scispace - formally typeset
Search or ask a question
JournalISSN: 0013-7227

Endocrinology 

Endocrine Society
About: Endocrinology is an academic journal. The journal publishes majorly in the area(s): Receptor & Pituitary gland. It has an ISSN identifier of 0013-7227. Over the lifetime, 39335 publications have been published receiving 2029106 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The messenger RNA expression of both ER subtypes in rat tissues by RT-PCR is investigated and the ligand binding specificity of the ER sub types is compared, revealing a single binding component for 16β-estradiol with high affinity.
Abstract: The rat estrogen receptor (ER) exists as two subtypes, ER alpha and ER beta, which differ in the C-terminal ligand binding domain and in the N-terminal transactivation domain. In this study we investigated the messenger RNA expression of both ER subtypes in rat tissues by RT-PCR and compared the ligand binding specificity of the ER subtypes. Saturation ligand binding analysis of in vitro synthesized human ER alpha and rat ER beta protein revealed a single binding component for 16 alpha-iodo-17 beta-estradiol with high affinity [dissociation constant (Kd) = 0.1 nM for ER alpha protein and 0.4 nM for ER beta protein]. Most estrogenic substances or estrogenic antagonists compete with 16 alpha-[125I]iodo-17 beta-estradiol for binding to both ER subtypes in a very similar preference and degree; that is, diethylstilbestrol > hexestrol > dienestrol > 4-OH-tamoxifen > 17 beta-estradiol > coumestrol, ICI-164384 > estrone, 17 alpha-estradiol > nafoxidine, moxestrol > clomifene > estriol, 4-OH-estradiol > tamoxifen, 2-OH-estradiol, 5-androstene-3 beta, 17 beta-diol, genistein for the ER alpha protein and dienestrol > 4-OH-tamoxifen > diethylstilbestrol > hexestrol > coumestrol, ICI-164384 > 17 beta-estradiol > estrone, genistein > estriol > nafoxidine, 5-androstene-3 beta, 17 beta-diol > 17 alpha-estradiol, clomifene, 2-OH-estradiol > 4-OH-estradiol, tamoxifen, moxestrol for the ER beta protein. The rat tissue distribution and/or the relative level of ER alpha and ER beta expression seems to be quite different, i.e. moderate to high expression in uterus, testis, pituitary, ovary, kidney, epididymis, and adrenal for ER alpha and prostate, ovary, lung, bladder, brain, uterus, and testis for ER beta. The described differences between the ER subtypes in relative ligand binding affinity and tissue distribution could contribute to the selective action of ER agonists and antagonists in different tissues.

4,367 citations

Journal ArticleDOI
TL;DR: The estrogenic activity of environmental chemicals and phytoestrogens in competition binding assays with ERα or ERβ protein, and in a transient gene expression assay using cells in which an acute estrogenic response is created by cotransfecting cultures with recombinant human ERβ complementary DNA (cDNA) in the presence of an estrogen-dependent reporter plasmid are investigated.
Abstract: The rat, mouse and human estrogen receptor (ER) exists as two subtypes, ER alpha and ER beta, which differ in the C-terminal ligand-binding domain and in the N-terminal transactivation domain. In this study, we investigated the estrogenic activity of environmental chemicals and phytoestrogens in competition binding assays with ER alpha or ER beta protein, and in a transient gene expression assay using cells in which an acute estrogenic response is created by cotransfecting cultures with recombinant human ER alpha or ER beta complementary DNA (cDNA) in the presence of an estrogen-dependent reporter plasmid. Saturation ligand-binding analysis of human ER alpha and ER beta protein revealed a single binding component for [3H]-17beta-estradiol (E2) with high affinity [dissociation constant (Kd) = 0.05 - 0.1 nM]. All environmental estrogenic chemicals [polychlorinated hydroxybiphenyls, dichlorodiphenyltrichloroethane (DDT) and derivatives, alkylphenols, bisphenol A, methoxychlor and chlordecone] compete with E2 for binding to both ER subtypes with a similar preference and degree. In most instances the relative binding affinities (RBA) are at least 1000-fold lower than that of E2. Some phytoestrogens such as coumestrol, genistein, apigenin, naringenin, and kaempferol compete stronger with E2 for binding to ER beta than to ER alpha. Estrogenic chemicals, as for instance nonylphenol, bisphenol A, o, p'-DDT and 2',4',6'-trichloro-4-biphenylol stimulate the transcriptional activity of ER alpha and ER beta at concentrations of 100-1000 nM. Phytoestrogens, including genistein, coumestrol and zearalenone stimulate the transcriptional activity of both ER subtypes at concentrations of 1-10 nM. The ranking of the estrogenic potency of phytoestrogens for both ER subtypes in the transactivation assay is different; that is, E2 >> zearalenone = coumestrol > genistein > daidzein > apigenin = phloretin > biochanin A = kaempferol = naringenin > formononetin = ipriflavone = quercetin = chrysin for ER alpha and E2 >> genistein = coumestrol > zearalenone > daidzein > biochanin A = apigenin = kaempferol = naringenin > phloretin = quercetin = ipriflavone = formononetin = chrysin for ER beta. Antiestrogenic activity of the phytoestrogens could not be detected, except for zearalenone which is a full agonist for ER alpha and a mixed agonist-antagonist for ER beta. In summary, while the estrogenic potency of industrial-derived estrogenic chemicals is very limited, the estrogenic potency of phytoestrogens is significant, especially for ER beta, and they may trigger many of the biological responses that are evoked by the physiological estrogens.

