scispace - formally typeset
Search or ask a question

Showing papers in "Environmental Microbiology in 2018"


Journal ArticleDOI
TL;DR: Variation in the community structure, but not the cell abundance, across the treatments was strongly linked to the substrate hydrophobicity, suggesting microplastics host distinct bacterial communities, at least during early successional stages.
Abstract: In aquatic ecosystems, microplastics are a relatively new anthropogenic substrate that can readily be colonized by biofilm-forming organisms. To examine the effects of substrate type on microbial community assembly, we exposed ambient Baltic bacterioplankton to plastic substrates commonly found in marine environments (polyethylene, polypropylene and polystyrene) as well as native (cellulose) and inert (glass beads) particles for 2 weeks under controlled conditions. The source microbial communities and those of the biofilms were analyzed by Illumina sequencing of the 16S rRNA gene libraries. All biofilm communities displayed lower diversity and evenness compared with the source community, suggesting substrate-driven selection. Moreover, the plastics-associated communities were distinctly different from those on the non-plastic substrates. Whereas plastics hosted greater than twofold higher abundance of Burkholderiales, the non-plastic substrates had a significantly higher proportion of Actinobacteria and Cytophagia. Variation in the community structure, but not the cell abundance, across the treatments was strongly linked to the substrate hydrophobicity. Thus, microplastics host distinct bacterial communities, at least during early successional stages.

228 citations


Journal ArticleDOI
TL;DR: This study revealed key hub microorganisms in the core microbiome networks of sugarcane leaves, stalks, roots and rhizosphere soil despite location and time-associated shifts in the community assemblages.
Abstract: Harnessing plant microbiota can assist in sustainably increasing primary productivity to meet growing global demands for food and biofuel. However, development of rational microbiome-based approaches for improving crop yield and productivity is currently hindered by a lack of understanding of the major biotic and abiotic factors shaping the crop microbiome under relevant field conditions. We examined bacterial and fungal communities associated with both aerial (leaves, stalks) and belowground (roots, soil) compartments of four commercial sugarcane varieties (Saccharum spp.) grown in several growing regions in Australia. We identified drivers of the sugarcane microbiome under field conditions and evaluated whether the plants shared a core microbiome. Sugarcane-associated microbial assemblages were primarily determined by plant compartment, followed by growing region, crop age, variety and Yellow Canopy Syndrome (YCS). We detected a core set of microbiota and identified members of the core microbiome that were influenced by YCS incidence. Our study revealed key hub microorganisms in the core microbiome networks of sugarcane leaves, stalks, roots and rhizosphere soil despite location and time-associated shifts in the community assemblages. Elucidating their functional roles and identification of the keystone core microbiota that sustain plant health could provide a technological breakthrough for a sustainable increase in crop productivity.

209 citations


Journal ArticleDOI
TL;DR: This article performed a large-scale comparative genome analysis spanning subdivisions 1, 3, 4, 6, 8 and 23 with the goal to identify features to help explain their prevalence in soils and understand their ecophysiology.
Abstract: Members of the phylum Acidobacteria are abundant and ubiquitous across soils. We performed a large-scale comparative genome analysis spanning subdivisions 1, 3, 4, 6, 8 and 23 (n = 24) with the goal to identify features to help explain their prevalence in soils and understand their ecophysiology. Our analysis revealed that bacteriophage integration events along with transposable and mobile elements influenced the structure and plasticity of these genomes. Low- and high-affinity respiratory oxygen reductases were detected in multiple genomes, suggesting the capacity for growing across different oxygen gradients. Among many genomes, the capacity to use a diverse collection of carbohydrates, as well as inorganic and organic nitrogen sources (such as via extracellular peptidases), was detected - both advantageous traits in environments with fluctuating nutrient environments. We also identified multiple soil acidobacteria with the potential to scavenge atmospheric concentrations of H2 , now encompassing mesophilic soil strains within the subdivision 1 and 3, in addition to a previously identified thermophilic strain in subdivision 4. This large-scale acidobacteria genome analysis reveal traits that provide genomic, physiological and metabolic versatility, presumably allowing flexibility and versatility in the challenging and fluctuating soil environment.

189 citations


Journal ArticleDOI
TL;DR: It is shown that small subsets of highly connected keystone taxa (generally 1%-5% of richness) can be optimal predictors of whole-community compositional change, and that keystoneTaxa can be good indicators of pending community shifts.
Abstract: The influence of biotic interactions on microbial community assembly is intensely debated. We hypothesized that keystone taxa, which influence community assembly through strong biotic interactions, are important for regulating microbial community composition. While highly connected microbes have been identified, evidence that these taxa act as keystones is lacking, because keystone status requires influence on whole-community dynamics. We address this gap, showing that small subsets of highly connected keystone taxa (generally 1%-5% of richness) can be optimal predictors of whole-community compositional change. In three long-term data sets, greater connectivity due to the presence of keystone taxa corresponded to lower compositional turnover. We further hypothesized that the influence of keystone taxa would be diminished when environmental disturbance was a strong driver of compositional change. We used two case studies of reference and disturbed communities to investigate how biotic and abiotic forces interact to shape community composition. Most of the same taxa were present in both the reference and disturbed communities, but keystone taxa had much greater explanatory power in the reference communities. Our results suggest that greater biotic connectivity arising from the presence of keystone taxa is stabilizing to community composition, and that keystone taxa can be good indicators of pending community shifts.

