scispace - formally typeset
Search or ask a question

Showing papers in "Environmental Research Letters in 2016"


Journal ArticleDOI
TL;DR: The consensus that humans are causing recent global warming is shared by 90% to 100% of publishing climate scientists according to six independent studies by co-authors of this paper as discussed by the authors.
Abstract: The consensus that humans are causing recent global warming is shared by 90%–100% of publishing climate scientists according to six independent studies by co-authors of this paper. Those results are consistent with the 97% consensus reported by Cook et al (Environ. Res. Lett. 8 024024) based on 11 944 abstracts of research papers, of which 4014 took a position on the cause of recent global warming. A survey of authors of those papers (N = 2412 papers) also supported a 97% consensus. Tol (2016 Environ. Res. Lett. 11 048001) comes to a different conclusion using results from surveys of non-experts such as economic geologists and a self-selected group of those who reject the consensus. We demonstrate that this outcome is not unexpected because the level of consensus correlates with expertise in climate science. At one point, Tol also reduces the apparent consensus by assuming that abstracts that do not explicitly state the cause of global warming ('no position') represent non-endorsement, an approach that if applied elsewhere would reject consensus on well-established theories such as plate tectonics. We examine the available studies and conclude that the finding of 97% consensus in published climate research is robust and consistent with other surveys of climate scientists and peer-reviewed studies.

865 citations


Journal ArticleDOI
TL;DR: In this article, the authors present a new set of global, spatially explicit population scenarios that are consistent with the new Shared Socioeconomic Pathways (SSPs) developed to facilitate global change research.
Abstract: The projected size and spatial distribution of the future population are important drivers of global change and key determinants of exposure and vulnerability to hazards. Spatial demographic projections are widely used as inputs to spatial projections of land use, energy use, and emissions, as well as to assessments of the impacts of extreme events, sea level rise, and other climate-related outcomes. To date, however, there are very few global-scale, spatially explicit population projections, and those that do exist are often based on simple scaling or trend extrapolation. Here we present a new set of global, spatially explicit population scenarios that are consistent with the new Shared Socioeconomic Pathways (SSPs) developed to facilitate global change research. We use a parameterized gravity-based downscaling model to produce projections of spatial population change that are quantitatively consistent with national population and urbanization projections for the SSPs and qualitatively consistent with assumptions in the SSP narratives regarding spatial development patterns. We show that the five SSPs lead to substantially different spatial population outcomes at the continental, national, and sub-national scale. In general, grid cell-level outcomes are most influenced by national-level population change, second by urbanization rate, and third by assumptions about the spatial style of development. However, the relative importance of these factors is a function of the magnitude of the projected change in total population and urbanization for each country and across SSPs. We also demonstrate variation in outcomes considering the example of population existing in a low-elevation coastal zone under alternative scenarios.

475 citations


Journal ArticleDOI
TL;DR: In this article, the authors examined the contribution from open field straw burning during harvest or other active burning periods and showed that substantial contribution from straw burning would dramatically improve air quality in many Chinese regions.
Abstract: PM2.5 inventories have been developed in major Chinese cities to quantify the contributions from various sources based on annual emissions. This approach, however, could substantially underestimate the contribution from open straw burning during the harvest or other active burning periods. This study examines this issue by estimating monthly and annual straw-burning PM2.5 emissions in China and comparing with them with the corresponding emissions from other anthropogenic sources. Annually burned straw PM2.5 emissions during 1997 ~ 2013 for 31 China provinces were calculated based on crop and related burning information for 12 months based on satellite detection of agricultural burning. Annual emissions from other anthropogenic sources were collected from the literature and allocated to monthly values using air pollution index measurements. The results indicate that the annual PM2.5 emissions from open straw burning in China were 1.036 m tons. The monthly PM2.5 emission ratios of straw burning to other anthropogenic sources during June, the harvest period for many regions, were several times larger than the annual ratios at national, regional, and province levels, suggesting that, in contrast to annual emissions that were used in the PM2.5 inventories in Chinese cities to assess the contributions from other sources, monthly emissions should be used to assess the contributions from straw burning during the harvest or other active burning periods. The larger contributions from straw burning shown in this study also suggest that substantial reduction of open field straw burning would dramatically improve air quality in many Chinese regions during the harvest or other active burning periods.

378 citations


Journal ArticleDOI
TL;DR: In this paper, a large-scale analysis of long-term soil data from 2069 sites throughout the Mississippi River Basin (MRB) revealed that agricultural soils can act as a net N sink.
Abstract: Watershed and global-scale nitrogen (N) budgets indicate that the majority of the N surplus in anthropogenic landscapes does not reach the coastal oceans. While there is general consensus that this 'missing' N either exits the landscape via denitrification or is retained within watersheds as nitrate or organic N, the relative magnitudes of these pools and fluxes are subject to considerable uncertainty. Our study, for the first time, provides direct, large-scale evidence of N accumulation in the root zones of agricultural soils that may account for much of the 'missing N' identified in mass balance studies. We analyzed long-term soil data (1957–2010) from 2069 sites throughout the Mississippi River Basin (MRB) to reveal N accumulation in cropland of 25–70 kg ha−1 yr−1, a total of 3.8 ± 1.8 Mt yr−1 at the watershed scale. We then developed a simple modeling framework to capture N depletion and accumulation dynamics under intensive agriculture. Using the model, we show that the observed accumulation of soil organic N (SON) in the MRB over a 30 year period (142 Tg N) would lead to a biogeochemical lag time of 35 years for 99% of legacy SON, even with complete cessation of fertilizer application. By demonstrating that agricultural soils can act as a net N sink, the present work makes a critical contribution towards the closing of watershed N budgets.