4,078 citations

Journal ArticleDOI
TL;DR: It is concluded that CORT action via CR may be involved in a tonic (permissive) influence on brain function with the septohippocampal complex as a primary target.
Abstract: Two receptor systems for corticosterone (CORT) can be distinguished in rat brain: mineralocorticoidlike or CORT receptors (CR) and glucocorticoid receptors (GR). The microdistribution and extent of occupation of each receptor population by CORT were studied. The CR system is restricted predominantly to the lateral septum and hippocampus. Within the hippocampus, the highest density occurs in the subiculum ± CA1 cell field (144 fmol/mg protein) and the dentate gyrus (104 fmol/mg protein). Affinity of CR for CORT was very high (Kd, ∼0.5 nm). The GR system has a more widespread distribution in the brain. The highest density for GR is in the lateral septum (195 fmol/mg protein), the dentate gyrus (133 fmol/mg protein), the nucleus tractus solitarii and central amygdala. Substantial amounts of GR are present in the paraventricular nucleus and locus coeruleus and low amounts in the raphe area and the subiculum + CA1 cell field. The affinity of GR for CORT (Kd, ∼2.5–5 nm) was 6- to 10-fold lower than that of CR. ...

2,580 citations

Journal ArticleDOI
TL;DR: This work presents the expression patterns of the PPAR subtypes in the adult rat, determined by in situ hybridization using specific probes for PPAR-alpha, -beta and -gamma, and by immunohistochemistry using a polyclonal antibody that recognizes the three rat PPar subtypes.
Abstract: Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear hormone receptor superfamily that can be activated by various xenobiotics and natural fatty acids. These transcription factors primarily regulate genes involved in lipid metabolism and also play a role in adipocyte differentiation. We present the expression patterns of the PPAR subtypes in the adult rat, determined by in situ hybridization using specific probes for PPAR-alpha, -beta and -gamma, and by immunohistochemistry using a polyclonal antibody that recognizes the three rat PPAR subtypes. In numerous cell types from either ectodermal, mesodermal, or endodermal origin, PPARs are coexpressed, with relative levels varying between them from one cell type to the other. PPAR-alpha is highly expressed in hepatocytes, cardiomyocytes, enterocytes, and the proximal tubule cells of kidney. PPAR-beta is expressed ubiquitously and often at higher levels than PPAR-alpha and -gamma. PPAR-gamma is expressed predominantly in adipose tissue and the immune system. Our results suggest new potential directions to investigate the functions of the different PPAR subtypes.

2,178 citations

Journal ArticleDOI
TL;DR: Ghrelin probably functions not only in the control of GH secretion, but also in the regulation of diverse processes of the digestive system, and its findings provide clues to additional physiological functions of this novel gastrointestinal hormone.
Abstract: Ghrelin, a novel GH-releasing acylated peptide, was recently isolated from rat stomach. It stimulated the release of GH from the anterior pituitary through the GH secretagogue receptor (GHS-R). Ghrelin messenger RNA and the peptide are present in rat stomach, but its cellular source has yet to be determined. Using two different antibodies against the N- and C-terminal regions of rat ghrelin, we identified ghrelin-producing cells in the gastrointestinal tracts of rats and humans by light and electron microscopic immunohistochemistry and in situ hybridization combined with immunohistochemistry. Ghrelin-immunoreactive cells, which are not enterochromaffin-like cells, D cells, or enterochromaffin cells, accounted for about 20% of the endocrine cell population in rat and human oxyntic glands. Rat ghrelin was present in round, compact, electron-dense granules compatible with those of X/A-like cells whose hormonal product and physiological functions have not previously been clarified. The localization, population, and ultrastructural features of ghrelin-producing cells (Gr cells) indicate that they are X/A-like cells. Ghrelin also was found in enteric endocrine cells of rats and humans. Using two RIAs for the N- and C-terminal regions of ghrelin, we determined its content in the rat gastrointestinal tract. Rat ghrelin was present from the stomach to the colon, with the highest content being in the gastric fundus. Messenger RNAs of ghrelin and GHS-R also were found in these organs. Ghrelin probably functions not only in the control of GH secretion, but also in the regulation of diverse processes of the digestive system. Our findings provide clues to additional, as yet undefined, physiological functions of this novel gastrointestinal hormone.

1,856 citations

Network Information
Related Journals (5)
The Journal of Clinical Endocrinology and Metabolism
38.2K papers, 2.6M citations
90% related
Biology of Reproduction
16.4K papers, 803.6K citations
89% related
American Journal of Physiology-endocrinology and Metabolism
11.2K papers, 653.2K citations
87% related
Metabolism-clinical and Experimental
13.5K papers, 538.2K citations
85% related
Diabetes
22.8K papers, 1.6M citations
83% related
Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
202211
2021264
2020218
2019254
2018341
2017351