has frequently been reported, is an artefact that can be minimized by optimizing the frequency for cell excitation. The frequency setting has to be optimized for each cell design, operational amplifier, electrolyte solution and capillary.

Journal ArticleDOI
TL;DR: Capillary zone electrophoresis has thus become a valuable tool for investigation of large macromolecular assemblies in the field of biochemistry, clinical chemistry, toxicology, and nutrition chemistry amongst many others.
Abstract: A review about the application of electrophoretic methods in the capillary format for the investigation of large biological assemblies like viruses, bacteria, yeast or entire mammalian cells is given. These entities are of a size ranging between some nanometers and tens of micrometers. They can form colloidal solutions or dispersions and move under the influence of an electric field. They are separated by zone electrophoresis according to their different electrophoretic velocity, and characterized by the electrophoretic mobility, which is easily determinable in free solution in capillaries or in other microdevices. As the charge of these particles, when being amphoteric, is pH-dependent, isoelectric focusing can also be carried out and the capillary format is increasingly being employed for their separation and determination of pI values. Furthermore, interactions with ligands can be assessed by various modes of affinity capillary electrophoresis. Capillary zone electrophoresis has thus become a valuable tool for investigation of large macromolecular assemblies in the field of biochemistry, clinical chemistry, toxicology, and nutrition chemistry amongst many others.

Journal ArticleDOI
TL;DR: The potential use of immobilized pH gradient isoelectric focusing as a first dimension in Shotgun proteomics represents a significant improvement in performance over traditional strong cation‐exchange first‐dimensional analysis associated with the shotgun proteomics approach.
Abstract: In this work, we demonstrate the potential use of immobilized pH gradient isoelectric focusing as a first dimension in shotgun proteomics. The high resolving power and resulting reduction in matrix ionization effects due to analyzing peptides with almost the exact same physiochemical properties, represents a significant improvement in performance over traditional strong cation-exchange first-dimensional analysis associated with the shotgun proteomics approach. For example, using this technology, we were able to identify more than 6000 peptides and > 1200 proteins from the cytosolic fraction of Escherichia coli from approximately 10 microg of material analyzed in the second-dimensional liquid chromatography-tandem mass spectrometry experiment. Sample loads on the order of 1 mg can be resolved to 0.25 isoelectric point (pI) units, which make it possible to analyze organisms with significantly larger genomes/proteomes. Accurate pI prediction can then be employed using currently available algorithms to very effectively filter data for peptide/protein identification, and thus lowering the false-positive rate for cross-correlation-based peptide identification algorithms. By simplifying the protein mixture problem to tryptic peptides, the effect of specific amino acids on pI prediction can be evaluated as a function of their position in the peptide chain.

Journal ArticleDOI
TL;DR: Since Pro‐Q Diamond dye binds to phosphorylated residues noncovalently, the staining technology is fully compatible with modern microchemical analysis procedures, such as peptide mass profiling by matrix assisted laser desorption/ionization‐time of flight (MALDI‐TOF) mass spectrometry and post‐source decay analysis of peptide phosphorylation.
Abstract: Protein phosphorylation plays a vital role in the regulation of most aspects of cellular activity, being key to propagating messages within signal transduction pathways and to modulating protein function. Pro-Q® Diamond phosphoprotein gel stain is suitable for the fluorescence detection of phosphoserine-, phosphothreonine-, and phosphotyrosine-containing proteins directly in sodium dodecyl sulfate (SDS)-polyacrylamide gels. The technology is especially appropriate for profiling steady-state and dynamic phosphorylation on a proteome-wide scale, as demonstrated through detection of the native phosphorylation of cardiac mitochondrial phosphoproteins and changes in this profile arising from the activity of a protein kinase. For example, Pro-Q Diamond phosphoprotein gel stain was employed to demonstrate that among the 46 subunits of the mitochondrial respiratory chain complex, NADH:ubiquinone oxidoreductase (complex I), a 42 kDa subunit is phosphorylated in the steady-state. However, exposure of mitochondria to cAMP-dependent protein kinase increases phosphorylation of this 42 kDa subunit and results in de novo phosphorylation of an 18 kDa subunit as well. Since Pro-Q Diamond dye binds to phosphorylated residues noncovalently, the staining technology is fully compatible with modern microchemical analysis procedures, such as peptide mass profiling by matrix assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry and post-source decay analysis of peptide phosphorylation.