280 citations


Journal ArticleDOI
TL;DR: In this paper, the influence of potential fire emissions across the domain on smoke concentrations in three receptor areas downwind during the 2006 event was calculated using the adjoint of the GEOS-Chem chemical transport model, which allows near real-time assessment of smoke pollution exposure, and therefore the consequent morbidity and premature mortality.
Abstract: In September–October 2015, El Nino and positive Indian Ocean Dipole conditions set the stage for massive fires in Sumatra and Kalimantan (Indonesian Borneo), leading to persistently hazardous levels of smoke pollution across much of Equatorial Asia. Here we quantify the emission sources and health impacts of this haze episode and compare the sources and impacts to an event of similar magnitude occurring under similar meteorological conditions in September–October 2006. Using the adjoint of the GEOS-Chem chemical transport model, we first calculate the influence of potential fire emissions across the domain on smoke concentrations in three receptor areas downwind—Indonesia, Malaysia, and Singapore—during the 2006 event. This step maps the sensitivity of each receptor to fire emissions in each grid cell upwind. We then combine these sensitivities with 2006 and 2015 fire emission inventories from the Global Fire Assimilation System (GFAS) to estimate the resulting population-weighted smoke exposure. This method, which assumes similar smoke transport pathways in 2006 and 2015, allows near real-time assessment of smoke pollution exposure, and therefore the consequent morbidity and premature mortality, due to severe haze. Our approach also provides rapid assessment of the relative contribution of fire emissions generated in a specific province to smoke-related health impacts in the receptor areas. We estimate that haze in 2015 resulted in 100 300 excess deaths across Indonesia, Malaysia and Singapore, more than double those of the 2006 event, with much of the increase due to fires in Indonesia's South Sumatra Province. The model framework we introduce in this study can rapidly identify those areas where land use management to reduce and/or avoid fires would yield the greatest benefit to human health, both nationally and regionally.

279 citations


Journal ArticleDOI
TL;DR: In this paper, the authors present a map of mean agricultural area, classified by the amount of land per farming household, at subnational resolutions across three key global regions using a novel integration of household microdata and agricultural landscape data.
Abstract: Smallholder farming is the most prevalent form of agriculture in the world, supports many of the planet's most vulnerable populations, and coexists with some of its most diverse and threatened landscapes. However, there is little information about the location of small farms, making it difficult both to estimate their numbers and to implement effective agricultural, development, and land use policies. Here, we present a map of mean agricultural area, classified by the amount of land per farming household, at subnational resolutions across three key global regions using a novel integration of household microdata and agricultural landscape data. This approach provides a subnational estimate of the number, average size, and contribution of farms across much of the developing world. By our estimates, 918 subnational units in 83 countries in Latin America, sub-Saharan Africa, and South and East Asia average less than five hectares of agricultural land per farming household. These smallholder-dominated systems are home to more than 380 million farming households, make up roughly 30% of the agricultural land and produce more than 70% of the food calories produced in these regions, and are responsible for more than half of the food calories produced globally, as well as more than half of global production of several major food crops. Smallholder systems in these three regions direct a greater percentage of calories produced toward direct human consumption, with 70% of calories produced in these units consumed as food, compared to 55% globally. Our approach provides the ability to disaggregate farming populations from non-farming populations, providing a more accurate picture of farming households on the landscape than has previously been available. These data meet a critical need, as improved understanding of the prevalence and distribution of smallholder farming is essential for effective policy development for food security, poverty reduction, and conservation agendas.

275 citations


Journal ArticleDOI
TL;DR: In this paper, a new proxy-based, annually-resolved, spatial reconstruction of the European summer (June-August) temperature fields back to 755 CE based on Bayesian hierarchical modeling (BHM), together with estimates of European mean temperature variation since 138 BCE based on BHM and composite-plus-scaling (CPS).
Abstract: The spatial context is criticalwhen assessing present-day climate anomalies, attributing them to potential forcings and making statements regarding their frequency and severity in a long-term perspective. Recent international initiatives have expanded the number of high-quality proxy-records and developed new statistical reconstruction methods. These advances allow more rigorous regional past temperature reconstructions and, in turn, the possibility of evaluating climate models on policy-relevant, spatiotemporal scales. Here we provide a new proxy-based, annually-resolved, spatial reconstruction of the European summer (June-August) temperature fields back to 755 CE based on Bayesian hierarchical modelling (BHM), together with estimates of the European mean temperature variation since 138 BCE based on BHM and composite-plus-scaling (CPS). Our reconstructions compare well with independent instrumental and proxy-based temperature estimates, but suggest a larger amplitude in summer temperature variability than previously reported. Both CPS and BHM reconstructions indicate that the mean 20th century European summer temperature was not significantly different from some earlier centuries, including the 1st, 2nd, 8th and 10th centuries CE. The 1st century (in BHM also the 10th century) may even have been slightly warmer than the 20th century, but the difference is not statistically significant. Comparing each 50 yr period with the 1951-2000 period reveals a similar pattern. Recent summers, however, have been unusually warm in the context of the last two millennia and there are no 30 yr periods in either reconstruction that exceed the mean average European summer temperature of the last 3 decades (1986-2015 CE). A comparison with an ensemble of climate model simulations suggests that the reconstructed European summer temperature variability over the period 850-2000 CE reflects changes in both internal variability and external forcing on multi-decadal time-scales. For pan-European temperatures we find slightly better agreement between the reconstruction and the model simulations with high-end estimates for total solar irradiance. Temperature differences between the medieval period, the recent period and the Little Ice Age are larger in the reconstructions than the simulations. This may indicate inflated variability of the reconstructions, a lack of sensitivity and processes to changes in external forcing on the simulated European climate and/or an underestimation of internal variability on centennial and longer time scales.

