scispace - formally typeset
Search or ask a question

Showing papers in "Environmental Fluid Mechanics in 2017"


Journal ArticleDOI
TL;DR: The Lagrangian coherent structures (LCS) uncover the hidden organizing structures that underlie material transport by fluid flows as discussed by the authors, and they have been applied to ocean surface transport scenarios, such as oil spills, debris fields and biological material.
Abstract: Windage, the additional direct, wind-induced drift of material floating at the free surface of the ocean, plays a crucial role in the surface transport of biological and contaminant material. Lagrangian coherent structures (LCS) uncover the hidden organizing structures that underlie material transport by fluid flows. Despite numerous studies in which LCS ideas have been applied to ocean surface transport scenarios, such as oil spills, debris fields and biological material, there has been no consideration of the influence of windage on LCS. Here we investigate and demonstrate the impact of windage on ocean surface LCS via a case study of the ocean surrounding the UNESCO World Heritage Ningaloo coral reef coast in Western Australia. We demonstrate that the inclusion of windage is necessary when applying LCS to the study of surface transport of any floating material in the ocean.

51 citations


Journal ArticleDOI
TL;DR: In this article, an analytical solution of the air diffusion equation is proposed and the results compare well with new experimental data, showing that flow bulking spans over approximately 3-4 step cavities downstream of the inception point of free-surface aeration on a stepped chute.
Abstract: In high-velocity chute flows, free-surface aeration is often observed. The phenomenon is called self-aeration or white waters. When the turbulent shear stresses next to the free-surface are large enough, air bubbles are entrained throughout the entire air–water column. A rapidly-varied flow region is observed immediately downstream of the inception point of free-surface aeration. An analytical solution of the air diffusion equation is proposed and the results compare well with new experimental data. Both experiments and theory indicate that the flow bulking spans over approximately 3–4 step cavities downstream of the inception point of free-surface aeration on a stepped chute. Further downstream the void fraction distributions follow closely earlier solutions of the air diffusion equation. The application of the diffusion equation solution to prototype and laboratory data shows air bubble diffusivities typically larger than the momentum transfer coefficient. The result highlights however a marked decrease in the ratio of air bubble diffusivity to eddy viscosity with increasing Reynolds number. The finding might indicate some limitation of laboratory investigations of air bubble diffusion process in self-aerated flows and of their extrapolation to full-scale prototype applications.

35 citations


Journal ArticleDOI
TL;DR: In this paper, a review of the different analogies proposed in the literature and to discuss current practices is presented, and a discussion is developed an aimed at improving the use of possible breaking proxies.
Abstract: The flow structure in the aerated region of the roller generated by breaking waves remains a great challenge to study, with large quantities of entrained air and turbulence interactions making it very difficult to investigate in details. A number of analogies were proposed between breaking waves in deep or shallow water, tidal bores and hydraulic jumps. Many numerical models used to simulate waves in the surf zone do not implicitly simulate the breaking process of the waves, but are required to parameterise the wave-breaking effects, thus relying on experimental data. Analogies are also assumed to quantify the roller dynamics and the energy dissipation. The scope of this paper is to review the different analogies proposed in the literature and to discuss current practices. A thorough survey is offered and a discussion is developed an aimed at improving the use of possible breaking proxies. The most recent data are revisited and scrutinised for the use of most advanced numerical models to educe the surf zone hydrodynamics. In particular, the roller dynamics and geometrical characteristics are discussed. An open discussion is proposed to explore the actual practices and propose perspectives based on the most appropriate analogy, namely the tidal bore.

35 citations


Journal ArticleDOI
TL;DR: This paper presents and justifies the choice of the diagnostic flow and Lagrangian dispersion models in PMSS and documents in detail the development of the parallel algorithms used to reduce the computational time of the models.
Abstract: Noxious atmospheric releases may originate from both accidents and malicious activities. They are a major concern for public authorities or first responders who may wish to have the most accurate situational awareness. Nonetheless, it is difficult to reliably and accurately model the flow, transport, and dispersion processes in large complex built-up environments in a limited amount of time and resources compatible with operational needs. The parallel version of Micro-SWIFT-SPRAY (PMSS) is an attempt to propose a physically sound and fast response modelling system applicable to complicated industrial or urban sites in case of a hazardous release. This paper presents and justifies the choice of the diagnostic flow and Lagrangian dispersion models in PMSS. Then, it documents in detail the development of the parallel algorithms used to reduce the computational time of the models. Finally, the paper emphasizes the preliminary model validation and parallel performances of PMSS based on data from both wind tunnel (Evaluation of Model Uncertainty) and in-field reduced-scale (Mock Urban Setting Test) and real-scale (Oklahoma City) experimental campaigns.