182 citations


Journal ArticleDOI
TL;DR: Primers for the simultaneous quantification and diversity assessement of both comammox Nitrospira clades are presented, and a key role for comamm ox Nitro Spira in nitrification in groundwater-fed biofilters is demonstrated.
Abstract: The recent discovery of completely nitrifying Nitrospira demands a re-examination of nitrifying environments to evaluate their contribution to nitrogen cycling. To approach this challenge, tools are needed to detect and quantify comammox Nitrospira. We present primers for the simultaneous quantification and diversity assessement of both comammox Nitrospira clades. The primers cover a wide range of comammox diversity, spanning all available high quality sequences. We applied these primers to 12 groundwater-fed rapid sand filters, and found comammox Nitrospira to be abundant in all filters. Clade B comammox comprise the majority (∼75%) of comammox abundance in all filters. Nitrosomonadaceae were present in all filters, although at low abundance (mean = 1.8%). Ordination suggests that temperature impacts the structure of nitrifying communities, and in particular that increasing temperature favours Nitrospira. The nitrogen content of the filter material, sulfate concentration and surface ammonium loading rates shape the structure of the comammox guild in the filters. This work provides an assay for simultaneous detection and diversity assessment of clades A and B comammox Nitrospira, expands our current knowledge of comammox Nitrospira diversity and demonstrates a key role for comammox Nitrospira in nitrification in groundwater-fed biofilters.

181 citations


Journal ArticleDOI
TL;DR: New discoveries in anaerobic Fe(III)-reducing or aerobic and microaerophilic Fe(II)-oxidizing bacteria are brought together to review the current knowledge on these environmentally important bacteria, and reveal knowledge gaps for future research.
Abstract: Iron is the most abundant redox-active metal in the Earth's crust. The one electron transfer between the two most common redox states, Fe(II) and Fe(III), plays a role in a huge range of environmental processes from mineral formation and dissolution to contaminant remediation and global biogeochemical cycling. It has been appreciated for more than a century that microorganisms can harness the energy of this Fe redox transformation for their metabolic benefit. However, this is most widely understood for anaerobic Fe(III)-reducing or aerobic and microaerophilic Fe(II)-oxidizing bacteria. Only in the past few decades have we come to appreciate that bacteria also play a role in the anaerobic oxidation of ferrous iron, Fe(II), and thus can act to form Fe(III) minerals in anoxic settings. Since this discovery, our understanding of the ecology of these organisms, their mechanisms of Fe(II) oxidation and their role in environmental processes has been increasing rapidly. In this article, we bring these new discoveries together to review the current knowledge on these environmentally important bacteria, and reveal knowledge gaps for future research.

151 citations


Journal ArticleDOI
TL;DR: The even distribution of the system among commensal and pathogenic phytobacteria suggests that the T6SS provides fitness and colonization advantages in planta and that the role of the T 6SS is not restricted to virulence.
Abstract: Summary The type VI secretion system (T6SS) is a bacterial nanomachine used to inject effectors into prokaryotic or eukaryotic cells and is thus involved in both host manipulation and inter-bacterial competition. The T6SS is widespread among Gram-negative bacteria, mostly within the Proteobacterium Phylum. This secretion system is commonly found in commensal and pathogenic plant-associated bacteria. Phylogenetic analysis of phytobacterial T6SS clusters shows that they are distributed in the five main clades previously described (group 1 to 5). The even distribution of the system among commensal and pathogenic phytobacteria suggests that the T6SS provides fitness and colonisation advantages in planta and that the role of the T6SS is not restricted to virulence. This manuscript reviews the phylogeny and biological roles of the T6SS in plant-associated bacteria, highlighting a remarkable diversity both in terms of mechanism and function. This article is protected by copyright. All rights reserved.

149 citations


Journal ArticleDOI
TL;DR: This minireview summarizes current knowledge regarding the exudation and composition of phytoplankton-derived exopolysaccharides and acquisition of these compounds by heterotrophic bacteria.
Abstract: Within the wealth of molecules constituting marine dissolved organic matter, carbohydrates make up the largest coherent and quantifiable fraction. Their main sources are from primary producers, which release large amounts of photosynthetic products – mainly polysaccharides – directly into the surrounding water via passive and active exudation. The organic carbon and other nutrients derived from these photosynthates enrich the ‘phycosphere’ and attract heterotrophic bacteria. The rapid uptake and remineralization of dissolved free monosaccharides by heterotrophic bacteria account for the barely detectable levels of these compounds. By contrast, dissolved combined polysaccharides can reach high concentrations, especially during phytoplankton blooms. Polysaccharides are too large to be taken up directly by heterotrophic bacteria, instead requiring hydrolytic cleavage to smaller oligo- or monomers by bacteria with a suitable set of exoenzymes. The release of diverse polysaccharides by various phytoplankton taxa is generally interpreted as the deposition of excess organic material. However, these molecules likely also fulfil distinct, yet not fully understood functions, as inferred from their active modulation in terms of quality and quantity when phytoplankton becomes nutrient limited or is exposed to heterotrophic bacteria. This minireview summarizes current knowledge regarding the exudation and composition of phytoplankton-derived exopolysaccharides and acquisition of these compounds by heterotrophic bacteria.