270 citations


Journal ArticleDOI
TL;DR: The recent rapid rise in global methane concentrations is predominantly biogenic-most likely from agriculture-with smaller contributions from fossil fuel use and possibly wetlands as discussed by the authors, but the reasons for this renewed growth are still unclear, primarily because of uncertainties in the global methane budget.
Abstract: Unlike CO2, atmospheric methane concentrations are rising faster than at any time in the past two decades and, since 2014, are now approaching the most greenhouse-gas-intensive scenarios. The reasons for this renewed growth are still unclear, primarily because of uncertainties in the global methane budget. New analysis suggests that the recent rapid rise in global methane concentrations is predominantly biogenic-most likely from agriculture-with smaller contributions from fossil fuel use and possibly wetlands. Additional attention is urgently needed to quantify and reduce methane emissions. Methane mitigation offers rapid climate benefits and economic, health and agricultural co-benefits that are highly complementary to CO2 mitigation.

264 citations


Journal ArticleDOI
TL;DR: In this paper, the authors trace, quantify and map the UK's direct and indirect water needs and assess the "imported water risk" by evaluating the sustainability of the water consumption in the source regions.
Abstract: While the water dependency of water-scarce nations is well understood, this is not the case for countries in temperate and humid climates, even though various studies have shown that many of such countries strongly rely on the import of water-intensive commodities from elsewhere. In this study we introduce a method to evaluate the sustainability and efficiency of the external water footprint (WF) of a country, with the UK as an example. We trace, quantify and map the UK's direct and indirect water needs and assess the 'imported water risk' by evaluating the sustainability of the water consumption in the source regions. In addition, we assess the efficiency of the water consumption in source areas in order to identify the room for water savings. We find that half of the UK's global blue WF—the direct and indirect consumption of ground- and surface water resources behind all commodities consumed in the UK—is located in places where the blue WF exceeds the maximum sustainable blue WF. About 55% of the unsustainable part of the UK's blue WF is located in six countries: Spain (14%), USA (11%), Pakistan (10%), India (7%), Iran (6%), and South Africa (6%). Our analysis further shows that about half of the global consumptive WF of the UK's direct and indirect crop consumption is inefficient, which means that consumptive WFs exceed specified WF benchmark levels. About 37% of the inefficient part of the UK's consumptive WF is located in six countries: Indonesia (7%), Ghana (7%), India (7%), Brazil (6%), Spain (5%), and Argentina (5%). In some source countries, like Pakistan, Iran, Spain, USA and Egypt, unsustainable and inefficient blue water consumption coincide. We find that, by lowering overall consumptive WFs to benchmark levels, the global blue WF of UK crop consumption could be reduced by 19%. We discuss four strategies to mitigate imported water risk: become more self-sufficient in food; diversify the import of water-intensive commodities, favouring the sourcing from water-abundant regions; reconsider the import of water-intensive commodities from the regions that are most severely water stressed altogether; and collaborate internationally with source countries with unsustainable water use where opportunities exist to increase water productivity.

257 citations


Journal ArticleDOI
TL;DR: In this paper, the authors examined the extent to which the increased use of several currently implemented methods can reduce the greenhouse gas emissions in concrete material production without requiring new technologies, changes in production, or novel material use.
Abstract: Due to its prevalence in modern infrastructure, concrete is experiencing the most rapid increase in consumption among globally common structural materials; however, the production of concrete results in approximately 8.6% of all anthropogenic CO2 emissions. Many methods have been developed to reduce the greenhouse gas emissions associated with the production of concrete. These methods range from the replacement of inefficient manufacturing equipment to alternative binders and the use of breakthrough technologies; nevertheless, many of these methods have barriers to implementation. In this research, we examine the extent to which the increased use of several currently implemented methods can reduce the greenhouse gas emissions in concrete material production without requiring new technologies, changes in production, or novel material use. This research shows that, through increased use of common supplementary cementitious materials, appropriate selection of proportions for cement replacement, and increased concrete design age, 24% of greenhouse gas emissions from global concrete production or 650 million tonnes (Mt) CO2-eq can be eliminated annually.

242 citations


Journal ArticleDOI
TL;DR: In this paper, the role of human activity on climate and heat-related mortality in an event attribution framework is quantified, using publicly-donated computing, using many thousands of climate simulations of a high-resolution regional climate model.
Abstract: It has been argued that climate change is the biggest global health threat of the 21st century. The extreme high temperatures of the summer of 2003 were associated with up to seventy thousand excess deaths across Europe. Previous studies have attributed the meteorological event to the human influence on climate, or examined the role of heat waves on human health. Here, for the first time, we explicitly quantify the role of human activity on climate and heat-related mortality in an event attribution framework, analysing both the Europe-wide temperature response in 2003, and localised responses over London and Paris. Using publicly-donated computing, we perform many thousands of climate simulations of a high-resolution regional climate model. This allows generation of a comprehensive statistical description of the 2003 event and the role of human influence within it, using the results as input to a health impact assessment model of human mortality. We find large-scale dynamical modes of atmospheric variability remain largely unchanged under anthropogenic climate change, and hence the direct thermodynamical response is mainly responsible for the increased mortality. In summer 2003, anthropogenic climate change increased the risk of heat-related mortality in Central Paris by ~70% and by ~20% in London, which experienced lower extreme heat. Out of the estimated ~315 and ~735 summer deaths attributed to the heatwave event in Greater London and Central Paris, respectively, 64 (±3) deaths were attributable to anthropogenic climate change in London, and 506 (±51) in Paris. Such an ability to robustly attribute specific damages to anthropogenic drivers of increased extreme heat can inform societal responses to, and responsibilities for, climate change.