Journal ArticleDOI
TL;DR: This review explores the detailed instrumental conditions required for sub‐zeptomole, sub‐picomolar detection limits and shows that each of these methods have their advantages and disadvantages, but that all can be used to produce extremely sensitive detectors for capillary‐ or microchip‐based separations.
Abstract: Laser-induced fluorescence is an extremely sensitive method for detection in chemical separations. In addition, it is well-suited to detection in small volumes, and as such is widely used for capillary electrophoresis and microchip-based separations. This review explores the detailed instrumental conditions required for sub-zeptomole, sub-picomolar detection limits. The key to achieving the best sensitivity is to use an excitation and emission volume that is matched to the separation system and that, simultaneously, will keep scattering and luminescence background to a minimum. We discuss how this is accomplished with confocal detection, 90 degrees on-capillary detection, and sheath-flow detection. It is shown that each of these methods have their advantages and disadvantages, but that all can be used to produce extremely sensitive detectors for capillary- or microchip-based separations. Analysis of these capabilities allows prediction of the optimal means of achieving ultrasensitive detection on microchips.

Journal ArticleDOI
TL;DR: This review article with 116 references describes recent developments in the preparation of wall coatings for capillary electrophoresis (CE) on a microchip and concentrates on the most frequently used microchip materials.
Abstract: This review article with 116 references describes recent developments in the preparation of wall coatings for capillary electrophoresis (CE) on a microchip. It deals with both dynamic and permanent coatings and concentrates on the most frequently used microchip materials including glass, poly(methyl methacrylate), poly(dimethyl siloxane), polycarbonate, and poly(ethylene terephthalate glycol). Characterization of the channel surface by measuring electroosmotic mobility and water contact angle of the surface is included as well. The utility of the microchips with coated channels is demonstrated by examples of CE separations on these chips.

Journal ArticleDOI
TL;DR: The symbiosome membrane protein profile from the model system Medicago truncatula and the corresponding bacterium Sinorhizobium meliloti was examined using two‐dimensional electrophoresis and microcapillary high‐performance liquid chromatography (HPLC) tandem mass spectrometry to understand better the biochemical composition of the symbiosomes.
Abstract: The symbiosome membrane represents a specialized plant membrane that forms both a structural and a functional interface between the legume plant and its bacterial counterpart. In this study, the symbiosome membrane protein profile from the model system Medicago truncatula and the corresponding bacterium Sinorhizobium meliloti was examined using two-dimensional electrophoresis and microcapillary high-performance liquid chromatography (HPLC) tandem mass spectrometry. The identities of 51 proteins were obtained and these proteins were categorized into functional classes to indicate biochemical roles. Symbiosome membrane proteins include an H + -ATPase, ENOD16, ENOD8, nodulin-25, BiP, HSP70, PDI, multifunctional aquaporin, a putative syntaxin, and other proteins of known and unknown identity and function. The majority of the proteins identified were involved with protein destination and storage. These results allow us to understand better the biochemical composition of the symbiosome membrane and thus provide a basis to hypothesize mechanisms of symbiosome membrane formation and function.

