Journal•ISSN: 1570-646X
Energy Efficiency
Springer Science+Business Media
About: Energy Efficiency is an academic journal published by Springer Science+Business Media. The journal publishes majorly in the area(s): Efficient energy use & Energy consumption. It has an ISSN identifier of 1570-646X. Over the lifetime, 969 publications have been published receiving 22213 citations.
Topics: Efficient energy use, Energy consumption, Energy intensity, Energy policy, Energy conservation
Papers
More filters
TL;DR: A psychological model is presented that illustrates how and why feedback works, and some indication that the most successful feedback combines the following features: it is given frequently and over a long time, provides an appliance-specific breakdown, is presented in a clear and appealing way, and uses computerized and interactive tools.
Abstract: Improved feedback on electricity consumption may provide a tool for customers to better control their consumption and ultimately save energy. This paper asks which kind of feedback is most successful. For this purpose, a psychological model is presented that illustrates how and why feedback works. Relevant features of feedback are identified that may determine its effectiveness: frequency, duration, content, breakdown, medium and way of presentation, comparisons, and combination with other instruments. The paper continues with an analysis of international experience in order to find empirical evidence for which kinds of feedback work best. In spite of considerable data restraints and research gaps, there is some indication that the most successful feedback combines the following features: it is given frequently and over a long time, provides an appliance-specific breakdown, is presented in a clear and appealing way, and uses computerized and interactive tools.
1,369 citations
TL;DR: In this paper, the potential contribution of industrial energy-efficiency technologies and policies to reduce energy use and greenhouse gas emissions to 2030 is discussed, where the authors propose a framework to evaluate the potential of these technologies for mitigating greenhouse gas emission from industry.
Abstract: Industry contributes directly and indirectly (through consumed electricity) about 37% of the global greenhouse gas emissions, of which over 80% is from energy use. Total energy-related emissions, which were 9.9 GtCO2 in 2004, have grown by 65% since 1971. Even so, industry has almost continuously improved its energy efficiency over the past decades. In the near future, energy efficiency is potentially the most important and cost-effective means for mitigating greenhouse gas emissions from industry. This paper discusses the potential contribution of industrial energy-efficiency technologies and policies to reduce energy use and greenhouse gas emissions to 2030.
371 citations
TL;DR: Despite the need for increased industrial energy efficiency, studies indicate that cost-effective energy efficiency measures are not always implemented as discussed by the authors, which is explained by the existence of barri....
Abstract: Despite the need for increased industrial energy efficiency, studies indicate that cost-effective energy efficiency measures are not always implemented, which is explained by the existence of barri ...
313 citations
TL;DR: In this paper, the authors combine building energy simulations, local energy prices, local electricity emission factors, and local estimates of building density to characterize local, state average, and national average cooling energy savings, heating energy penalties, energy cost savings, and emission reductions per unit conditioned roof area.
Abstract: Cool roofs—roofs that stay cool in the sun by minimizing solar absorption and maximizing thermal emission—lessen the flow of heat from the roof into the building, reducing the need for space cooling energy in conditioned buildings. Cool roofs may also increase the need for heating energy in cold climates. For a commercial building, the decrease in annual cooling load is typically much greater than the increase in annual heating load. This study combines building energy simulations, local energy prices, local electricity emission factors, and local estimates of building density to characterize local, state average, and national average cooling energy savings, heating energy penalties, energy cost savings, and emission reductions per unit conditioned roof area. The annual heating and cooling energy uses of four commercial building prototypes—new office (1980+), old office (pre-1980), new retail (1980+), and old retail (pre-1980)—were simulated in 236 US cities. Substituting a weathered cool white roof (solar reflectance 0.55) for a weathered conventional gray roof (solar reflectance 0.20) yielded annually a cooling energy saving per unit conditioned roof area ranging from 3.30 kWh/m2 in Alaska to 7.69 kWh/m2 in Arizona (5.02 kWh/m2 nationwide); a heating energy penalty ranging from 0.003 therm/m2 in Hawaii to 0.14 therm/m2 in Wyoming (0.065 therm/m2 nationwide); and an energy cost saving ranging from Open image in new window0.126/m2 in West Virginia to Open image in new window1.14/m2 in Arizona (Open image in new window0.356/m2 nationwide). It also offered annually a CO2 reduction ranging from 1.07 kg/m2 in Alaska to 4.97 kg/m2 in Hawaii (3.02 kg/m2 nationwide); an NOx reduction ranging from 1.70 g/m2 in New York to 11.7 g/m2 in Hawaii (4.81 g/m2 nationwide); an SO2 reduction ranging from 1.79 g/m2 in California to 26.1 g/m2 in Alabama (12.4 g/m2 nationwide); and an Hg reduction ranging from 1.08 μg/m2 in Alaska to 105 μg/m2 in Alabama (61.2 μg/m2 nationwide). Retrofitting 80% of the 2.58 billion square meters of commercial building conditioned roof area in the USA would yield an annual cooling energy saving of 10.4 TWh; an annual heating energy penalty of 133 million therms; and an annual energy cost saving of Open image in new window735 million. It would also offer an annual CO2 reduction of 6.23 Mt, offsetting the annual CO2 emissions of 1.20 million typical cars or 25.4 typical peak power plants; an annual NOx reduction of 9.93 kt, offsetting the annual NOx emissions of 0.57 million cars or 65.7 peak power plants; an annual SO2 reduction of 25.6 kt, offsetting the annual SO2 emissions of 815 peak power plants; and an annual Hg reduction of 126 kg.
222 citations
TL;DR: In this article, the authors present results from a UK Open University project which surveyed consumers' reasons for adoption, and non-adoption, of energy efficiency measures and renewable energy systems and their experiences of using these technologies.
Abstract: This paper presents results from a UK Open University project which surveyed consumers’ reasons for adoption, and non-adoption, of energy efficiency measures and renewable energy systems—collectively called low- and zero-carbon technologies—and their experiences of using these technologies. Data were gathered during 2006 via an online questionnaire with nearly 400 responses, plus 111 in-depth telephone interviews. The respondents were mainly environmentally concerned, ‘green’ consumers and therefore these are purposive rather than representative surveys. The paper outlines results for four energy efficiency measures (loft insulation, condensing boilers, heating controls and energy-efficient lighting) and four household renewables (solar thermal water heating, solar photovoltaics, micro-wind turbines and wood-burning stoves). These green consumers typically adopted these technologies to save energy, money and/or the environment, which many considered they achieved despite rebound effects. The reasons for considering but rejecting these technologies include the familiar price barriers, but there were also other obstacles that varied according to the technology concerned. Nearly a third of the surveyed consumers had adopted household renewables, over half of which were wood stoves and 10% solar thermal water heating systems. Most adopters of renewables had previously installed several energy efficiency measures, but only a fifth of those who seriously considered renewables actually installed a system. This suggests sell energy efficiency first, then renewables. There seems to be considerable interest in household renewables in the UK, especially among older, middle-class green consumers, but so far only relatively few pioneers have managed to overcome the barriers to adoption.
216 citations