149 citations


Journal ArticleDOI
TL;DR: A range of current data gaps regarding this important pathogen are outlined and some current thoughts on approaches to elucidate key aspects associated with this bacterium are provided.
Abstract: Vibrio vulnificus is a Gram-negative aquatic bacterium first isolated by the United States (US) Centers for Disease Control and Prevention (CDC) in 1964. This bacterium is part of the normal microbiota of estuarine waters and occurs in high numbers in molluscan shellfish around the world, particularly in warmer months. Infections in humans are derived from consumption of seafood produce and from water exposure. Vibrio vulnificus is a striking and enigmatic human pathogen, yet many aspects related to its biology, genomics, virulence capabilities and epidemiology remain elusive and poorly understood. This pathogen is responsible for over 95% of seafood-related deaths in the United States, and carries the highest fatality rate of any food-borne pathogen. Indeed, infections associated with this pathogen that progress to primary septicaemia have a similar case fatality rate to category BSL 3 and 4 pathogens, such as anthrax, bubonic plague, Ebola and Marburg fever. Interestingly, V. vulnificus infections disproportionately affect males (∼85% of cases) and older patients (> 40 years), especially those with underlying conditions such as liver diseases, diabetes and immune disorders. New insights from molecular studies and comparative genomic approaches have offered tantalising insights into this pathogen. A recent increase and geographical spread in reported infections, in particular wound cases, underlines the growing international importance of V. vulnificus, particularly in the context of coastal warming. We outline and explore here a range of current data gaps regarding this important pathogen, and provide some current thoughts on approaches to elucidate key aspects associated with this bacterium.

147 citations


Journal ArticleDOI
TL;DR: Using the classic starvation conditions to create VBNC cells, it is found that the majority of the remaining Escherichia coli population are spherical, have empty cytosol and fail to resuscitate; however, some of the spherical cells resuscitate immediately, and gradually become spherical by aging.
Abstract: Bacteria are often thought of as having two dormant phenotypes: the viable but non-culturable (VBNC) state and the persister state. Here we investigate the relatedness of the two stress-induced phenotypes at the single-cell level and examine cell morphology and quantify cell resuscitation. Using the classic starvation conditions to create VBNC cells, we found that the majority of the remaining Escherichia coli population are spherical, have empty cytosol and fail to resuscitate; however, some of the spherical cells resuscitate immediately (most probably those with dense cytosol). Critically, all the culturable cells in this starved population became persister cells within 14 days of starvation. We found that the persister cells initially are rod-like, have clear but limited membrane damage, can resuscitate immediately and gradually become spherical by aging. After 24 h, only rod-shaped persister cells survive, and all the spherical cells lyse. Both cell populations formed under the VBNC-inducing conditions and the persister conditions are metabolically inactive. Therefore, the bacterial population consists of dead cells and persister cells in the VBNC-inducing conditions; that is, the non-lysed particles that do not resuscitate are dead, and the dormant cells that resuscitate are persister cells. Hence, 'VBNC' and 'persister' describe the same dormant phenotype.

145 citations


Journal ArticleDOI
TL;DR: The results of this study provide a phylogenetic framework for future studies aiming to resolve the classification and phylogenetic relationships, identify new gene functions and phenotypes, and explore the ecological and metabolic potential of the Pseudomonas spp.
Abstract: Pseudomonas is a large and diverse genus of Gammaproteobacteria. To provide a framework for discovery of evolutionary and taxonomic relationships of these bacteria, we compared the genomes of type strains of 163 species and 3 additional subspecies of Pseudomonas, including 118 genomes sequenced herein. A maximum likelihood phylogeny of the 166 type strains based on protein sequences of 100 single-copy orthologous genes revealed thirteen groups of Pseudomonas, composed of two to sixty three species each. Pairwise average nucleotide identities and alignment fractions were calculated for the data set of the 166 type strains and 1224 genomes of Pseudomonas available in public databases. Results revealed that 394 of the 1224 genomes were distinct from any type strain, suggesting that the type strains represent only a fraction of the genomic diversity of the genus. The core genome of Pseudomonas was determined to contain 794 genes conferring primarily housekeeping functions. The results of this study provide a phylogenetic framework for future studies aiming to resolve the classification and phylogenetic relationships, identify new gene functions and phenotypes, and explore the ecological and metabolic potential of the Pseudomonas spp.