34 citations


Journal ArticleDOI
TL;DR: An in-depth, multi-level validation concept is proposed that is specifically targeted at the time-dependency of mechanically induced shear-layer turbulence and supports conclusions about the simulation quality and the model’s fitness for its intended range of application through a deeper understanding of the unsteady structure of the flow.
Abstract: Essential prerequisites for a thorough model evaluation are the availability of problem-specific, quality-controlled reference data and the use of model-specific comparison methods. The work presented here is motivated by the striking lack of proportion between the increasing use of large-eddy simulation (LES) as a standard technique in micro-meteorology and wind engineering and the level of scrutiny that is commonly applied to assess the quality of results obtained. We propose and apply an in-depth, multi-level validation concept that is specifically targeted at the time-dependency of mechanically induced shear-layer turbulence. Near-surface isothermal turbulent flow in a densely built-up city serves as the test scenario for the approach. High-resolution LES data are evaluated based on a comprehensive database of boundary-layer wind-tunnel measurements. From an exploratory data analysis of mean flow and turbulence statistics, a high level of agreement between simulation and experiment is apparent. Inspecting frequency distributions of the underlying instantaneous data proves to be necessary for a more rigorous assessment of the overall prediction quality. From velocity histograms local accuracy limitations due to a comparatively coarse building representation as well as particular strengths of the model to capture complex urban flow features with sufficient accuracy are readily determined. However, the analysis shows that further crucial information about the physical validity of the LES needs to be obtained through the comparison of eddy statistics, which is focused on in part II. Compared with methods that rely on single figures of merit, the multi-level validation strategy presented here supports conclusions about the simulation quality and the model’s fitness for its intended range of application through a deeper understanding of the unsteady structure of the flow.

34 citations


Journal ArticleDOI
TL;DR: In this paper, the authors carried out direct numerical simulations of the flow in a rectangular flat-bed channel, at a Reynolds number equal to Re ǫ = 3632, coupled with the discrete element method to simulate the dynamics of spherical particles near the bed.
Abstract: At the smallest scales of sediment transport in rivers, the coherent structures of the turbulent boundary layer constitute the fundamental mechanisms of bedload transport, locally increasing the instantaneous hydrodynamic forces acting on sediment particles, and mobilizing them downstream. Near the critical threshold for initiating sediment motion, the interactions of the particles with these unsteady coherent structures and with other sediment grains, produce localized transport events with brief episodes of collective motion occurring due to the near-bed velocity fluctuations. Simulations of these flows pose a significant challenge for numerical models aimed at capturing the physical processes and complex non-linear interactions that generate highly intermittent and self-similar bedload transport fluxes. In this investigation we carry out direct numerical simulations of the flow in a rectangular flat-bed channel, at a Reynolds number equal to Re = 3632, coupled with the discrete element method to simulate the dynamics of spherical particles near the bed. We perform two-way coupled Lagrangian simulations of 48,510 sediment particles, with 4851 fixed particles to account for bed roughness. Our simulations consider a total of eight different values of the non-dimensional Shields parameter to study the evolution of transport statistics. From the trajectory and velocity of each sediment particle, we compute the changes in the probability distribution functions of velocities, bed activity, and jump lengths as the Shields number increases. For the lower shear stresses, the intermittency of the global bedload transport flux is described by computing the singularity or multifr actal spectrum of transport, which also characterizes the widespread range of transport event magnitudes. These findings can help to identify the mechanisms of sediment transport at the particle scale. The statistical analysis can also be used as an ingredient to develop larger, upscaled models for predicting mean transport rates, considering the variability of entrainment and deposition that characterizes the transport near the threshold of motion.

32 citations


Journal ArticleDOI
TL;DR: In this article, the propagation features of the dry-front are investigated using an analytical boundary-layer type model (Whitham/Dressler/Chanson model) constructed matching an (outer) inviscid dynamic wave to an (inner) viscous diffusive wave.
Abstract: Dam-break flood waves are associated with major environmental disasters provoked by the sudden release of water stored in reservoirs. Ritter found in 1892 an analytical solution to the wave structure of an ideal fluid released during an instantaneous dam failure, propagating over initially dry horizontal terrain. This solution, though ideal, hence frictionless, is widely used to test numerical solutions of the Shallow Water Equations (SWE), and as educational tool in courses of fluid mechanics, given that it is a peculiar case of the Riemann problem. However, the real wave structure observed experimentally differs in a major portion of the wave profile, including the positive and negative fronts. Given the importance of an accurate prediction of the dam break wave, the positive and negative wave portions originating from the breaking of a dam with initially dry land on the tailwater reach are revisited in this work. First, the propagation features of the dry-front are investigated using an analytical boundary-layer type model (Whitham/Dressler/Chanson model) constructed matching an (outer) inviscid dynamic wave to an (inner) viscous diffusive wave. The analytical solution is evaluated using an accurate numerical solution of the SWE produced using the MUSCL-Hancock finite-volume method, which is tested independently obtaining the solution based on the discontinuous Galerkin finite-element method. The propagation features of the negative wave are poorly reproduced by the SWE during the initial stages of dam break flows, and, thus, are then investigated using the Serre–Green–Naghdi equations for weakly-dispersive fully non-linear water waves, which are solved using a finite volume-finite difference scheme.