Journal ArticleDOI
TL;DR: Different approaches towards conductivity detection in capillaries and chip‐based CE are discussed, and the focus of the present review is on the technological developments and challenges in conductivity Detection in CE.
Abstract: Since the introduction of capillary electrophoresis (CE), conductivity detection has been an attractive means of detection. No additional chemical properties are required for detection, and no loss in sensitivity is expected when miniaturising the detector to scale with narrow-bore capillaries or even to the microchip format. Integration of conductivity and CE, however, involves a challenging combination of engineering issues. In conductivity detection the resistance of the solution is most frequently measured in an alternating current (AC) circuit. The influence of capacitors both in series and in parallel with the solution resistance should be minimised during conductivity measurements. For contact conductivity measurements, the positioning and alignment of the detection electrodes is crucial. A contact conductivity detector for CE has been commercially available, but was withdrawn from the market. Microfabrication technology enables integration and precise alignment of electrodes, resulting in the popularity of conductivity detection in microfluidic devices. In contactless conductivity detection, the alignment of the electrodes with respect to the capillary is less crucial. Contactless conductivity detection (CCD) was introduced in capillary CE, and similar electronics have been applied for CCD using planar electrodes in microfluidic devices. A contactless conductivity detector for capillaries has been commercialised recently. In this review, different approaches towards conductivity detection in capillaries and chip-based CE are discussed. In contrast to previous reviews, the focus of the present review is on the technological developments and challenges in conductivity detection in CE.

Journal ArticleDOI
TL;DR: Results demonstrated the suitability of CE‐ICP‐MS as a rapid assay for high‐throughput studying of drug/HSA interactions, and confirmed a specific affinity of cisplatin and novel Pt complexes to HSA.
Abstract: Characterizing how platinum metallocomplexes bind to human serum albumin (HSA) is essential in evaluating anticancer drug candidates. Using cisplatin as a reference complex, the application of capillary electrophoresis (CE) to reliably assess drug/HSA interactions was validated. Since this complex is small compared to the size of the protein, the binding response could only be recognized when applying CE coupled to a (platinum) metal-specific mode of detection, namely inductively coupled plasma-mass spectrometry (ICP-MS). This coupling allowed for confirmation of a specific affinity of cisplatin and novel Pt complexes to HSA, measurement of the kinetics of binding reactions, and determination of the number of drug molecules attached to the protein. As the cisplatin/HSA molar ratio increased, the reaction rate became faster with a maximum on the kinetic curve appearing at about 50 h of incubation at 20 times excess of cisplatin. The reaction was characterized as a pseudo-first order reaction with the rate constant k = 0.003 min−1 at 37°C. When incubated with a 20-fold excess of cisplatin, HSA bound up to 10 mol of Pt per mol of the protein. This is indicative for a strong metal-protein coordination occurring at several HSA sites other than the only protein cysteine residue. Structural analogs of cisplatin, bearing aminoalcohol ligands, showed comparable protein binding reactivity and stoichiometry but a common equilibrium was not reached even after one week of incubation. Also apparent was a two-step mechanism of the binding reaction. Results demonstrated the suitability of CE-ICP-MS as a rapid assay for high-throughput studying of drug/HSA interactions.

Journal ArticleDOI
TL;DR: A computer implementation of the mathematical model of zone electrophoresis (CZE), which simulates electropherograms in a user‐friendly way, is introduced and a successful application of PeakMaster is demonstrated for inspection of BGEs having no stationary injection zone.
Abstract: We are introducing a computer implementation of the mathematical model of zone electrophoresis (CZE) described in Stedry, M., Jaros, M., Hruska, V., Gas, B., Electrophoresis 2004, 25, 3071-3079 program PeakMaster. The computer model calculates eigenmobilities, which are the eigenvalues of the matrix tied to the linearized continuity equations, and which are responsible for the presence of system eigenzones (system zones, system peaks). The model also calculates other parameters of the background electrolyte (BGE)-pH, conductivity, buffer capacity, ionic strength, etc., and parameters of the separated analytes--effective mobility, transfer ratio, molar conductivity detection response, and relative velocity slope. This allows the assessment of the indirect detection, conductivity detection and peak broadening (peak distortion) due to electromigration dispersion. The computer model requires the input of the BGE composition, the list of analytes to be separated, and the system instrumental configuration. The output parameters of the model are directly comparable with experiments; the model also simulates electropherograms in a user-friendly way. We demonstrate a successful application of PeakMaster for inspection of BGEs having no stationary injection zone.