Journal ArticleDOI
TL;DR: Co-occurrence patterns obtained via network analysis implied that 12 species might be potential hosts of 58 ARG subtypes, suggesting their common occurrence in the human gut.
Abstract: The human gut microbiota is an important reservoir of antibiotic resistance genes (ARGs). A metagenomic approach and network analysis were used to establish a comprehensive antibiotic resistome catalog and to obtain co-occurrence patterns between ARGs and microbial taxa in fecal samples from 180 healthy individuals from 11 different countries. In total, 507 ARG subtypes belonging to 20 ARG types were detected with abundances ranging from 7.12 × 10-7 to 2.72 × 10-1 copy of ARG/copy of 16S-rRNA gene. Tetracycline, multidrug, macrolide-lincosamide-streptogramin, bacitracin, vancomycin, beta-lactam and aminoglycoside resistance genes were the top seven most abundant ARG types. The multidrug ABC transporter, aadE, bacA, acrB, tetM, tetW, vanR and vanS were shared by all 180 individuals, suggesting their common occurrence in the human gut. Compared to populations from the other 10 countries, the Chinese population harboured the most abundant ARGs. Moreover, LEfSe analysis suggested that the MLS resistance type and its subtype 'ermF' were representative ARGs of the Chinese population. Antibiotic inactivation, antibiotic target alteration and antibiotic efflux were the dominant resistance mechanism categories in all populations. Procrustes analysis revealed that microbial phylogeny structured the antibiotic resistome. Co-occurrence patterns obtained via network analysis implied that 12 species might be potential hosts of 58 ARG subtypes.

Journal ArticleDOI
TL;DR: It is concluded that microeukaryotes and bacteria inhabiting the same communities can be structured predominantly by different processes, and should be considered in future studies aiming to understand the mechanisms that shape microbial assemblages.
Abstract: Whether or not communities of microbial eukaryotes are structured in the same way as bacteria is a general and poorly explored question in ecology. Here, we investigated this question in a set of planktonic lake microbiotas in Eastern Antarctica that represent a natural community ecology experiment. Most of the analysed lakes emerged from the sea during the last 6000 years, giving rise to waterbodies that originally contained marine microbiotas and that subsequently evolved into habitats ranging from freshwater to hypersaline. We show that habitat diversification has promoted selection driven by the salinity gradient in bacterial communities (explaining ∼ 72% of taxa turnover), while microeukaryotic counterparts were predominantly structured by ecological drift (∼72% of the turnover). Nevertheless, we also detected a number of microeukaryotes with specific responses to salinity, indicating that albeit minor, selection has had a role in the structuring of specific members of their communities. In sum, we conclude that microeukaryotes and bacteria inhabiting the same communities can be structured predominantly by different processes. This should be considered in future studies aiming to understand the mechanisms that shape microbial assemblages.

Journal ArticleDOI
TL;DR: This review presents an update of the knowledge generated in the last 12 years in the field of N. ceranae research, addressing the routes of transmission, population structure and genetic diversity, and describes how the infection modifies the honey bee's metabolism, the immune response and other vital functions.
Abstract: Nosema ceranae is a hot topic in honey bee health as reflected by numerous papers published every year. This review presents an update of the knowledge generated in the last 12 years in the field of N. ceranae research, addressing the routes of transmission, population structure and genetic diversity. This includes description of how the infection modifies the honey bee's metabolism, the immune response and other vital functions. The effects on individual honey bees will have a direct impact on the colony by leading to losses in the adult's population. The absence of clear clinical signs could keep the infection unnoticed by the beekeeper for long periods. The influence of the environmental conditions, beekeeping practices, bee genetics and the interaction with pesticides and other pathogens will have a direct influence on the prognosis of the disease. This review is approached from the point of view of the Mediterranean countries where the professional beekeeping has a high representation and where this pathogen is reported as an important threat.

Journal ArticleDOI
TL;DR: The findings from this pilot study suggest that microbial dysbiosis may contribute to pathophysiology of TB by enhancing the anti-inflammatory milieu in the host.
Abstract: Tuberculosis (TB) is primarily associated with decline in immune health status. As gut microbiome (GM) is implicated in the regulation of host immunity and metabolism, here we investigate GM alteration in TB patients by 16S rRNA gene and whole-genome shotgun sequencing. The study group constituted of patients with pulmonary TB and their healthy household contacts as controls (HCs). Significant alteration of microbial taxonomic and functional capacity was observed in patients with active TB as compared to the HCs. We observed that Prevotella and Bifidobacterium abundance were associated with HCs, whereas butyrate and propionate-producing bacteria like Faecalibacterium, Roseburia, Eubacterium and Phascolarctobacterium were significantly enriched in TB patients. Functional analysis showed reduced biosynthesis of vitamins and amino acids in favour of enriched metabolism of butyrate and propionate in TB subjects. The TB subjects were also investigated during the course of treatment, to analyse the variation of GM. Although perturbation in microbial composition was still evident after a month's administration of anti-TB drugs, significant changes were observed in metagenome gene pool that pointed towards recovery in functional capacity. Therefore, the findings from this pilot study suggest that microbial dysbiosis may contribute to pathophysiology of TB by enhancing the anti-inflammatory milieu in the host.