30 citations


Journal ArticleDOI
TL;DR: In this article, a series of characteristic turbulent scales for hydraulic jumps, covering the length and time scales of turbulent flow structures in bubbly flow, on free surface and at the impingement point, were investigated.
Abstract: A hydraulic jump is a turbulent shear flow with a free-surface roller. The turbulent flow pattern is characterised by the development of instantaneous three-dimensional turbulent structures throughout the air–water column up to the free surface. The length and time scales of the turbulent structures are key information to describe the turbulent processes, which is of significant importance for the improvement of numerical models and physical measurement techniques. However, few physical data are available so far due to the complexity of the measurement. This paper presents an investigation of a series of characteristic turbulent scales for hydraulic jumps, covering the length and time scales of turbulent flow structures in bubbly flow, on free surface and at the impingement point. The bubbly-flow turbulent scales are obtained for Fr = 7.5 with 3.4 × 104 < Re < 1.4 × 105 in both longitudinal and transverse directions, and are compared with the free-surface scales. The results highlight three-dimensional flow patterns with anisotropic turbulence field. The turbulent structures are observed with different length and time scales respectively in the shear flow region and free-surface recirculation region. The bubbly structures next to the roller surface and the free-surface fluctuation structures show comparable length and time scales, both larger than the scales of vortical structures in the shear flow and smaller than the scales of impingement perimeter at the jump toe. A decomposition of physical signals indicates that the large turbulent scales are related to the unsteady motion of the flow in the upper part of the roller, while the high-frequency velocity turbulence dominates in the lower part of the roller. Scale effects cannot be ignored for Reynolds number smaller than 4 × 104, mainly linked to the formation of large eddies in the shear layer. The present study provides a comprehensive assessment of turbulent scales in hydraulic jump, including the analyses of first data set of longitudinal bubbly-flow integral scales and transverse jump toe perimeter integral scales.

28 citations


Journal ArticleDOI
TL;DR: In this article, the authors describe the phenomenon of temporal scour depth variation at bridge piers and deal with the methods for its estimation, and check the accuracy of six temporal scours depth equations.
Abstract: Scour is defined as the processes of removal of sediment particles from water stream bed by the erosive action of activated water, and also carries sediment away from the hydraulic structures. Scour is the main cause of pier failure. Numerous equations are available for estimating temporal and equilibrium scour depth. The present study describes the phenomenon of temporal scour depth variation at bridge piers and deals with the methods for its estimation. The accuracy of six temporal scour depth equations are also checked in this study. After graphical and statistical analysis, it was found that the relationship proposed by Oliveto and Hager (J Hydraul Eng (ASCE) 128(9):811–520, 2002) predicts temporal scour depth better than other equations. Three equations of equilibrium time of scour are also used for computing equilibrium time. Equilibrium time equation proposed by Choi and Choi (Water Environ J 30(1–2):14–21, 2016) gives better agreements with observed values.

28 citations


Journal ArticleDOI
TL;DR: In this article, the measured data on the drag coefficient for rigid vegetation in subcritical open-channel flow reported in previous studies are collected and preprocessed for multi-parameter analysis.
Abstract: Drag coefficient has been commonly used as a quantifying parameter to represent the vegetative drag, ie, resistance to the flow by vegetation In this study, the measured data on the drag coefficient for rigid vegetation in subcritical open-channel flow reported in previous studies are collected and preprocessed for multi-parameter analysis The effect of Froude number (Fr) on the drag coefficient for rigid vegetation in subcritical flow cannot be ignored, especially when $$Fr < 012$$ The drag coefficient is observed to exponentially decrease with the stem Reynolds number (R d ) and logarithmically decreased with the vegetation density (λ) when $$0012 < \lambda < 012$$ The relative submergence (h * ) has a significant effect on the drag coefficient, and a positive logarithmic relationship is summarized A simplified three-stage empirical formula is obtained based on the divisions of Fr Laboratory tests (with $$Fr < 002$$ ) prove that the present empirical model has higher precision compared with existing models

27 citations


Journal ArticleDOI
TL;DR: In this paper, the authors investigated the appearance of an unclassified alternating skimming flow regime in a 0.5m wide stepped spillway which does not fit on these earlier definitions, and which did not occur in a 1.3m wide spillway.
Abstract: The study of stepped spillways in laboratory scales has been essentially focused on two separated sub-regimes within skimming flow. In this paper we investigate the appearance of an unclassified alternating skimming flow regime in a 0.5 m wide stepped spillway which does not fit on these earlier definitions, and which does not occur in a 0.3 m wide spillway. Our aim is to explain the genesis of this unclassified flow which is visualised in the physical stepped spillway, by using 3D numerical modelling. Flow depths and velocities are measured using an ultrasonic sensor and Bubble Image Velocimetry in the wider flume (0.5 m). The numerical model is validated with the experimental data from the 0.5 m wide spillway. After validation, the channel width of the same numerical model is reduced to 0.3 m wide spillway in order to characterise (compare) the case without (with) alternating skimming flow. Both cases are solved using Reynolds-Averaged Navier–Stokes equations together with the Volume-of-Fluid technique and SST k- $$\omega$$ turbulence model. The experimental results reveal that the alternating skimming flow regime is characterised by an evident seesaw pattern of flow properties over consecutive steps. In turn, the numerical modelling clarified that this seesaw pattern is due to the presence of a complex system of cross waves along the spillway. These cross waves are also responsible for a mass and momentum exchange in the transversal direction and for the formation of the alternating skimming flow in the spillway.

Journal ArticleDOI
TL;DR: In this article, a free surface piercing cylinder with Froude number F < 0.5 and Reynolds number around Re = 50,000 was investigated and two URANS turbulence models were tested, the k-w SST and the RNG k-e models, and then compared with the corresponding experimental results.
Abstract: This paper investigates flows around a free surface piercing cylinder with Froude number F<0.5 and Reynolds number around Re = 50,000. The aim of this work is to gain a better understanding of the flow behaviour in environmental systems such as fishways. The advances are based upon experimental and numerical results. Several flow discharges and slopes are tested to obtain both subcritical and supercritical flows. The drag force exerted on the cylinder is measured with the help of a torque gauge while the velocity field is obtained using particle velocimetry. For the numerical part, two URANS turbulence models are tested, the k-w SST and the RNG k-e models using the OpenFOAM software suite for subcritical cases, and then compared with the corresponding experimental results. With fishways applications in mind, the changes in drag coefficient Cd versus Froude number and water depth are studied and experimental correlations proposed. We conclude that the most suitable URANS turbulence model for reproducing this kind of flow is the k-w SST model.

