scispace - formally typeset
Search or ask a question
JournalISSN: 0887-0624

Energy & Fuels 

American Chemical Society
About: Energy & Fuels is an academic journal published by American Chemical Society. The journal publishes majorly in the area(s): Coal & Combustion. It has an ISSN identifier of 0887-0624. Over the lifetime, 20498 publications have been published receiving 688799 citations. The journal is also known as: Energy and fuels.
Topics: Coal, Combustion, Catalysis, Asphaltene, Pyrolysis


Papers
More filters
Journal ArticleDOI
TL;DR: A review of the recent developments in the wood pyrolysis and reports the characteristics of the resulting bio-oils, which are the main products of fast wood pyrotechnics, can be found in this paper.
Abstract: Fast pyrolysis utilizes biomass to produce a product that is used both as an energy source and a feedstock for chemical production. Considerable efforts have been made to convert wood biomass to liquid fuels and chemicals since the oil crisis in mid-1970s. This review focuses on the recent developments in the wood pyrolysis and reports the characteristics of the resulting bio-oils, which are the main products of fast wood pyrolysis. Virtually any form of biomass can be considered for fast pyrolysis. Most work has been performed on wood, because of its consistency and comparability between tests. However, nearly 100 types of biomass have been tested, ranging from agricultural wastes such as straw, olive pits, and nut shells to energy crops such as miscanthus and sorghum. Forestry wastes such as bark and thinnings and other solid wastes, including sewage sludge and leather wastes, have also been studied. In this review, the main (although not exclusive) emphasis has been given to wood. The literature on woo...

4,988 citations

Journal ArticleDOI
TL;DR: In this article, the authors reviewed scientific and technical developments in applications of bio-oil to date and concluded with some suggestions for research and strategic developments, and concluded that biooil is a renewable liquid fuel and can also be used for production of chemicals.
Abstract: Fast pyrolysis of biomass is one of the most recent renewable energy processes to have been introduced. It offers the advantages of a liquid product, bio-oil that can be readily stored and transported. Bio-oil is a renewable liquid fuel and can also be used for production of chemicals. Fast pyrolysis has now achieved a commercial success for production of chemicals and is being actively developed for producing liquid fuels. Bio-oils have been successfully tested in engines, turbines, and boilers, and have been upgraded to high-quality hydrocarbon fuels, although at a presently unacceptable energetic and financial cost. The paper critically reviews scientific and technical developments in applications of bio-oil to date and concludes with some suggestions for research and strategic developments.

2,672 citations

Journal ArticleDOI
TL;DR: A review of the developments in the field of catalytic hydroprocessing of biomass-derived liquefaction conversion products (bio-oil) over the past 25 years is presented in this paper.
Abstract: This paper is a review of the developments in the field of catalytic hydroprocessing of biomass-derived liquefaction conversion products (bio-oil) over the past 25 years. Work has been underway, primarily in the U.S. and Europe, in catalytic hydrotreating and hydrocracking of bio-oil in both batch-fed and continuous-flow bench-scale reactor systems. A range of heterogeneous catalyst materials have been tested, including conventional sulfided catalysts developed for petroleum hydroprocessing and precious metal catalysts. The important processing differences have been identified, which required adjustments to conventional hydroprocessing as applied to petroleum feedstocks. This application of hydroprocessing is seen as an extension of petroleum processing and system requirements are not far outside the range of conventional hydroprocessing. The technology is still under development but can play a significant role in supplementing increasingly expensive petroleum.

1,298 citations

Journal ArticleDOI
TL;DR: Biodiesel is a domestic and renewable alternative with the potential to replace some of the petrodiesel market as mentioned in this paper, which is obtained from vegetable oils, animal fats, or other sources with a significant content of triacylglycerols by means of a transesterification reaction.
Abstract: Biodiesel is a domestic and renewable alternative with the potential to replace some of the petrodiesel market. It is obtained from vegetable oils, animal fats, or other sources with a significant content of triacylglycerols by means of a transesterification reaction. The fatty acid profile of biodiesel thus corresponds to that of the parent oil or fat and is a major factor influencing fuel properties. Besides being renewable and of domestic origin, advantages of biodiesel compared to petrodiesel include biodegradability, higher flash point, reduction of most regulated exhaust emissions, miscibility in all ratios with petrodiesel, compatibility with the existing fuel distribution infrastructure, and inherent lubricity. Technical problems with biodiesel include oxidative stability, cold flow, and increased NOx exhaust emissions. Solutions to one of these problems often entail increasing the problematic behavior of another property and have included the use of additives or modifying the fatty acid compositi...

1,258 citations

Journal ArticleDOI
TL;DR: In this paper, the current state of the steam reforming process of ethanol, examines different catalysts, and makes a comparative analysis, and concludes that Co/ZnO, ZnO+Al2O3, Co/CeO2, Ni/La 2O3−Ni/La2O2−Al2E3, and Ni/E3−E2E2−E3 performed the best in terms of steam reforming of ethanol.
Abstract: Hydrogen is considered to be the most viable energy carrier for the future. Producing hydrogen from ethanol steam reforming would not only be environmentally friendly but also would open new opportunities for utilization of renewable resources, which are globally available. This paper reviews the current state of the steam reforming process of ethanol, examines different catalysts, and, finally, makes a comparative analysis. Different catalysts have been used for the steam reforming of ethanol. Depending on the type of catalysts, reaction conditions, and the catalyst preparation method, ethanol conversion and hydrogen production vary greatly. It was observed that Co/ZnO, ZnO, Rh/Al2O3, Rh/CeO2, and Ni/La2O3−Al2O3 performed the best, in regard to the steam reforming of ethanol. Currently, hydrogen production from ethanol steam reforming is still in the research and development stage.

1,255 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
2023702
20221,048
20211,584
20201,520
20191,248
20181,288