Journal ArticleDOI
TL;DR: Results indicate that putrescine is a pathogen-produced virulence metabolite that accelerates disease indirectly by affecting host physiology by manipulating its host to increase nutrients in tomato xylem sap.
Abstract: Ralstonia solanacearum thrives in plant xylem vessels and causes bacterial wilt disease despite the low nutrient content of xylem sap. We found that R. solanacearum manipulates its host to increase nutrients in tomato xylem sap, enabling it to grow better in sap from infected plants than in sap from healthy plants. Untargeted GC/MS metabolomics identified 22 metabolites enriched in R. solanacearum-infected sap. Eight of these could serve as sole carbon or nitrogen sources for R. solanacearum. Putrescine, a polyamine that is not a sole carbon or nitrogen source for R. solanacearum, was enriched 76-fold to 37 μM in R. solanacearum-infected sap. R. solanacearum synthesized putrescine via a SpeC ornithine decarboxylase. A ΔspeC mutant required≥15 μM exogenous putrescine to grow and could not grow alone in xylem even when plants were treated with putrescine. However, co-inoculation with wildtype rescued ΔspeC growth, indicating R. solanacearum produced and exported putrescine to xylem sap. Intriguingly, treating plants with putrescine before inoculation accelerated wilt symptom development and R. solanacearum growth and systemic spread. Xylem putrescine concentration was unchanged in putrescine-treated plants, so the exogenous putrescine likely accelerated disease indirectly by affecting host physiology. These results indicate that putrescine is a pathogen-produced virulence metabolite.

Journal ArticleDOI
TL;DR: Investigation of the community composition and geographical distributions of benthic microeukaryotes using high-throughput sequencing of the 18S rRNA gene and the contributions of environmental factors and spatial separation on the distribution patterns of both rare and abundant taxa suggests that different or more complex mechanisms generate and maintain diversity in the rare biosphere in this habitat.
Abstract: Benthic microeukaryotes are key ecosystem drivers in marine sandy beaches, an important and dynamic environment; however, little is known about their diversity and biogeography on a large spatial scale. Here, we investigated the community composition and geographical distributions of benthic microeukaryotes using high-throughput sequencing of the 18S rRNA gene and quantified the contributions of environmental factors and spatial separation on the distribution patterns of both rare and abundant taxa. We collected 36 intertidal samples at 12 sandy beaches from four regions that spanned distances from 0.001 to 12,000 km. We found 12,890 operational taxonomic units (OTUs; 97% sequence identity level) including members of all eukaryotic super-groups and several phyla of uncertain position. Arthropoda and Diatomeae dominated the sequence reads in abundance, but Ciliophora and Discoba were the most diverse groups across all samples. About one-third of the OTUs could not be definitively classified at a similarity level of 80%, supporting the view that a large number of rare and minute marine species may have escaped previous characterization. We found generally similar geographical patterns for abundant and rare microeukaryotic sub-communities, and both showed a significant distance-decay similarity trend. Variation partitioning showed that both rare and abundant sub-communities exhibited a slightly stronger response to environmental factors than spatial (distance) factors. However, the abundant sub-community was strongly correlated with variations in spatial, environmental and sediment grain size factors (66% of variance explained), but the rare assemblage was not (16%). This suggests that different or more complex mechanisms generate and maintain diversity in the rare biosphere in this habitat.

Journal ArticleDOI
TL;DR: The importance of understanding trophic interactions to be able to gain insight into the functional controls of nutrient cycles in the rhizosphere is demonstrated, with AMF and their hyphal microbiome playing a role in promoting organic phosphorus mineralizing under field conditions.
Abstract: The extraradical hyphae of arbuscular mycorrhizal fungi (AMF) harbour and interact with a microbial community performing multiple functions. However, how the AMF-microbiome interaction influences the phosphorus (P) acquisition efficiency of the mycorrhizal pathway is unclear. Here we investigated whether AMF and their hyphal microbiome play a role in promoting organic phosphorus (P) mineralizing under field conditions. We developed an AMF hyphae in-growth core system for the field using PVC tubes sealed with membrane with different size of pores (30 or 0.45 μm) to allow or deny AMF hyphae access to a patch of organic P in root-free soil. AMF and their hyphae associated microbiome played a role in enhancing soil organic P mineralization in situ in the field, which was shown to be a function of the change in bacteria community on the hyphae surface. The bacterial communities attached to the AMF hyphae surface were significantly different from those in the bulk soil. Importantly, AMF hyphae recruited bacteria that produced alkaline phosphatase and provided a function that was absent from the hyphae. These results demonstrate the importance of understanding trophic interactions to be able to gain insight into the functional controls of nutrient cycles in the rhizosphere.

Journal ArticleDOI
TL;DR: It is shown that microbial communities in harvested juice and ferments vary significantly across regions, and that while vineyard fungi account for ∼40% of the source of this diversity, uncultivated ecosystems outside of vineyards also prove a significant source.
Abstract: Humans have been making wine for thousands of years and microorganisms play an integral part in this process as they not only drive fermentation, but also significantly influence the flavour, aroma and quality of finished wines. Since fruits are ephemeral, they cannot comprise a permanent microbial habitat; thus, an age-old unanswered question concerns the origin of fruit and ferment associated microbes. Here we use next-generation sequencing approaches to examine and quantify the roles of native forest, vineyard soil, bark and fruit habitats as sources of fungal diversity in ferments. We show that microbial communities in harvested juice and ferments vary significantly across regions, and that while vineyard fungi account for ∼40% of the source of this diversity, uncultivated ecosystems outside of vineyards also prove a significant source. We also show that while communities in harvested juice resemble those found on grapes, these increasingly resemble fungi present on vine bark as the ferment proceeds.