Journal ArticleDOI
TL;DR: In this paper, the minimum shear stress or velocity required to initiate the sediment motion of sediment particles is determined in the rigid boundary drainage system design using laboratory experiments conducted in trapezoidal, rectangular, circular, U-shape and V-bottom cross-section smooth channels using four different size sands.
Abstract: Incipient motion of sediment is one of the main aspects of the sedimentation process. Determination of the minimum shear stress or velocity required to initiate the motion of sediment particles is a crucial task in the rigid boundary drainage system design. This study investigates incipient motion through laboratory experiments conducted in trapezoidal, rectangular, circular, U-shape and V-bottom cross-section smooth channels using four different size-sands. Experimental data are analyzed using the shear stress and velocity approaches. Shields method is used in the shear stress approach while formulation proposed by Novak and Nalluri is used as the velocity approach. New relationships are proposed for computing shear stress and velocity required for incipient motion in each of the channels. Results are compared with the corresponding models available in the literature. Data collected in this study are found in an acceptable agreement with the existing models. Channel cross-section shape plays an important role in incipient motion of sediment. Among the channels, the rectangular and V-bottom channels require the lowest and the highest shear stress and velocity for the initiation of sediment motion, respectively.

Journal ArticleDOI
TL;DR: In this paper, a large eddy simulation (LES) of turbulent flow and scalar transport in a fully developed open-channel with submerged vegetation was presented, where an additional diffusivity was introduced within the canopy to account for the contribution of stem wakes to turbulent diffusion.
Abstract: Predicting flow and mass transport in vegetated regions has a broad range of applications in ecology and engineering practice. This paper presents large eddy simulation (LES) of turbulent flow and scalar transport within a fully developed open-channel with submerged vegetation. To properly represent the scalar transport, an additional diffusivity was introduced within the canopy to account for the contribution of stem wakes, which were not resolved by the LES, to turbulent diffusion. The LES produced good agreement with the velocity and concentration fields measured in a flume experiment. The simulation revealed a secondary flow distributed symmetrically about the channel centerline, which differed significantly from the circulation in a bare channel. The secondary circulation accelerated the vertical spread of the plume both within and above the canopy layer. Quadrant analysis was used to identify the form and shape of canopy-scale turbulent structures within and above the vegetation canopy. Within the canopy, sweep events contributed more to momentum transfer than ejection events, whereas the opposite occurred above the canopy. The coherent structures were similar to those observed in terrestrial canopies, but smaller in scale due to the constraint of the water surface.

Journal ArticleDOI
TL;DR: In this paper, an experimental work with a controlled main stream and a connected open-channel lateral cavity is presented to assess the processes responsible for mass exchange and quantify the exchange capacities.
Abstract: Lateral cavities are major storage zones in riverine environments for which the mass exchanges with the main stream strongly impact the characteristics of the habitat in these dead zones. An experimental work is presented here with a controlled main stream and a connected open-channel lateral cavity to assess the processes responsible for these exchanges and to quantify the exchange capacities. In a first step, the measurements of passive scalar transport allow us to identify the physical processes involved in the exchange of mass from the main stream and its spreading within the cavity. In a second step, the quantitative mass exchange coefficient, representative of the exchange capacity, is measured for 28 flow and cavity configurations. The sensibility analysis to the governing parameters proposed by the dimensional analysis then reveals that changing the geometric aspect ratio of the cavity does not affect the exchange coefficient while increasing the normalized water depth or decreasing the Reynolds number of the main stream tend to increase this coefficient. Indeed, these parameters modify both the growth rate of the mixing layer width at the interface and the amplitude of the alternating transverse velocity across the interface, thus affecting the exchange capacities from the main stream to the cavity.

Journal ArticleDOI
TL;DR: The results show that while both cases display canopy mixing layers, there are also clear differences in the shear layer characteristics and turbulent processes between the two, suggesting that the semi-rigid approximation may not provide a complete representation of flow–vegetation interactions.
Abstract: Vegetation is a characteristic feature of shallow aquatic flows such as rivers, lakes and coastal waters. Flow through and above aquatic vegetation canopies is commonly described using a canopy mixing layer analogy which provides a canonical framework for assessing key hydraulic characteristics such as velocity profiles, large-scale coherent turbulent structures and mixing and transport processes for solutes and sediments. This theory is well developed for the case of semi-rigid terrestrial vegetation and has more recently been applied to the case of aquatic vegetation. However, aquatic vegetation often displays key differences in morphology and biomechanics to terrestrial vegetation due to the different environment it inhabits. Here we investigate the effect of plant morphology and biomechanical properties on flow–vegetation interactions through the application of a coupled LES-biomechanical model. We present results from two simulations of aquatic vegetated flows: one assuming a semi-rigid canopy and the other a highly flexible canopy and provide a comparison of the associated flow regimes. Our results show that while both cases display canopy mixing layers, there are also clear differences in the shear layer characteristics and turbulent processes between the two, suggesting that the semi-rigid approximation may not provide a complete representation of flow–vegetation interactions.