Journal ArticleDOI
TL;DR: In this paper, the authors used satellite observations to robustly assess changes inmetrics of growing season (onset: SOS, end: EOS and length: LOS) and seasonal total gross primary productivity and evaluated the accuracy of thesemetrics by comparing them tomultiple independent direct and indirect growing season and productivitymeasures.
Abstract: Monitoring and understanding climate-induced changes in the boreal and arctic vegetation is critical to aid in prognosticating their future.We used a 33 year (1982–2014) long record of satellite observations to robustly assess changes inmetrics of growing season (onset: SOS, end: EOS and length: LOS) and seasonal total gross primary productivity. Particular attentionwas paid to evaluating the accuracy of thesemetrics by comparing them tomultiple independent direct and indirect growing season and productivitymeasures. These comparisons reveal that the derivedmetrics capture the spatio-temporal variations and trendswith acceptable significance level (generally p<0.05).We find that LOS has lengthened by 2.60 d dec (p<0.05) due to an earlier onset of SOS (−1.61 d dec, p<0.05) and a delayed EOS (0.67 d dec, p<0.1) at the circumpolar scale over the past three decades. Relatively greater rates of changes in growing seasonwere observed in Eurasia (EA) and in boreal regions than inNorthAmerica (NA) and the arctic regions. However, this tendency of earlier SOS and delayed EOSwas prominent only during the earlier part of the data record (1982–1999). During the later part (2000–2014), this tendencywas reversed, i.e. delayed SOS and earlier EOS. As for seasonal total productivity, wefind that 42.0%of northern vegetation shows a statistically significant (p<0.1) greening trend over the last three decades. This greening translates to a 20.9%gain in productivity since 1982. In contrast, only 2.5%of northern vegetation shows browning, or a 1.2% loss of productivity. These trends in productivity were continuous through the period of record, unlike changes in growing seasonmetrics. Similarly, wefind relatively greater increasing rates of productivity in EA and in arctic regions than inNA and the boreal regions. These results highlight spatially and temporally varying vegetation dynamics and are reflective of biome-specific responses of northern vegetation during last three decades.

Journal ArticleDOI
TL;DR: In this paper, the authors study changes in NO2 column densities using the Ozone Monitoring Instrument (OMI) over China from 2005 to 2015 and compare them with the bottom-up inventory to examine NO x emission trends and their driving forces.
Abstract: Tropospheric nitrogen dioxide (NO2) column densities detected from space are widely used to infer trends in terrestrial nitrogen oxide (NO x ) emissions. We study changes in NO2 column densities using the Ozone Monitoring Instrument (OMI) over China from 2005 to 2015 and compare them with the bottom-up inventory to examine NO x emission trends and their driving forces. From OMI measurements we detect the peak of NO2 column densities at a national level in the year 2011, with average NO2 column densities deceasing by 32% from 2011 to 2015 and corresponding to a simultaneous decline of 21% in bottom-up emission estimates. A significant variation in the peak year of NO2 column densities over regions is observed. Because of the reasonable agreement between the peak year of NO2 columns and the start of deployment of denitration devices, we conclude that power plants are the primary contributor to the NO2 decline, which is further supported by the emission reduction of 56% from the power sector in the bottom-up emission inventory associated with the penetration of selective catalytic reduction (SCR) increasing from 18% to 86% during 2011–2015. Meanwhile, regulations for vehicles also make a significant contribution to NO x emission reductions, in particular for a few urbanized regions (e.g., Beijing and Shanghai), where they implemented strict regulations for vehicle emissions years before the national schedule for SCR installations and thus reached their NO2 peak 2–3 years ahead of the deployment of denitration devices for power plants.

Journal ArticleDOI
TL;DR: In this article, the effect of increasing battery size and driving range to the environmental impact of electric vehicles (EVs) has been investigated, where the authors compile cradle-to-grave inventories for EVs in four size segments to determine their climate change potential.
Abstract: The primary goal of this study is to investigate the effect of increasing battery size and driving range to the environmental impact of electric vehicles (EVs). To this end, we compile cradle-to-grave inventories for EVs in four size segments to determine their climate change potential. A second objective is to compare the lifecycle emissions of EVs to those of conventional vehicles. For this purpose, we collect lifecycle emissions for conventional vehicles reported by automobile manufacturers. The lifecycle greenhouse gas emissions are calculated per vehicle and over a total driving range of 180 000 km using the average European electricity mix. Process-based attributional LCA and the ReCiPe characterisation method are used to estimate the climate change potential from the hierarchical perspective. The differently sized EVs are compared to one another to find the effect of increasing the size and range of EVs. We also point out the sources of differences in lifecycle emissions between conventional- and electric vehicles. Furthermore, a sensitivity analysis assesses the change in lifecycle emissions when electricity with various energy sources power the EVs. The sensitivity analysis also examines how the use phase electricity sources influences the size and range effect.