Journal ArticleDOI
TL;DR: It is determined that the resuscitation of dormant persisters is heterogeneous and includes cells that grow immediately and that the greater the ribosome content, the faster the persister cells resuscitate.
Abstract: Since persister cells survive antibiotic treatments through dormancy and resuscitate to reconstitute infections, it is imperative to determine the rate at which these cells revive. Using two sets of Escherichia coli persister cells, those arising after antibiotic treatment at low levels and those generated at high levels by ceasing transcription via rifampicin pretreatment (shown to be bona fide persisters through eight sets of experiments), we used microscopy of single cells to determine that the resuscitation of dormant persisters is heterogeneous and includes cells that grow immediately. In all, five phenotypes were found during the observation of persister cells when fresh nutrients were added: (i) immediate division, (ii) immediate elongation followed by division, (iii) immediate elongation but no division, (iv) delayed elongation/division and (v) no growth. In addition, once cell division begins, the growth rate is that of exponential cells. Critically, the greater the ribosome content, the faster the persister cells resuscitate.

Journal ArticleDOI
TL;DR: Analysis of the global biogeography of this group revealed its presence in previously unrecognized habitats, such as subterranean and volcanic biofilm environments, indicating a potential role of these environments in the biological sink for atmospheric methane.
Abstract: Understanding of global methane sources and sinks is a prerequisite for the design of strategies to counteract global warming. Microbial methane oxidation in soils represents the largest biological sink for atmospheric methane. However, still very little is known about the identity, metabolic properties and distribution of the microbial group proposed to be responsible for most of this uptake, the uncultivated upland soil cluster α (USCα). Here, we reconstructed a draft genome of USCα from a combination of targeted cell sorting and metagenomes from forest soil, providing the first insights into its metabolic potential and environmental adaptation strategies. The 16S rRNA gene sequence recovered was distinctive and suggests this crucial group as a new genus within the Beijerinckiaceae, close to Methylocapsa. Application of a fluorescently labelled suicide substrate for the particulate methane monooxygenase enzyme (pMMO) coupled to 16S rRNA fluorescence in situ hybridisation (FISH) allowed for the first time a direct link of the high-affinity activity of methane oxidation to USCα cells in situ. Analysis of the global biogeography of this group further revealed its presence in previously unrecognized habitats, such as subterranean and volcanic biofilm environments, indicating a potential role of these environments in the biological sink for atmospheric methane.

Journal ArticleDOI
TL;DR: The extensive effort put in preclinical studies with the goal to find novel therapies against staphylococcal device-associated infections has not yet resulted in efficient, applicable therapeutic options for that difficult-to-treat type of disease.
Abstract: The use of medical devices in modern medicine is constantly increasing. Despite the multiple precautionary strategies that are being employed in hospitals, which include increased hygiene and sterilization measures, bacterial infections on these devices still happen frequently. Staphylococci are among the major causes of medical device infection. This is mostly due to the strong capacity of those bacteria to form device-associated biofilms, which provide resistance to chemical and physical treatments as well as attacks by the host's immune system. Biofilm development is a multistep process with specific factors participating in each step. It is tightly regulated to provide a balance between biofilm expansion and detachment. Detachment from a biofilm on a medical device can lead to severe systemic infection, such as bacteremia and sepsis. While our understanding of staphylococcal biofilm formation has increased significantly and staphylococcal biofilm formation on medical devices is among the best understood biofilm-associated infections, the extensive effort put in preclinical studies with the goal to find novel therapies against staphylococcal device-associated infections has not yet resulted in efficient, applicable therapeutic options for that difficult-to-treat type of disease.

Journal ArticleDOI
TL;DR: The V9 dataset failed for example to describe the diversity of Dolichomastigales (Chlorophyta, Mamiellophyceae) emphasizing the lack of V9 sequences for this group and the importance of the reference database for metabarcode analysis.
Abstract: Summary We compared the composition of eukaryotic communities using two genetic markers (18S rRNA V4 and V9 regions) at 27 sites sampled during Ocean Sampling Day 2014, with a focus on photosynthetic groups and, more specifically green algae (Chlorophyta). Globally, the V4 and V9 regions of the 18S rRNA gene provided similar images of alpha diversity and ecological patterns. However, V9 provided 20% more OTUs built at 97% identity than V4. 34% of the genera were found with both markers and, of the remnant, 22% were found only with V4 and 44% only with V9. For photosynthetic groups, V4 and V9 performed equally well to describe global communities at different taxonomic levels from the division to the genus and provided similar Chlorophyta distribution patterns. However, at lower taxonomic level, the V9 dataset failed for example to describe the diversity of Dolichomastigales (Chlorophyta, Mamiellophyceae) emphasizing the lack of V9 sequences for this group and the importance of the reference database for metabarcode analysis. We conclude that in order to address questions regarding specific groups (e.g., a given genus), it is necessary to choose the marker based not only on the genetic divergence within this group but also on the existence of reference sequences in databases.