Journal ArticleDOI
Zhaowei Liu1, Yongcan Chen1, Yongyan Wu1, Wenyong Wang, Ling Li1 
TL;DR: In this article, a modified RNG k-e turbulence model was used to determine the eddy viscosity of the exchange flow between open water and floating vegetation, which plays an important role in maintaining the ecological balance by transporting nutrient matter.
Abstract: The paper focuses on the numerical simulation of the exchange flow between open water and floating vegetation, which plays an important role in maintaining the ecological balance by transporting nutrient matter. The simulation was conducted using a new solver developed upon OpenFOAM. A modified RNG k-e turbulence model, which is expected to model both the high- and low-Reynolds number flows correctly, was used to determine the eddy viscosity. Several particular terms were added into the momentum equations and turbulence model equations to model the effects of vegetation and buoyancy. Among these terms, the term for the effect of vegetation in the e-equation was re-modelled. The model was validated by properly predicting the profiles of mean velocity and turbulent kinetic energy for flows through suspended canopies. The density flow between open and vegetated water was simulated with the same conditions as those of the experiment conducted by Zhang and Nepf. The predicted results agreed well with the experimental data and provided more detailed information of such exchange flow. The convection between the root layer and the layer beneath the roots, which was not observed in the experiment, was observed in the numerical simulation.

Journal ArticleDOI
TL;DR: In this article, an application-specific validation procedure for large-eddy simulation (LES) is proposed, focusing on the time dependent nature of mechanically induced shear-layer turbulence to derive information about strengths and limitations of the model.
Abstract: Time-dependent three-dimensional numerical simulations such as large-eddy simulation (LES) play an important role in fundamental research and practical applications in meteorology and wind engineering. Whether these simulations provide a sufficiently accurate picture of the time-dependent structure of the flow, however, is often not determined in enough detail. We propose an application-specific validation procedure for LES that focuses on the time dependent nature of mechanically induced shear-layer turbulence to derive information about strengths and limitations of the model. The validation procedure is tested for LES of turbulent flow in a complex city, for which reference data from wind-tunnel experiments are available. An initial comparison of mean flow statistics and frequency distributions was presented in part I. Part II focuses on comparing eddy statistics and flow structures. Analyses of integral time scales and auto-spectral energy densities show that the tested LES reproduces the temporal characteristics of energy-dominant and flux-carrying eddies accurately. Quadrant analysis of the vertical turbulent momentum flux reveals strong similarities between instantaneous ejection-sweep patterns in the LES and the laboratory flow, also showing comparable occurrence statistics of rare but strong flux events. A further comparison of wavelet-coefficient frequency distributions and associated high-order statistics reveals a strong agreement of location-dependent intermittency patterns induced by resolved eddies in the energy-production range. The validation concept enables wide-ranging conclusions to be drawn about the skill of turbulence-resolving simulations than the traditional approach of comparing only mean flow and turbulence statistics. Based on the accuracy levels determined, it can be stated that the tested LES is sufficiently accurate for its purpose of generating realistic urban wind fields that can be used to drive simpler dispersion models.

Journal ArticleDOI
TL;DR: In this paper, the St. Anthony Falls Laboratory Virtual StreamLab (VSL3D) code is employed to simulate the flow and sediment transport phenomena induced by interaction of flow, mobile bed, and in-stream structures in large rivers under prototype conditions.
Abstract: Bendway weirs are one of the most practical in–stream rock structures utilized to protect the outer bend of meandering streams and rivers from erosion. We present development of a simulation-based paradigm for effective design of bendway weir structures to enhance meandering stream bank stability and control lateral migration. To do so, we employ the St. Anthony Falls Laboratory Virtual StreamLab (VSL3D) code to elucidate the flow and sediment transport phenomena induced by interaction of flow, mobile bed, and in–stream structures in large rivers under prototype conditions. We carried out numerous numerical experiments to systematically simulate various arrangements of bendway weir in two river test-beds and gaining insights into the physical mechanisms via which such bendway weirs modify turbulent flow, sediment transport and scour processes. The so-gained physical insights are then taken into account to develop a set of practical physics-based design criteria for optimal placement of bendway weirs in large rivers.

Journal ArticleDOI
TL;DR: In this article, the effects of salt exclusion on the behavior of lakes with salinities up to 8 ǫg l−1 were investigated, and it was shown that salinity is released relatively uniformly and forms a layer of elevated salinity immediately below the ice, which supports doublediffusive salt-fingering.
Abstract: Laboratory experiments have been performed to investigate the effects of salt exclusion on the behaviour of lakes with salinities up to 8 g L−1. At these salinities the freezing temperature is less than the temperature of maximum density and, unlike sea-ice, a reverse temperature stratification forms beneath the ice that can support at least some of the excluded salt. Temperature time series at four depths showed that salt exclusion drives cascades of localised overturning, while the persistence of reverse temperature stratification indicated that mixing was not complete. While our array of temperature sensors had insufficient spatial resolution to provide full details of the flow, we hypothesize that: at salinities of 1 and 2 g L−1 salt is released relatively uniformly and forms a layer of elevated salinity immediately below the ice, which supports double-diffusive salt-fingering; and at salinities of 4 and 8 g L−1, salt plumes penetrate the reverse stratification. After the ice melted, a relatively fresh surface layer formed above a more saline layer, sufficient to suppress spring turnover. Our measurements compare favourably with field observations from lakes, and highlight the importance of salt exclusion on biogeochemical processes in lakes.