Journal ArticleDOI
TL;DR: This review describes the methodology and theory associated with a number of different techniques, including electrokinetic and chromatographic methods for small molecules and macromolecules, and recent studies relating to this topic are discussed.
Abstract: Methods with a high sensitivity and high separation efficiency are goals in analytical separation techniques. On-line sample concentration techniques in capillary electrophoresis (CE) separations have rapidly grown in popularity over the past few years because they achieve this goal. This review describes the methodology and theory associated with a number of different techniques, including electrokinetic and chromatographic methods. For small molecules, several on-line concentration methods based on velocity gradient techniques are described, in which the electrophoretic velocities of the analyte molecules are manipulated by field amplification, sweeping, and isotachophoretic migration, resulting in the on-line concentration of the analyte zones. In addition, the on-line concentration methods for macromolecules are described, since the techniques used for macromolecules (DNAs and proteins), are different from those for small molecules, with respect to either mechanism or methodology. Recent studies relating to this topic are also discussed, including electrophoretic and chromatographic techniques on capillary or microchip.

Journal ArticleDOI
TL;DR: A fabrication platform for realizing integrated microfluidic devices is discussed, and a prototype microsystem for detecting botulinum neurotoxin directly from whole blood using the portable enzyme‐linked immunosorbent assay (ELISA) system is created.
Abstract: A fabrication platform for realizing integrated microfluidic devices is discussed. The platform allows for creating specific microsystems for multistep assays in an ad hoc manner as the components that perform the assay steps can be created at any location inside the device via in situ fabrication. The platform was utilized to create a prototype microsystem for detecting botulinum neurotoxin directly from whole blood. Process steps such as sample preparation by filtration, mixing and incubation with reagents was carried out on the device. Various microfluidic components such as channel network, valves and porous filter were fabricated from prepolymer mixture consisting of monomer, cross-linker and a photoinitiator. For detection of the toxoid, biotinylated antibodies were immobilized on streptavidin-functionalized agarose gel beads. The gel beads were introduced into the device and were used as readouts. Enzymatic reaction between alkaline phosphatase (on secondary antibody) and substrate produced an insoluble, colored precipitate that coated the beads thus making the readout visible to the naked eye. Clinically relevant amounts of the toxin can be detected from whole blood using the portable enzyme-linked immunosorbent assay (ELISA) system. Multiple layers can be realized for effective space utilization and creating a three-dimensional (3-D) chaotic mixer. In addition, external materials such as membranes can be incorporated into the device as components. Individual components that were necessary to perform these steps were characterized, and their mutual compatibility is also discussed.

Journal ArticleDOI
TL;DR: Application of capillary electrophoresis (CE) in combination with mass spectrometry (MS) and tandem MS to glycoscreening in biomedical projects is highlighted and the potential of CE‐ESI‐MS strategy in glycolipid analysis is demonstrated for gangliosides from bovine brain for which particular CE buffer conditions are required.
Abstract: Application of capillary electrophoresis (CE) in combination with mass spectrometry (MS) and tandem MS to glycoscreening in biomedical projects is highlighted. In the first part recent CE-MS experiments by sheath liquid CE and multiple stage MS are reported. Neutral and negatively charged N-glycan mixtures from ribonuclease B and fetuin, high-mannose type N-glycoforms, oligosaccharides from lipopolysaccharides (LPS) of Haemophilus influenzae, polysaccharides of Pseudomonas aeruginosa and Staphylococcus aureus were analyzed. A particular emphasis is devoted to the applicability of novel off- and on-line CE-MS and tandem MS methods for screening of proteoglycan-derived oligosaccharides, glycosaminoglycans (GAGs), such as hyaluronates from Streptococcus agalactiae, chondroitin/dermatan sulfates (CS/DS) from bovine aorta and human skin fibroblast decorin, and heparin/heparan sulfate (HS) from porcine and bovine mucosa. The performance of CE-MS/MS for identification of glycoforms in glycopeptides and glycoproteins is illustrated by experiments performed on complex mixtures from urine of patients suffering from a hereditary N-acetylhexosaminidase deficiency (Schindler's disease) and urine of patients suffering from cancer cachexia. For determination of glycosylation patterns in glycoproteins like enzymes and antibodies by CE/MS, both CE-matrix assisted laser desorption/ionization (MALDI) and CE-electrospray ionization (ESI)-MS were functional. Finally, the potential of CE-ESI-MS strategy in glycolipid analysis is demonstrated for gangliosides from bovine brain for which particular CE buffer conditions are required.