Journal ArticleDOI
TL;DR: In this paper, the authors used gridded, daily meteorological data and county-level annual yield data to quantify meteorological drought sensitivity of US maize and soybean production from 1958 to 2007.
Abstract: Maximizing agricultural production on existing cropland is one pillar of meeting future global food security needs. To close crop yield gaps, it is critical to understand how climate extremes such as drought impact yield. Here, we use gridded, daily meteorological data and county-level annual yield data to quantify meteorological drought sensitivity of US maize and soybean production from 1958 to 2007. Meteorological drought negatively affects crop yield over most US crop-producing areas, and yield is most sensitive to short-term (1–3 month) droughts during critical development periods from July to August. While meteorological drought is associated with 13% of overall yield variability, substantial spatial variability in drought effects and sensitivity exists, with central and southeastern US becoming increasingly sensitive to drought over time. Our study illustrates fine-scale spatiotemporal patterns of drought effects, highlighting where variability in crop production is most strongly associated with drought, and suggests that management strategies that buffer against short-term water stress may be most effective at sustaining long-term crop productivity. http://iopscience.iop.org/article/10.1088/1748-9326/11/9/094021/pdf Associated Project: Resilience to Water Hazards [1] DOI for citing: doi:10.1088/1748-9326/11/9/094021 Source URL: https://www.sesync.org/drought-effects-on-us-maize-and-soybean-production-spatiotemporal-patterns-and-historical-c hanges Links [1] https://www.sesync.org/project/graduate-student-pursuit-rfp/resilience-to-water-hazards

Journal ArticleDOI
TL;DR: In this paper, an integrated analysis of changes in human diets, N use efficiency (NUE) of cropping and livestock systems, N pollution and N in traded food and feed products for 12 world regions for the period 1960-2050 is presented.
Abstract: Nitrogen (N) limits crop and grass production, and it is an essential component of dietary proteins. However, N is mobile in the soil-plant system and can be lost to the environment. Estimates of N flows provide a critical tool for understanding and improving the sustainability and equity of the global food system. This letter describes an integrated analysis of changes in N in human diets, N use efficiency (NUE) of cropping and livestock systems, N pollution and N in traded food and feed products for 12 world regions for the period 1960–2050. The largest absolute change in consumption of animal proteins during the period 1960–2009 is seen in China, while the largest share of animal protein per capita is currently observed in North America, Europe and Oceania. Due to the substantial growth of the livestock sector, about three quarters of contemporary global crop production (expressed in protein and including fodder crops and bioenergy byproducts) is allocated to livestock. Trends and levels of NUE and N surpluses in crop production are also diverse, as some regions show soil N depletion (developing regions, e.g. Africa), improving efficiency (industrialized regions, e.g. USA and Europe) and excessive N use (e.g. China, India). Global trade between the 12 regions has increased by a factor of 7.5 for vegetable proteins and by a factor of 10 for animal proteins. The scenarios for 2050 demonstrate that it would be possible to feed the global population in 2050 with moderate animal protein consumption but with much less N pollution, and less international trade than today. In such a scenario, optimal allocation of N inputs among regions to maximize NUE would further decrease pollution, but would require increased levels of N trade comparable to those in a BAU scenario.

Journal ArticleDOI
Benjamin W. Abbott1, Jeremy B. Jones1, Edward A. G. Schuur2, F. Stuart Chapin1, William B. Bowden3, M. Syndonia Bret-Harte1, Howard E. Epstein4, Mike D. Flannigan5, Tamara K. Harms1, Teresa N. Hollingsworth6, Michelle C. Mack2, A. David McGuire7, Susan M. Natali8, Adrian V. Rocha9, Suzanne E. Tank5, Merritt R. Turetsky10, Jorien E. Vonk11, Kimberly P. Wickland7, George R. Aiken7, Heather D. Alexander12, Rainer M. W. Amon13, Brian W. Benscoter14, Yves Bergeron15, Kevin Bishop16, Olivier Blarquez17, Ben Bond-Lamberty18, Amy L. Breen1, Ishi Buffam19, Yihua Cai20, Christopher Carcaillet21, Sean K. Carey22, Jing M. Chen23, Han Y. H. Chen24, Torben R. Christensen25, Lee W. Cooper26, J. Hans C. Cornelissen11, William J. de Groot27, Thomas H. DeLuca28, Ellen Dorrepaal29, Ned Fetcher30, Jacques C. Finlay31, Bruce C. Forbes, Nancy H. F. French32, Sylvie Gauthier27, Martin P. Girardin27, Scott J. Goetz8, Johann G. Goldammer33, Laura Gough34, Paul Grogan35, Laodong Guo36, Philip E. Higuera37, Larry D. Hinzman1, Feng Sheng Hu38, Gustaf Hugelius39, Elchin Jafarov40, Randi Jandt1, Jill F. Johnstone41, Jan Karlsson29, Eric S. Kasischke, Gerhard Kattner42, Ryan C. Kelly, Frida Keuper43, George W. Kling44, Pirkko Kortelainen45, Jari Kouki46, Peter Kuhry39, Hjalmar Laudon16, Isabelle Laurion15, Robie W. Macdonald47, Paul J. Mann48, Pertti J. Martikainen46, James W. McClelland49, Ulf Molau50, Steven F. Oberbauer14, David Olefeldt5, David Paré27, Marc-André Parisien27, Serge Payette51, Changhui Peng52, Oleg S. Pokrovsky53, Edward B. Rastetter54, Peter A. Raymond55, Martha K. Raynolds1, Guillermo Rein56, James F. Reynolds57, Martin D. Robards, Brendan M. Rogers8, Christina Schaedel2, Kevin Schaefer40, Inger Kappel Schmidt58, Anatoly Shvidenko, Jasper Sky, Robert G. M. Spencer14, Gregory Starr59, Robert G. Striegl7, Roman Teisserenc60, Lars J. Tranvik61, Tarmo Virtanen, Jeffrey M. Welker62, Sergei Zimov63 
University of Alaska Fairbanks1, Northern Arizona University2, University of Vermont3, University of Virginia4, University of Alberta5, United States Department of Agriculture6, United States Geological Survey7, Woods Hole Oceanographic Institution8, University of Notre Dame9, University of Guelph10, VU University Amsterdam11, Mississippi State University12, University of North Texas13, Florida State University14, Université du Québec15, Swedish University of Agricultural Sciences16, McGill University17, United States Department of Energy18, University of Cincinnati19, Xiamen University20, École Normale Supérieure21, McMaster University22, University of Toronto23, Lakehead University24, Aarhus University25, University of Maryland Center for Environmental Science26, Natural Resources Canada27, University of Washington28, Umeå University29, Wilkes University30, University of Minnesota31, Michigan Technological University32, Max Planck Society33, University System of Maryland34, Queen's University35, University of Wisconsin–Milwaukee36, University of Montana System37, University of Illinois at Chicago38, Stockholm University39, University of Colorado Boulder40, University of Saskatchewan41, Alfred Wegener Institute for Polar and Marine Research42, Institut national de la recherche agronomique43, University of Michigan44, Finnish Environment Institute45, University of Eastern Finland46, Fisheries and Oceans Canada47, Northumbria University48, University of Texas at Austin49, University of Gothenburg50, Laval University51, Northwest A&F University52, Tomsk State University53, Marine Biological Laboratory54, Yale University55, Imperial College London56, Duke University57, University of Copenhagen58, University of Alabama59, Centre national de la recherche scientifique60, Uppsala University61, University of Alaska Anchorage62, Russian Academy of Sciences63
TL;DR: As the permafrost region warms, its large organic carbon pool will be increasingly vulnerable to decomposition, combustion, and hydrologic export as mentioned in this paper, and models predict that some portion of this release w...
Abstract: As the permafrost region warms, its large organic carbon pool will be increasingly vulnerable to decomposition, combustion, and hydrologic export. Models predict that some portion of this release w ...