Journal ArticleDOI
TL;DR: In this article, a 3D radioactivity transport model coupled with multiscale circulation and multi-fractional sediment transport modules is presented, where the sediment transport module simulates the transport of a mixture of one cohesive sediment fraction and a number of fractions of non-cohesive sediments of different sizes and densities.
Abstract: A new 3D radioactivity transport model coupled with multiscale circulation and multi-fractional sediment transport modules is presented. The sediment transport module simulates the transport of a mixture of one cohesive sediment fraction and a number of fractions of non-cohesive sediments of different sizes and densities. The model of radionuclide transport describes the key transport and exchange processes in the system of water-suspended and bottom multi-fraction sediments. Two-step kinetics with two successive reversible fast and slow reactions is used in the model. A noticeable feature of the model is approximation of the sediment and contamination profiles in the bed by multiple well-mixed layers to describe the vertical migration of radioactivity within bottom sediments due to erosion/deposition, molecular diffusion and bioturbation. The model accurately reproduced a laboratory experiment on the uptake of radiocesium by lake sediments. An analytical solution describing mutual adjustment of the concentrations of radioactivity in the pore water and in the multi-fraction sediment showed that activity was redistributed between different fractions of sediments far slower than between water and the total concentration in the sediment. The extended one-layer model of bottom contamination of multi-fraction sediments was derived from a general model and compared with a multi-layer model. It was found, however, that the one-layer approximation was not capable of correctly predicting the inventory due to the fact that one-layer averaged concentration can essentially differ from the near-surface value in the multi-layer model. Radionuclide transport in channel with bottom depression was simulated to estimate the effects of erosion/deposition and the multi-fractionality of sediments on the transport process. It was shown that these factors affect the distribution of sediments by forming local maxima and minima of activity at the beginning and end of the depression, respectively, due to the redistribution of contaminated bottom sediments by flow. The developed model can also be used to simulate the transport of a wide class of toxic substances sorbed on sediments.

Journal ArticleDOI
TL;DR: In this article, three different modelling techniques to simulate the pollutant dispersion in the atmosphere at the microscale and in presence of obstacles are evaluated and compared, using RAMS6.0 and MicroSpray models respectively.
Abstract: Three different modelling techniques to simulate the pollutant dispersion in the atmosphere at the microscale and in presence of obstacles are evaluated and compared. The Eulerian and Lagrangian approaches are discussed, using RAMS6.0 and MicroSpray models respectively. Both prognostic and diagnostic modelling systems are considered for the meteorology as input to the Lagrangian model, their differences and performances are investigated. An experiment from the Mock Urban Setting Test field campaign observed dataset, measured within an idealized urban roughness, is used as reference for the comparison. A case in neutral conditions was chosen among the available ones. The predicted mean flow, turbulence and concentration fields are analysed on the basis of the observed data. The performances of the different modelling approaches are compared and their specific characteristics are addressed. Given the same flow and turbulence input fields, the quality of the Lagrangian particle model is found to be overall comparable to the full-Eulerian approach. The diagnostic approach for the meteorology shows a worse agreement with observations than the prognostic approach but still providing, in a much shorter simulation time, fields that are suitable and reliable for driving the dispersion model.

Journal ArticleDOI
TL;DR: In this article, the results of an experimental study characterizing thorough variation of turbulent hydrodynamics and flow distribution in emergent and sparsely vegetated open channel flow were reported.
Abstract: This present study reports the results of an experimental study characterizing thorough variation of turbulent hydrodynamics and flow distribution in emergent and sparsely vegetated open channel flow. An emergent and rigid sparse vegetation patch with regular spacing between stems along the flow and transverse directions was fixed in the central region of the cross-section of open channel. Experiments were conducted in subcritical flow conditions and velocity measurements were obtained with an acoustic Doppler Velocimetry system. Large variations of the turbulence intensities, Reynolds shear stress, turbulent kinetic energy and vortical motions are found in and around the vegetation patch. At any cross-section through the interior of the vegetation patch, streamwise velocity decreases with increase in streamwise length and the velocity profiles converge from the log-law to a linear profile with increasing slope. Time-averaged lateral and vertical velocities inside the vegetation patch increase with increasing streamwise distance and converge from negative values to positive values. Turbulence intensities interior of the sparse vegetation patch are more than those of without the vegetation patch. Similar to the trend of streamwise velocity profiles inside the vegetation, turbulence intensities and longitudinal-normal Reynolds shear stress profile decreases with streamwise direction. In the interior of the vegetation patch and downstream of the trailing edge, turbulent kinetic energy profiles are exhibiting irregular fluctuations and the maximum values are occurring in the outer layer. Analysis of flow distribution confirms sparse vegetation patch is inducing a serpentine flow pattern in its vicinity. At the leading edge, flow is rushing towards the right hand sidewall, and at the trailing edge, flow is turning to the left hand sidewall. In between the leading and trailing edges, the streamlines are following a zig-zag fashion at varied degree along the streamwise and lateral directions. Immediate upstream of the leading edge and in the interior of the vegetation patch, vortex motion is clearly visible and the vortices are stretched along the width of the channel with streamwise direction.

