scispace - formally typeset
Search or ask a question
JournalISSN: 2215-0986

Engineering Science and Technology, an International Journal 

Elsevier BV
About: Engineering Science and Technology, an International Journal is an academic journal published by Elsevier BV. The journal publishes majorly in the area(s): Computer science & Materials science. It has an ISSN identifier of 2215-0986. It is also open access. Over the lifetime, 1212 publications have been published receiving 30220 citations. The journal is also known as: JESTECH & Engineering science and technology.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
TL;DR: The Industry 4.0 environment is scanned on this paper, describing the so-called enabling technologies and systems over the manufacturing environment.
Abstract: Industry 4.0 leads to the digitalization era. Everything is digital; business models, environments, production systems, machines, operators, products and services. It’s all interconnected inside the digital scene with the corresponding virtual representation. The physical flows will be mapped on digital platforms in a continuous manner. On a higher level of automation, many systems and software are enabling factory communications with the latest trends of information and communication technologies leading to the state-of-the-art factory, not only inside but also outside factory, achieving all elements of the value chain on a real-time engagement. Everything is smart. This disruptive impact on manufacturing companies will allow the smart manufacturing ecosystem paradigm. Industry 4.0 is the turning point to the end of the conventional centralized applications. The Industry 4.0 environment is scanned on this paper, describing the so-called enabling technologies and systems over the manufacturing environment.

586 citations

Journal ArticleDOI
TL;DR: In this article, the authors comprehensively reviewed the BIPV and BIPVT applications in terms of energy generation amount, nominal power, efficiency, type and performance assessment approaches.
Abstract: Renewable and sustainable energy generation technologies have been in the forefront due to concerns related to environment, energy independence, and high fossil fuel costs. As part of the EU’s 2020 targets, it is aimed to reach a 20% share of renewable energy sources in final energy consumption by 2020, according to EU’s renewable energy directive. Within this context national renewable energy targets were set for each EU country ranging between 10% (for Malta) and 49% (for Sweden). A large share of renewable energy research has been devoted to photovoltaic systems which harness the solar energy to generate electrical power. As an application of the PV technology, building integrated photovoltaic (BIPV) systems have attracted an increasing interest in the past decade, and have been shown as a feasible renewable power generation technology to help buildings partially meet their load. In addition to BIPV, building integrated photovoltaic/thermal systems (BIPV/T) provide a very good potential for integration into the building to supply both electrical and thermal loads. In this study, we comprehensively reviewed the BIPV and BIPVT applications in terms of energy generation amount, nominal power, efficiency, type and performance assessment approaches. The two fundamental research areas in the BIPV and BIPVT systems are observed to be i) improvements on system efficiency by ventilation, hence obtaining a higher yield with lowering the panel temperature ii) new thin film technologies that are well suited for building integration. Several approaches to achieve these objectives are reported in the literature as presented in this paper. It is expected that this comprehensive review will be beneficial to researchers and practitioners involved or interested in the design, analysis, simulation, and performance evaluation, financial development and incentives, new methods and trends of BIPV systems.

283 citations

Journal ArticleDOI
TL;DR: In this article, a bibliographic review is presented to demonstrate the tribological behavior of natural fiber reinforced composites and find a knowledge about their usability for various applications that tribology plays a dominant role.
Abstract: Natural fiber reinforced polymer composites have emerged as a potential environmentally friendly and cost-effective alternative to synthetic fiber reinforced composites. Therefore, in the past decade, a number of major industries, such as the automotive, construction and packaging industries, have shown a considerable interest in the progress of new natural fiber reinforced composite materials. The availability of natural fibers and the ease of manufacturing have tempted researchers to study their feasibility of their application as reinforcement and the extent to which they satisfy the required specifications in tribological applications. However, less information concerning the tribological performance of natural fiber reinforced composite material is available in the literature. Hence, the aim of this bibliographic review is to demonstrate the tribological behavior of natural fiber reinforced composites and find a knowledge about their usability for various applications that tribology plays a dominant role. This review presents the reported work on natural fiber reinforced composites with special reference to the type of fibers, matrix polymers, treatment of fibers and test parameters. The results show that composites reinforced with natural fibers have an improvement in tribological properties and their properties are comparable with conventional fibers. In addition, fiber treatment and fiber orientation are two important factors can affect tribological properties where treated fibers and normal oriented fibers exhibit better friction and wear behavior. This review is trying to evaluate the effect of test parameter including normal load and sliding speed on tribological properties, and the results vary based on type of reinforcement. Generally, due to their positive economic and environmental aspects, as well as their good tribological properties, natural composites are showing a good potential for employing in several applications.

257 citations

Journal ArticleDOI
TL;DR: In this article, performance and exhaust emissions from spark-ignition engine fueled with ethanol-methanol-gasoline blends were discussed. But the results showed that when the vehicle was fueled with EHG, the concentrations of CO and UHC (unburnt hydrocarbons) emissions were significantly decreased, compared to the neat gasoline.
Abstract: This study discusses performance and exhaust emissions from spark-ignition engine fueled with ethanol–methanol–gasoline blends. The test results obtained with the use of low content rates of ethanol–methanol blends (3–10 vol.%) in gasoline were compared to ethanol–gasoline blends, methanol–gasoline blends and pure gasoline test results. Combustion and emission characteristics of ethanol, methanol and gasoline and their blends were evaluated. Results showed that when the vehicle was fueled with ethanol–methanol–gasoline blends, the concentrations of CO and UHC (unburnt hydrocarbons) emissions were significantly decreased, compared to the neat gasoline. Methanol–gasoline blends presented the lowest emissions of CO and UHC among all test fuels. Ethanol–gasoline blends showed a moderate emission level between the neat gasoline and ethanol–methanol–gasoline blends, e.g., ethanol–gasoline blends presented lower CO and UHC emissions than those of the neat gasoline but higher emissions than those of the ethanol–methanol–gasoline blends. In addition, the CO and UHC decreased and CO 2 increased when ethanol and/or methanol contents increased in the fuel blends. Furthermore, the effects of blended fuels on engine performance were investigated and results showed that methanol–gasoline blends presents the highest volumetric efficiency and torque; ethanol–gasoline blends provides the highest brake power, while ethanol–methanol–gasoline blends showed a moderate level of volumetric efficiency, torque and brake power between both methanol–gasoline and ethanol–gasoline blends; gasoline, on the other hand, showed the lowest volumetric efficiency, torque and brake power among all test fuels.

204 citations

Journal ArticleDOI
TL;DR: The current available wireless power transfer technology for EVs includes wireless transformer structures with a variety of ferrite shapes, which have been researched, and will help to reduce green-house gas emissions and increasing petrol prices.
Abstract: Electrified transportation will help to reduce green-house gas emissions and increasing petrol prices. Electrified transportation demands that a wide variety of charging networks be set up, in a user-friendly environment, to encourage adoption. Wireless electric vehicle charging systems (WEVCS) can be a potential alternative technology to charge the electric vehicles (EVs) without any plug-in problems. This paper outlines the current available wireless power transfer technology for EVs. In addition, it also includes wireless transformer structures with a variety of ferrite shapes, which have been researched. WEVCS are associated with health and safety issues, which have been discussed with the current development in international standards. Two major applications, static and dynamic WEVCS, are explained, and up-to-date progress with features from research laboratories, universities, and industries are recorded. Moreover, future upcoming concepts-based WEVCS, such as “vehicle-to-grid (V2G)” and “in-wheel” wireless charging systems (WCS) are reviewed and examined, with qualitative comparisons with other existing technology.

189 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
202379
2022166
2021226
2020141
2019111
2018121