Journal ArticleDOI
TL;DR: This approach is useful for the simultaneous, selective, quantitative, and reproducible analysis of amino acids in physiological and biological samples that contain various kinds of matrices.
Abstract: We describe a method to identify and quantify amino acids using capillary electrophoresis-electrospray ionization-triple-quadrupole tandem mass spectrometry (CE-ESI-MS/MS). Amino acids, including physiological amino acids, were first separated by CE under acidic pH conditions and then detected by MS/MS. To efficiently introduce the whole sample into the capillary, no electrical potential was applied to the electrospray probe until running electrophoresis. The position of the electrosprayer with respect to the MS capillary entrance drastically affected sensitivity and generation of cluster ions. MS/MS with multiple reaction monitoring (MRM) detection was performed to obtain sufficient selectivity and sensitivity. Under optimized CE-MS/MS conditions, the minimum detectable levels for 32 free amino acids normally found in proteins and other physiological amino acids were between 0.1 and 14 micromol/L with pressure injection of 50 mbar for 3 s (3 nL) at a signal-to-noise ratio of 3. For most amino acids, this constitutes a severalfold increase in sensitivity compared to CE-MS. The relative standard deviations (% RSD) for all amino acids were better than 0.4% for migration times and between 1.4% and 8.6% for peak areas (n = 10). Since amino acids exhibited characteristic MS/MS spectra, this approach is useful for the simultaneous, selective, quantitative, and reproducible analysis of amino acids in physiological and biological samples that contain various kinds of matrices. The power of the method was demonstrated by analyzing amino acids in human urine.

Journal ArticleDOI
TL;DR: These findings and various optimized procedures can serve as a reference to study the differential composition of endothelial cell caveolae and rafts, known to be involved in pathologies like cancer and cardiovascular disease.
Abstract: The human endothelial cell plasma membrane harbors two subdomains of similar lipid composition, caveolae and rafts, both crucially involved in various essential cellular processes like transcytosis, signal transduction and cholesterol homeostasis. Caveolin-enriched membranes, isolated by either cationic silica or buoyant density methods, were explored by comparing large series of two-dimensional (2-D) maps and subsequent identification of over 100 protein spots by matrix-assisted laser desorption/ionization (MALDI) peptide mass fingerprinting. Improved representation and identification of membrane proteins and valuable information on various post-translational modifications was achieved by the presented optimized procedures for solubilization, destaining and database searching/computing. Whereas the cationic silica purification yielded predominantly known endoplasmic reticulum residents, the cold-detergent method yielded a large number of known caveolae residents, including caveolin-1. Thus, a large part of this subproteome was established, including known (trans-)membrane, signal transduction and glycosyl phosphatidylinositol (GPI)-anchored proteins. Several predicted proteins from the human genome were isolated for the first time from biological samples, including SGRP58, SLP-2, C8ORF2, and XRP-2. These findings and various optimized procedures can serve as a reference to study the differential composition of endothelial cell caveolae and rafts, known to be involved in pathologies like cancer and cardiovascular disease.