Journal ArticleDOI
TL;DR: In this article, wind tunnel measurements of the total drag force for aligned arrays of cubes exposed to two different boundary-layer flows at three flow velocities are discussed, and a new adjustment length scale is proposed for better parameterization of urban effects in dispersion models.
Abstract: Wind tunnel measurements of the total drag force for aligned arrays of cubes exposed to two different boundary-layer flows at three flow velocities are discussed. The drag force for eight different building packing densities λ p (from 0.028 to 1) is measured with a standard load cell generating a novel dataset. Different λ p are reproduced by increasing the number of buildings on the same lot area; this represents a real situation that an urban planner is faced with when a lot area of a given (fixed) size is allocated to the development of new built areas. It is assumed that the surrounding terrain is uniform and there is a transition from a given roughness (smooth) to a new roughness (rough). The approaching flow will adjust itself over the new surface within a distance that in general may be larger than the horizontal length covered by the array. We investigate the region where the flow adjustment occurs. The wide range of packing densities allowed us to analyse in detail the evolution of the drag force. The drag force increases with increasing packing densities until it reaches a maximum at an intermediate packing density (λ p = 0.25 in our case) followed by a slight decrease at larger packing densities. The value of the drag force depends on the flow adjustment along the array which is evaluated by introducing the parameter “drag area” to retrieve information about the drag distribution at different λ p . Results clearly suggest a change of the distribution of the drag force, which is found to be relatively uniform at low packing densities, while most of the force acts on first rows of the arrays at large packing densities. The drag area constitutes the basis for the formulation of a new adjustment length scale defined as the ratio between the volume of the air within the array and the drag area. The proposed adjustment length scale automatically takes into account the change in drag distribution along the array for a better parameterization of urban effects in dispersion models.

Journal ArticleDOI
TL;DR: In this article, a solid block landslide was controlled using a mechanical system in a series of physical experiments, and laser-induced fluorescence measurements resolved both spatial and temporal variations in the free surface elevation.
Abstract: This paper presents a study of the waves generated by a solid block landslide moving along a horizontal boundary. The landslide was controlled using a mechanical system in a series of physical experiments, and laser-induced fluorescence measurements resolved both spatial and temporal variations in the free surface elevation. During its constant-velocity motion, the landslide transferred energy into ‘trapped’ offshore-propagating waves within a narrow frequency band. The wave trapping is demonstrated by investigating the wave dispersion characteristics using a two-dimensional Fourier Transform. The first of the trailing waves broke at Froude numbers greater than or equal to 0.625. The parametric dependence of the largest-amplitude waves and the potential energy within the wave field are discussed. The experimental results were compared to the predictions of an incompressible Navier–Stokes solver with and without turbulence models. The numerical model under-predicted the measured wave amplitudes, although it accurately predicted the measured wave phasing. The turbulent model more accurately predicted the shapes of the trailing waves. Both experimental and numerical results confirmed that investigations into wave generation by submerged objects moving at constant velocity should also consider the initial acceleration of the object, as this affects the overall evolution of the wave field. The applicability of the horizontal-boundary results to more realistic field scenarios is discussed.

Journal ArticleDOI
TL;DR: In this paper, two modeling approaches are presented to reproduce the advection and dispersion of the dye tracer (and piscicide), a one-dimensional analytical solution and a three-dimensional numerical model.
Abstract: In December 2009, during a piscicide treatment targeting the invasive Asian carp in the Chicago Sanitary and Ship Canal, Rhodamine WT dye was released to track and document the transport and dispersion of the piscicide. In this study, two modeling approaches are presented to reproduce the advection and dispersion of the dye tracer (and piscicide), a one-dimensional analytical solution and a three-dimensional numerical model. The two approaches were compared with field measurements of concentration and their applicability is discussed. Acoustic Doppler current profiler measurements were used to estimate the longitudinal dispersion coefficients at ten cross sections, which were taken as reference for calibrating the longitudinal dispersion coefficient in the one-dimensional analytical solution. While the analytical solution is fast, relatively simple, and can fairly accurately predict the core of the observed concentration time series at points downstream, it does not capture the tail of the breakthrough curves. These tails are well reproduced by the three-dimensional model, because it accounts for the effects of dead zones and a power plant which withdraws nearly 80 % of the water from the canal for cooling purposes before returning it back to the canal.

Journal ArticleDOI
TL;DR: In this paper, a scale-invariant analysis of the dimensionless governing equations of turbidity currents is presented to investigate the scale effect associated with the scaling problem associated with turbidity current modeling.
Abstract: The scaling problem associated with the modeling of turbidity currents has been recognized but is yet to be explored systematically This paper presents an analysis of the dimensionless governing equations of turbidity currents to investigate the scale effect Three types of flow conditions are considered: (i) conservative density current; (ii) purely depositional turbidity current; and (iii) mixed erosional/depositional turbidity current Two controlling dimensionless numbers, the Froude number and the Reynolds number, appear in the non-dimensional governing equations When densimetric Froude similarity is satisfied, the analysis shows that the results would be scale-invariant for conservative density current under the rough turbulent condition In the case of purely depositional flows, truly scale-invariant results cannot be obtained, as the Reynolds-mediated scale effects appear in the bottom boundary conditions of the flow velocity and sediment fall velocity However, the scale effect would be relatively modest The Reynolds effect becomes more significant for erosional or mixed erosional/depositional turbidity currents as Reynolds-mediated scale effects also appear in the sediment entrainment relation Numerical simulations have been conducted at three different scales by considering densimetric Froude scaling alone as well as combined densimetric Froude and Reynolds similarity Simulation results confirm that although the scaling of densimetric Froude number alone can produce scale-invariable results for conservative density currents, variations occur in the case of turbidity currents The results become scale invariant when densimetric Froude and Reynolds similarities are satisfied simultaneously