Journal ArticleDOI
TL;DR: A Landsat-based humid tropical forest disturbance alert was implemented for Peru, the Republic of Congo and Kalimantan, Indonesia in 2014 and through September 2015, respectively.
Abstract: A Landsat-based humid tropical forest disturbance alert was implemented for Peru, the Republic of Congo and Kalimantan, Indonesia. Alerts were mapped on a weekly basis as new terrain-corrected Landsat 7 and 8 images were made available; results are presented for all of 2014 and through September 2015. The three study areas represent different stages of the forest land use transition, with all featuring a variety of disturbance dynamics including logging, smallholder agriculture, and agroindustrial development. Results for Peru were formally validated and alerts found to have very high user's accuracies and moderately high producer's accuracies, indicating an appropriately conservative product suitable for supporting land management and enforcement activities. Complete pan-tropical coverage will be implemented during 2016 in support of the Global Forest Watch initiative. To date, Global Forest Watch produces annual global forest loss area estimates using a comparatively richer set of Landsat inputs. The alert product is presented as an interim update of forest disturbance events between comprehensive annual updates. Results from this study are available for viewing and download at http://glad.geog.umd.edu/forest-alerts and www.globalforestwatch.org.

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the yield-increasing potential of elevated irrigation water productivity and optimized use of in situ precipitation water (alleviated soil evaporation, enhanced infiltration, water harvesting for supplemental irrigation) under current and projected future climate.
Abstract: As planetary boundaries are rapidly being approached, humanity has little room for additional expansion and conventional intensification of agriculture, while a growing world population further spreads the food gap. Ample evidence exists that improved on-farm water management can close water-related yield gaps to a considerable degree, but its global significance remains unclear. In this modeling study we investigate systematically to what extent integrated crop water management might contribute to closing the global food gap, constrained by the assumption that pressure on water resources and land does not increase. Using a process-based bio-/agrosphere model, we simulate the yield-increasing potential of elevated irrigation water productivity (including irrigation expansion with thus saved water) and optimized use of in situ precipitation water (alleviated soil evaporation, enhanced infiltration, water harvesting for supplemental irrigation) under current and projected future climate (from 20 climate models, with and without beneficial CO2 effects). Results show that irrigation efficiency improvements can save substantial amounts of water in many river basins (globally 48% of non-productive water consumption in an 'ambitious' scenario), and if rerouted to irrigate neighboring rainfed systems, can boost kcal production significantly (26% global increase). Low-tech solutions for small-scale farmers on water-limited croplands show the potential to increase rainfed yields to a similar extent. In combination, the ambitious yet achievable integrated water management strategies explored in this study could increase global production by 41% and close the water-related yield gap by 62%. Unabated climate change will have adverse effects on crop yields in many regions, but improvements in water management as analyzed here can buffer such effects to a significant degree.