Journal ArticleDOI
TL;DR: The major sequencing and genotyping techniques in which high‐throughput and high‐resolution electrophoretic separations of DNA play a significant role are discussed, including capillary array electrophoresis (CAE) systems, and some of the remaining challenges are identified.
Abstract: Advances in microchannel electrophoretic separation systems for DNA analyses have had important impacts on biological and biomedical sciences, as exemplified by the successes of the Human Genome Project (HGP). As we enter a new era in genomic science, further technological innovations promise to provide other far-reaching benefits, many of which will require continual increases in sequencing and genotyping efficiency and throughput, as well as major decreases in the cost per analysis. Since the high-resolution size- and/or conformation-based electrophoretic separation of DNA is the most critical step in many genetic analyses, continual advances in the development of materials and methods for microchannel electrophoretic separations will be needed to meet the massive demand for high-quality, low-cost genomic data. In particular, the development (and commercialization) of miniaturized genotyping platforms is needed to support and enable the future breakthroughs of biomedical science. In this review, we briefly discuss the major sequencing and genotyping techniques in which high-throughput and high-resolution electrophoretic separations of DNA play a significant role. We review recent advances in the development of technology for capillary electrophoresis (CE), including capillary array electrophoresis (CAE) systems. Most of these CE/CAE innovations are equally applicable to implementation on microfabricated electrophoresis chips. Major effort is devoted to discussing various key elements needed for the development of integrated and practical microfluidic sequencing and genotyping platforms, including chip substrate selection, microchannel design and fabrication, microchannel surface modification, sample preparation, analyte detection, DNA sieving matrices, and device integration. Finally, we identify some of the remaining challenges, and some of the possible routes to further advances in high-throughput DNA sequencing and genotyping technologies.

Journal ArticleDOI
TL;DR: The signal‐to‐noise ratio of a contactless conductivity detector for capillary electrophoresis was examined for different cell arrangements and operating parameters and it was shown that the best signal-to-noise ratios were achieved for the highest excitation voltage of 200 Vpp.
Abstract: The signal-to-noise ratio of a contactless conductivity detector for capillary electrophoresis was examined for different cell arrangements and operating parameters. The best signal-to-noise ratios, and hence the best detection limits, are obtained for frequencies which give highest sensitivity. Comparative experiments for three different excitation voltages (20, 100, and 200 V p p ) showed that the best signal-to-noise ratios were achieved for the highest excitation voltage of 200 V p p . Low conductivity of the background electrolyte solution is mandatory to obtain lowest noise levels, and also the improvement on applying high excitation voltages was best for the electrolyte solution with lowest conductivity. The diameter of the electrodes was found to have only a negligible effect, so that a tight fitting of the electrodes to the external diameter of the capillary is not necessary. A cell without shielding between the two electrodes showed significant direct coupling (stray capacitance) and lower signal-to-noise ratios for all experimental conditions used. A serious distortion of the peak shapes was also observed for this cell arrangement.

Journal ArticleDOI
TL;DR: An attempt is made to revisit the main theoretical considerations concerning temperature effects (“Joule heating”) in electro‐driven separation systems, in particular lab‐on‐a‐chip systems and indicates that 5–10 times higher electric field strengths can be applied than on conventional capillaries, before detrimental effects on the separation efficiency occur.
Abstract: An attempt is made to revisit the main theoretical considerations concerning temperature effects ("Joule heating") in electro-driven separation systems, in particular lab-on-a-chip systems. Measurements of efficiencies in microfabricated devices under different Joule heating conditions are evaluated and compared to both theoretical models and measurements performed on conventional capillary systems. The widely accepted notion that planar microdevices are less susceptible to Joule heating effects is largely confirmed. The heat dissipation from a nonthermostatically controlled glass microdevice was found to be comparable to that from a liquid-cooled-fused silica capillary. Using typically dimensioned glass and glass/silicon microdevices, the experimental results indicate that 5-10 times higher electric field strengths can be applied than on conventional capillaries, before detrimental effects on the separation efficiency occur. The main influence of Joule heating on efficiency is via the establishment of a radial temperature profile across the lumen of the capillary or channel. An overall temperature increase of the buffer solution has only little influence on the quality of the separation. Still, active temperature control (cooling, thermostatting) can help prevent boiling of the buffer and increase the reproducibility of the results.