Journal ArticleDOI
TL;DR: In this article, a mathematical model to investigate type II profile of suspension concentration distribution (i.e., the concentration profile where the maximum concentration appears at some distance above the bed surface) in a steady, uniform turbulent flow through open-channels is presented.
Abstract: This paper presents a mathematical model to investigate type II profile of suspension concentration distribution (i.e., the concentration profile where the maximum concentration appears at some distance above the bed surface) in a steady, uniform turbulent flow through open-channels. Starting from the mass and momentum conservation equations of two-phase flow, a theoretical model has been derived. The distribution equation is derived considering the effects of fluid lift force, drag force, particle inertia, particle–particle interactions, particle velocity fluctuations and drift diffusion. The equation is solved numerically and is compared with available experimental data as well as with other models existing in the literature. Good agreement between the observed value and computed result, and minimum error in comparison to other models indicate that the present model can be applied in predicting particle concentration distribution for type II profile for a wide range of flow conditions. The proposed model is also able to show the transition from type I profile to type II profile.

Journal ArticleDOI
TL;DR: In this paper, the authors modeled the transition from submerged dense vegetation (meadow) to emergent rigid vegetation (wood) and vice versa using plastic grass and vertical wooden cylinders.
Abstract: Flows in a compound open-channel (two-stage geometry with a main channel and adjacent floodplains) with a longitudinal transition in roughness over the floodplains are experimentally investigated in an 18 m long and 3 m wide flume. Transitions from submerged dense vegetation (meadow) to emergent rigid vegetation (wood) and vice versa are modelled using plastic grass and vertical wooden cylinders. For a given roughness transition, the upstream discharge distribution between main channel and floodplain (called subsections) is also varied, keeping the total flow rate constant. The flows with a roughness transition are compared to flows with a uniformly distributed roughness over the whole length of the flume. Besides the influence of the downstream boundary condition, the longitudinal profiles of water depth are controlled by the upstream discharge distribution. The latter also strongly influences the magnitude of the lateral net mass exchanges between subsections, especially upstream from the roughness transition. Irrespective of flow conditions, the inflection point in the mean velocity profile across the mixing layer is always observed at the interface between subsections. The longitudinal velocity at the main channel/floodplain interface, denoted $$U_{int}$$ , appeared to be a key parameter for characterising the flows. First, the mean velocity profiles across the mixing layer, normalised using $$U_{int}$$ , are superimposed irrespective of downstream position, flow depth, floodplain roughness type and lateral mass transfers. However, the profiles of turbulence quantities do not coincide, indicating that the flows are not fully self-similar and that the eddy viscosity assumption is not valid in this case. Second, the depth-averaged turbulent intensities and Reynolds stresses, when scaled by the depth-averaged velocity $$U_{d,int}$$ exhibit two plateau values, each related to a roughness type, meadow or wood. Lastly, the same results hold when scaling by $$U_{d,int}$$ the depth-averaged lateral flux of momentum due to secondary currents. Turbulence production and magnitude of secondary currents are increased by the presence of emergent rigid elements over the floodplains. The autocorrelation functions show that the length of the coherent structures scales with the mixing layer width for all flow cases. It is suggested that coherent structures tend to a state where the magnitude of velocity fluctuations (of both horizontal vortices and secondary currents) and the spatial extension of the structures are in equilibrium.

Journal ArticleDOI
TL;DR: In this article, the authors investigated the flow dynamics of intrusive gravity currents past a bottom-mounted obstacle using highly resolved numerical simulations and found that the relationship between the downstream propagation speed and the obstacle height can be subdivided into three regimes: a retarding regime, an impounding regime, and a choking regime.
Abstract: In this study, the flow dynamics of intrusive gravity currents past a bottom-mounted obstacle were investigated using highly resolved numerical simulations. The propagation dynamics of a classic intrusive gravity current was first simulated in order to validate the numerical model with previous laboratory experiments. A bottom-mounted obstacle with a varying non-dimensional height of $$\tilde{D}=D/H$$ , where D is the obstacle height and H is the total flow depth, was then added to the problem in order to study the downstream flow pattern of the intrusive gravity current. For short obstacles, the intrusion re-established itself downstream without much distortion. However, for tall obstacles, the downstream flow was found to be a joint effect of horizontal advection, overshoot-springback phenomenon, and associated Kelvin-Helmholtz instabilities. Analysis of the numerical results show that the relationship between the downstream propagation speed and the obstacle height can be subdivided into three regimes: (1) a retarding regime ( $$\tilde{D}$$ $$\approx $$ 0–0.3) where a 30 % increase in obstacle height leads to a 20 % reduction in propagation speed, simply due to the obstacle’s retarding effect; (2) an impounding regime ( $$\tilde{D}$$ $$\approx $$ 0.3–0.6) where the additional 30 % increase in obstacle height only leads to a further (negligible) 5 % reduction in propagation speed, due to the accelerating effect of upstream impoundment and downstream enhanced mixing; and (3) a choking regime ( $$\tilde{D}$$ $$\approx $$ 0.6–1.0) where the propagation speed is dramatically reduced due to the dominance of the obstacle’s blocking effect. The obstacle thickness was found to be irrelevant in determining the downstream propagation speed at least for the parameter range explored in this study. The present work highlights the significance of topographic effects in stratified flows with horizontal pressure forcing.