Journal ArticleDOI
TL;DR: In this paper, the authors employed the urbanized version of the Weather Research and Forecasting (uWRF) model at high (1 km) resolution with physically-based rooftop parameterization schemes (conventional, green and cool), a first time application to the Chicago metropolitan area.
Abstract: The effects of urban heat islands (UHIs) have a substantial bearing on the sustainability of cities and environs. This paper examines the efficacy of green and cool roofs as potential UHI mitigation strategies to make cities more resilient against UHI. We have employed the urbanized version of the Weather Research and Forecasting (uWRF) model at high (1 km) resolution with physically-based rooftop parameterization schemes (conventional, green and cool), a first-time application to the Chicago metropolitan area. We simulated a hot summer period (16–18 August 2013) and assessed (i) UHI reductions for different urban landuse with green/cool roofs, (ii) the interaction of lake breeze and UHI, and (iii) diurnal boundary layer dynamics. The performance of uWRF was evaluated using sensible heat flux and air temperature measurements from an urban mini-field campaign. The simulated roof surface energy balance captured the energy distribution with respective rooftop algorithms. Results showed that daytime roof temperature reduced and varied linearly with increasing green roof fractions, from less than 1 °C for the case of 25% green roof to ~3 °C during peak daytime for 100% green roof. Diurnal transitions from land to lake breeze and vice versa had a substantial impact on the daytime cycle of roof surface UHI, which had a 3–4 hour lag in comparison to 2 m UHI. Green and cool roofs reduced horizontal and vertical wind speeds and affected lower atmosphere dynamics, including reduced vertical mixing, lower boundary layer depth, and weaker convective rolls. The lowered wind speeds and vertical mixing during daytime led to stagnation of air near the surface, potentially causing air quality issues. The selection of green and cool roofs for UHI mitigation should therefore carefully consider the competing feedbacks. The new results for regional land-lake circulations and boundary layer dynamics from this study may be extended to other urbanized areas, particularly to coastal areas.

Journal Article
Benjamin W. Abbott, Jeremy B. Jones, Edward A. G. Schuur, F. Stuart Chapin, William B. Bowden, M. Syndonia Bret-Harte, Howard E. Epstein, Mike D. Flannigan, Tamara K. Harms, Teresa N. Hollingsworth, Michelle C. Mack, A. David McGuire, Susan M. Natali, Adrian V. Rocha, Suzanne E. Tank, Merritt R. Turetsky, Jorien E. Vonk, Kimberly P. Wickland, George R. Aiken, Heather D. Alexander, Rainer M. W. Amon, Brian W. Benscoter, Yves Bergeron, Kevin Bishop, Olivier Blarquez, Ben Bond-Lamberty, Amy L. Breen, Ishi Buffam, Yihua Cai, Christopher Carcaillet, Sean K. Carey, Jing M. Chen, Han Y. H. Chen, Torben R. Christensen, Lee W. Cooper, J. Hans C. Cornelissen, William J. de Groot, Thomas H. DeLuca, Ellen Dorrepaal, Ned Fetcher, Jacques C. Finlay, Bruce C. Forbes, Nancy H. F. French, Sylvie Gauthier, Martin P. Girardin, Scott J. Goetz, Johann G. Goldammer, Laura Gough, Paul Grogan, Laodong Guo, Philip E. Higuera, Larry D. Hinzman, Feng Sheng Hu, Gustaf Hugelius, Elchin Jafarov, Randi Jandt, Jill F. Johnstone, Jan Karlsson, Eric S. Kasischke, Gerhard Kattner, Ryan C. Kelly, Frida Keuper, George W. Kling, Pirkko Kortelainen, Jari Kouki, Peter Kuhry, Hjalmar Laudon, Isabelle Laurion, Robie W. Macdonald, Paul J. Mann, Pertti J. Martikainen, James W. McClelland, Ulf Molau, Steven F. Oberbauer, David Olefeldt, David Paré, Marc-André Parisien, Serge Payette, Changhui Peng, Oleg S. Pokrovsky, Edward B. Rastetter, Peter A. Raymond, Martha K. Raynolds, Guillermo Rein, James F. Reynolds, Martin D. Robards, Brendan M. Rogers, Christina Schaedel, Kevin Schaefer, Inger Kappel Schmidt, Anatoly Shvidenko, Jasper Sky, Robert G. M. Spencer, Gregory Starr, Robert G. Striegl, Roman Teisserenc, Lars J. Tranvik, Tarmo Virtanen, Jeffrey M. Welker, Sergei Zimov 
TL;DR: As the permafrost region warms, its large organic carbon pool will be increasingly vulnerable to decomposition, combustion, and hydrologic export as mentioned in this paper, and models predict that some portion of this release w...
Abstract: As the permafrost region warms, its large organic carbon pool will be increasingly vulnerable to decomposition, combustion, and hydrologic export. Models predict that some portion of this release w ...

Journal ArticleDOI
TL;DR: In this paper, the authors analyzed high-resolution, spatially-explicit land-use change indicators capturing changes in both the extent and management intensity of cropland, grazing land, forests, and urban areas for all of Europe for the period 1990-2006.
Abstract: Assessing changes in the extent and management intensity of land use is crucial to understanding land-system dynamics and their environmental and social outcomes. Yet, changes in the spatial patterns of land management intensity, and thus how they might relate to changes in the extent of land uses, remains unclear for many world regions. We compiled and analyzed high-resolution, spatially-explicit land-use change indicators capturing changes in both the extent and management intensity of cropland, grazing land, forests, and urban areas for all of Europe for the period 1990-2006. Based on these indicators, we identified hotspots of change and explored the spatial concordance of area versus intensity changes. We found a clear East-West divide with regard to agriculture, with stronger cropland declines and lower management intensity in the East compared to the West. Yet, these patterns were not uniform and diverging patterns of intensification in areas highly suitable for farming, and disintensification and cropland contraction in more marginal areas emerged. Despite the moderate overall rates of change, many regions in Europe fell into at least one land-use change hotspot during 1990-2006, often related to a spatial reorganization of land use (i.e., co-occurring area decline and intensification or co-occurring area increase and disintensification). Our analyses highlighted the diverse spatial patterns and heterogeneity of land-use changes in Europe, and the importance of jointly considering changes in the extent and management intensity of land use, as well as feedbacks among land-use sectors. Given this spatial differentiation of land-use change, and thus its environmental impacts, spatially-explicit assessments of land-use dynamics are important for context-specific, regionalized land-use policy making.

