scispace - formally typeset
Search or ask a question
JournalISSN: 0364-152X

Environmental Management 

Springer Science+Business Media
About: Environmental Management is an academic journal published by Springer Science+Business Media. The journal publishes majorly in the area(s): Forest management & Population. It has an ISSN identifier of 0364-152X. Over the lifetime, 5485 publications have been published receiving 228908 citations. The journal is also known as: Environmental management (New York. Print).


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, matching biological and chemical data were compiled from numerous modeling, laboratory, and field studies performed in marine and estuarine sediments, and two guideline values (an effects range low and an effects range median) were determined for nine trace metals, total PCBs, two pesticides, 13 polynuclear aromatic hydrocarbons (PAHs), and three classes of PAHs.
Abstract: Matching biological and chemical data were compiled from numerous modeling, laboratory, and field studies performed in marine and estuarine sediments. Using these data, two guideline values (an effects range-low and an effects range-median) were determined for nine trace metals, total PCBs, two pesticides, 13 polynuclear aromatic hydrocarbons (PAHs), and three classes of PAHs. The two values defined concentration ranges that were: (1) rarely, (2) occasionally, or (3) frequently associated with adverse effects. The values generally agreed within a factor of 3 or less with those developed with the same methods applied to other data and to those developed with other effects-based methods. The incidence of adverse effects was quantified within each of the three concentration ranges as the number of cases in which effects were observed divided by the total number of observations. The incidence of effects increased markedly with increasing concentrations of all of the individual PAHs, the three classes of PAHs, and most of the trace metals. Relatively poor relationships were observed between the incidence of effects and the concentrations of mercury, nickel, total PCB, total DDT and p,p′-DDE. Based upon this evaluation, the approach provided reliable guidelines for use in sediment quality assessments. This method is being used as a basis for developing National sediment quality guidelines for Canada and informal, sediment quality guidelines for Florida.

3,869 citations

Journal ArticleDOI
TL;DR: This literature review has focused this literature review around four key principles to highlight the important mechanisms that link hydrology and aquatic biodiversity and to illustrate the consequent impacts of altered flow regimes.
Abstract: The flow regime is regarded by many aquatic ecologists to be the key driver of river and floodplain wet- land ecosystems. We have focused this literature review around four key principles to highlight the important mech- anisms that link hydrology and aquatic biodiversity and to illustrate the consequent impacts of altered flow regimes: Firstly, flow is a major determinant of physical habitat in streams, which in turn is a major determinant of biotic com- position; Secondly, aquatic species have evolved life history strategies primarily in direct response to the natural flow regimes; Thirdly, maintenance of natural patterns of longitu- dinal and lateral connectivity is essential to the viability of populations of many riverine species; Finally, the invasion and success of exotic and introduced species in rivers is facilitated by the alteration of flow regimes. The impacts of flow change are manifest across broad taxonomic groups including riverine plants, invertebrates, and fish. Despite growing recognition of these relationships, ecologists still struggle to predict and quantify biotic responses to altered flow regimes. One obvious difficulty is the ability to distin- guish the direct effects of modified flow regimes from im- pacts associated with land-use change that often accom- panies water resource development. Currently, evidence about how rivers function in relation to flow regime and the flows that aquatic organisms need exists largely as a series of untested hypotheses. To overcome these problems, aquatic science needs to move quickly into a manipulative or experimental phase, preferably with the aims of restora- tion and measuring ecosystem response.

3,018 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a frame-work for a hierarchical classification system, entailed an organized view of spatial and temporal variation among and within stream systems, which is useful for research involving establishment of monitoring stations, determination of local impacts of land-use practices, generalization from site-specific data, and assessment of basinwide, cumulative impacts of human activities on streams and their biota.
Abstract: Classification of streams and stream habitats is useful for research involving establishment of monitoring stations, determination of local impacts of land-use practices, generalization from site-specific data, and assessment of basin-wide, cumulative impacts of human activities on streams and their biota. This article presents a frame-work for a hierarchical classification system, entailing an organized view of spatial and temporal variation among and within stream systems. Stream habitat systems, defined and classified on several spatiotemporal scales, are associated with watershed geomorphic features and events. Variables selected for classification define relative long-term capacities of systems, not simply short-term states. Streams and their watershed environments are classified within the context of a regional biogeoclimatic landscape classification. The framework is a perspective that should allow more systematic interpretation and description of watershed-stream relationships.

2,242 citations

Journal ArticleDOI
TL;DR: It is proposed that the self-organizing process of adaptive comanagement development, facilitated by rules and incentives of higher levels, has the potential to expand desirable stability domains of a region and make social–ecological systems more robust to change.
Abstract: Ecosystems are complex adaptive systems that require flexible governance with the ability to respond to environmental feedback. We present, through examples from Sweden and Canada, the development of adaptive comanagement systems, showing how local groups self-organize, learn, and actively adapt to and shape change with social networks that connect institutions and organizations across levels and scales and that facilitate information flows. The development took place through a sequence of responses to environmental events that widened the scope of local management from a particular issue or resource to a broad set of issues related to ecosystem processes across scales and from individual actors, to group of actors to multiple-actor processes. The results suggest that the institutional and organizational landscapes should be approached as carefully as the ecological in order to clarify features that contribute to the resilience of social-ecological systems. These include the following: vision, leadership, and trust; enabling legislation that creates social space for ecosystem management; funds for responding to environmental change and for remedial action; capacity for monitoring and responding to environmental feedback; information flow through social networks; the combination of various sources of information and knowledge; and sense-making and arenas of collaborative learning for ecosystem management. We propose that the self-organizing process of adaptive comanagement development, facilitated by rules and incentives of higher levels, has the potential to expand desirable stability domains of a region and make social-ecological systems more robust to change.

1,705 citations

Journal ArticleDOI
TL;DR: A holistic approach to the problems associated with finesediment is outlined to aid in the identification of sediment sources, transport, and deposition processes in the river catchment, and the multiple causes and deleterious impacts associated with fine sediments on riverinehabitats, primary producers, macroinvertebrates, and fisheries are identified.
Abstract: / Although sedimentation is a naturally occurring phenomenon inrivers, land-use changes have resulted in an increase in anthropogenicallyinduced fine sediment deposition. Poorly managed agricultural practices,mineral extraction, and construction can result in an increase in suspendedsolids and sedimentation in rivers and streams, leading to a decline inhabitat quality. The nature and origins of fine sediments in the loticenvironment are reviewed in relation to channel and nonchannel sources andthe impact of human activity. Fine sediment transport and deposition areoutlined in relation to variations in streamflow and particle sizecharacteristics. A holistic approach to the problems associated with finesediment is outlined to aid in the identification of sediment sources,transport, and deposition processes in the river catchment. The multiplecauses and deleterious impacts associated with fine sediments on riverinehabitats, primary producers, macroinvertebrates, and fisheries are identifiedand reviewed to provide river managers with a guide to source material. Therestoration of rivers with fine sediment problems are discussed in relationto a holistic management framework to aid in the planning and undertaking ofmitigation measures within both the river channel and surrounding catchmentarea.KEY WORDS: Sedimentation; Fine sediment; Holistic approach; Ecologicalimpact; River restoration

1,390 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
202383
2022203
2021184
2020141
2019121
2018166