Journal ArticleDOI
TL;DR: Though the magnitude of relative abundances of common OTUs differed between primer sets, the relative abundance of the OTUs were nonetheless strongly correlated, and community dynamics appear robust across studies using different primers.
Abstract: Primers targeting the 16S small subunit ribosomal RNA marker gene, used to characterize bacterial and archaeal communities, have recently been re-evaluated for marine planktonic habitats. To investigate whether primer selection affects the ecological interpretation of bacterioplankton populations and community dynamics, amplicon sequencing with four primer sets targeting several hypervariable regions of the 16S rRNA gene was conducted on both mock communities constructed from cloned 16S rRNA genes and a time-series of DNA samples from the temperate coastal Santa Barbara Channel. Ecological interpretations of community structure (delineation of depth and seasonality, correlations with environmental factors) were similar across primer sets, while population dynamics varied. We observed substantial differences in relative abundances of taxa known to be poorly resolved by some primer sets, such as Thaumarchaeota and SAR11, and unexpected taxa including Roseobacter clades. Though the magnitude of relative abundances of common OTUs differed between primer sets, the relative abundances of the OTUs were nonetheless strongly correlated. We do not endorse one primer set but rather enumerate strengths and weaknesses to facilitate selection appropriate to a system or experimental goal. While 16S rRNA gene primer bias suggests caution in assessing quantitative population dynamics, community dynamics appear robust across studies using different primers.

Journal ArticleDOI
TL;DR: Aeromonas species are ubiquitous inhabitants of freshwater environments, and are responsible for fish motile aeromonad septicemia (MAS), and A. veronii infections dominated, with aerolysin identified as the key virulence factor.
Abstract: Aeromonas species are ubiquitous inhabitants of freshwater environments, and are responsible for fish motile aeromonad septicemia (MAS). A. hydrophila is implicated as the primary etiologic agent of MAS. Here, we analysed MAS epidemiological data for cyprinid fish in southern China, and found that A. veronii infections dominated. Consistent with this observation, A. veronii isolates were generally more virulent than A. hydrophila isolates when infecting germ-free zebrafish larvae via continuous immersion challenge. Through in vivo screening of the transposon library of the A. veronii strain Hm091, aerolysin was identified as the key virulence factor. Further results indicated that A. veronii Hm091 aerolysin disrupts the intestinal barrier of zebrafish, enabling systematic invasion by not only A. veronii Hm091 in a mono-infection, but also A. hydrophila NJ-1 in a mixed infection. Moreover, the differences in aerolysin expression and activity were the major contributor to the observed differences between the A. veronii and A. hydrophila strains regarding invasion efficacy via intestine. Together, our results provide new insights into the aetiology and pathogenesis of Aeromonas infections, and highlight the importance of A. veronii-targeted treatments in future efforts against MAS.

Journal ArticleDOI
TL;DR: The genomes, gene expression patterns and ultrastructures of three phylogenetically different microbial consortia found in hydrocarbon‐rich environments under different temperature regimes are compared, suggesting that direct electron transfer is a common mechanism to sulfate‐dependent AOM, and that both partners synthesize molecules to enable it.
Abstract: The sulfate-dependent, anaerobic oxidation of methane (AOM) is an important sink for methane in marine environments. It is carried out between anaerobic methanotrophic archaea (ANME) and sulfate-reducing bacteria (SRB) living in syntrophic partnership. In this study, we compared the genomes, gene expression patterns and ultrastructures of three phylogenetically different microbial consortia found in hydrocarbon-rich environments under different temperature regimes: ANME-1a/HotSeep-1 (60°C), ANME-1a/Seep-SRB2 (37°C) and ANME-2c/Seep-SRB2 (20°C). All three ANME encode a reverse methanogenesis pathway: ANME-2c encodes all enzymes, while ANME-1a lacks the gene for N5,N10-methylene tetrahydromethanopterin reductase (mer) and encodes a methylenetetrahydrofolate reductase (Met). The bacterial partners contain the genes encoding the canonical dissimilatory sulfate reduction pathway. During AOM, all three consortia types highly expressed genes encoding for the formation of flagella or type IV pili and/or c-type cytochromes, some predicted to be extracellular. ANME-2c expressed potentially extracellular cytochromes with up to 32 hemes, whereas ANME-1a and SRB expressed less complex cytochromes (≤ 8 and ≤ 12 heme respectively). The intercellular space of all consortia showed nanowire-like structures and heme-rich areas. These features are proposed to enable interspecies electron exchange, hence suggesting that direct electron transfer is a common mechanism to sulfate-dependent AOM, and that both partners synthesize molecules to enable it.

Journal ArticleDOI
TL;DR: A new species of the NC10 clade, 'Ca.
Abstract: Methanotrophic bacteria represent an important biological filter regulating methane emissions into the atmosphere. Planktonic methanotrophic communities in freshwater lakes are typically dominated by aerobic gamma-proteobacteria, with a contribution from alpha-proteobacterial methanotrophs and the NC10 bacteria. The NC10 clade encompasses methanotrophs related to 'Candidatus Methylomirabilis oxyfera', which oxidize methane using a unique pathway of denitrification that tentatively produces N2 and O2 from nitric oxide (NO). Here, we describe a new species of the NC10 clade, 'Ca. Methylomirabilis limnetica', which dominated the planktonic microbial community in the anoxic depths of the deep stratified Lake Zug in two consecutive years, comprising up to 27% of the total bacterial population. Gene transcripts assigned to 'Ca. M. limnetica' constituted up to one third of all metatranscriptomic sequences in situ. The reconstructed genome encoded a complete pathway for methane oxidation, and an incomplete denitrification pathway, including two putative nitric oxide dismutase genes. The genome of 'Ca. M. limnetica' exhibited features possibly related to genome streamlining (i.e. less redundancy of key metabolic genes) and adaptation to its planktonic habitat (i.e. gas vesicle genes). We speculate that 'Ca. M. limnetica' temporarily bloomed in the lake during non-steady-state conditions suggesting a niche for NC10 bacteria in the lacustrine methane and nitrogen cycle.

Journal ArticleDOI
TL;DR: P pH 8.0 may be a favourable pH set-point for water treatment applications regarding net N2 O production and enzymes, pathways and microorganisms that are involved in N-conversions in water engineering applications.
Abstract: Nitrous oxide (N2 O) is emitted during microbiological nitrogen (N) conversion processes, when N2 O production exceeds N2 O consumption. The magnitude of N2 O production vs. consumption varies with pH and controlling net N2 O production might be feasible by choice of system pH. This article reviews how pH affects enzymes, pathways and microorganisms that are involved in N-conversions in water engineering applications. At a molecular level, pH affects activity of cofactors and structural elements of relevant enzymes by protonation or deprotonation of amino acid residues or solvent ligands, thus causing steric changes in catalytic sites or proton/electron transfer routes that alter the enzymes' overall activity. Augmenting molecular information with, e.g., nitritation or denitrification rates yields explanations of changes in net N2 O production with pH. Ammonia oxidizing bacteria are of highest relevance for N2 O production, while heterotrophic denitrifiers are relevant for N2 O consumption at pH > 7.5. Net N2 O production in N-cycling water engineering systems is predicted to display a 'bell-shaped' curve in the range of pH 6.0-9.0 with a maximum at pH 7.0-7.5. Net N2 O production at acidic pH is dominated by N2 O production, whereas N2 O consumption can outweigh production at alkaline pH. Thus, pH 8.0 may be a favourable pH set-point for water treatment applications regarding net N2 O production.

Journal ArticleDOI
TL;DR: The application of cell‐based in‐vitro experimental systems and mathematical modelling can shed light on the molecular and signalling pathways which regulate the development and maintenance of homeostasis in the gut and beyond.
Abstract: The gastrointestinal tract is a highly complex organ in which multiple dynamic physiological processes are tightly coordinated while interacting with a dense and extremely diverse microbial population. From establishment in early life, through to host-microbe symbiosis in adulthood, the gut microbiota plays a vital role in our development and health. The effect of the microbiota on gut development and physiology is highlighted by anatomical and functional changes in germ-free mice, affecting the gut epithelium, immune system and enteric nervous system. Microbial colonisation promotes competent innate and acquired mucosal immune systems, epithelial renewal, barrier integrity, and mucosal vascularisation and innervation. Interacting or shared signalling pathways across different physiological systems of the gut could explain how all these changes are coordinated during postnatal colonisation, or after the introduction of microbiota into germ-free models. The application of cell-based in-vitro experimental systems and mathematical modelling can shed light on the molecular and signalling pathways which regulate the development and maintenance of homeostasis in the gut and beyond.

Journal ArticleDOI
TL;DR: The results suggested that the limited denitrification in the deep vadose zone is not because of the lack of denitrifiers, but due to the low abundance of den itrifiers which is caused by low carbon availability.
Abstract: Microbes in the deep vadose zone play an essential role in the mitigation of nitrate leaching; however, limited information is available on the mechanisms of microbial denitrification due to sampling difficulties. We experimentally studied the factors that affect denitrification in soils collected down to 10.5 meters deep along the soil profile. After an anoxic pre-incubation, denitrification rates moderately increased and the N2 O/(N2 O + N2 ) ratios declined while the microbial abundance and diversity did not change significantly in most of the layers. Denitrification rate was significantly enhanced and the abundance of the denitrification genes was simultaneously elevated by the increased availability of organic carbon in all studied layers, to a greater extent in the subsurface layers than in the surface layers, suggesting the severe scarcity of carbon in the deep vadose zone. The genera Pseudomonas and Bacillus, which are made up of a number of species that have been previously identified as denitrifiers in soil, were the major taxa that respond to carbon addition. Overall, our results suggested that the limited denitrification in the deep vadose zone is not because of the lack of denitrifiers, but due to the low abundance of denitrifiers which is caused by low carbon availability.