Journal ArticleDOI
TL;DR: In this article, the authors present the first analysis of coastal dynamics from a sea-level rise hotspot in the Solomon Islands, using time series aerial and satellite imagery from 1947 to 2014 of 33 islands, along with historical insight from local knowledge.
Abstract: Low-lying reef islands in the Solomon Islands provide a valuable window into the future impacts of global sea-level rise. Sea-level rise has been predicted to cause widespread erosion and inundation of low-lying atolls in the central Pacific. However, the limited research on reef islands in the western Pacific indicates the majority of shoreline changes and inundation to date result from extreme events, seawalls and inappropriate development rather than sea-level rise alone. Here, we present the first analysis of coastal dynamics from a sea-level rise hotspot in the Solomon Islands. Using time series aerial and satellite imagery from 1947 to 2014 of 33 islands, along with historical insight from local knowledge, we have identified five vegetated reef islands that have vanished over this time period and a further six islands experiencing severe shoreline recession. Shoreline recession at two sites has destroyed villages that have existed since at least 1935, leading to community relocations. Rates of shoreline recession are substantially higher in areas exposed to high wave energy, indicating a synergistic interaction between sea-level rise and waves. Understanding these local factors that increase the susceptibility of islands to coastal erosion is critical to guide adaptation responses for these remote Pacific communities.

Journal ArticleDOI
TL;DR: In this article, the authors present a global analysis detecting yield variability change and attributing it to recent climate change using spatially-explicit global data sets of historical yields and an agro-climatic index based on daily weather data.
Abstract: While changes in temperature and precipitation extremes are evident, their influence on crop yield variability remains unclear. Here we present a global analysis detecting yield variability change and attributing it to recent climate change using spatially-explicit global data sets of historical yields and an agro-climatic index based on daily weather data. The agro-climatic index used here is the sum of effective global radiation intercepted by the crop canopy during the yield formation stage that includes thresholds for extreme temperatures and extreme soil moisture deficit. Results show that year-to-year variations in yields of maize, soybean, rice and wheat in 1981–2010 significantly decreased in 19%–33% of the global harvested area with varying extent of area by crop. However, in 9%–22% of harvested area, significant increase in yield variability was detected. Major crop-producing regions with increased yield variability include maize and soybean in Argentina and Northeast China, rice in Indonesia and Southern China, and wheat in Australia, France and Ukraine. Examples of relatively food-insecure regions with increased yield variability are maize in Kenya and Tanzania and rice in Bangladesh and Myanmar. On a global scale, over 21% of the yield variability change could be explained by the change in variability of the agro-climatic index. More specifically, the change in variability of temperatures exceeding the optimal range for yield formation was more important in explaining the yield variability change than other abiotic stresses, such as temperature below the optimal range for yield formation and soil water deficit. Our findings show that while a decrease in yield variability is the main trend worldwide across crops, yields in some regions of the world have become more unstable, suggesting the need for long-term global yield monitoring and a better understanding of the contributions of technology, management, policy and climate to ongoing yield variability change.

Journal ArticleDOI
TL;DR: In this paper, a spatial multi-criteria analysis framework is presented to provide a global assessment of water security based on Goal 6 of SDGs, where the term "security" is conceptualized as a function of availability, accessibility, accessibility to services, safety and quality, and management.
Abstract: Water plays an important role in underpinning equitable, stable and productive societies and ecosystems. Hence, United Nations recognized ensuring water security as one (Goal 6) of the seventeen sustainable development goals (SDGs). Many international river basins are likely to experience 'low water security' over the coming decades. Water security is rooted not only in the physical availability of freshwater resources relative to water demand, but also on social and economic factors (e.g. sound water planning and management approaches, institutional capacity to provide water services, sustainable economic policies). Until recently, advanced tools and methods are available for the assessment of water scarcity. However, quantitative and integrated—physical and socio-economic—approaches for spatial analysis of water security at global level are not available yet. In this study, we present a spatial multi-criteria analysis framework to provide a global assessment of water security. The selected indicators are based on Goal 6 of SDGs. The term 'security' is conceptualized as a function of 'availability', 'accessibility to services', 'safety and quality', and 'management'. The proposed global water security index (GWSI) is calculated by aggregating indicator values on a pixel-by-pixel basis, using the ordered weighted average method, which allows for the exploration of the sensitivity of final maps to different attitudes of hypothetical policy makers. Our assessment suggests that countries of Africa, South Asia and Middle East experience very low water security. Other areas of high water scarcity, such as some parts of United States, Australia and Southern Europe, show better GWSI values, due to good performance of management, safety and quality, and accessibility. The GWSI maps show the areas of the world in which integrated strategies are needed to achieve water related targets of the SDGs particularly in the African and Asian continents.

Journal ArticleDOI
TL;DR: In this article, the authors analyzed the synergies and risk trade-offs of alternative 2 °C pathways across indicators relevant for energy-related SDGs and sustainable energy objectives and found that limiting the availability of key mitigation technologies yields some co-benefits and decreases risks specific to these technologies but greatly increases many others.
Abstract: The adoption of the Sustainable Development Goals (SDGs) and the new international climate treaty could put 2015 into the history books as a defining year for setting human development on a more sustainable pathway. The global climate policy and SDG agendas are highly interconnected: the way that the climate problem is addressed strongly affects the prospects of meeting numerous other SDGs and vice versa. Drawing on existing scenario results from a recent energy-economy-climate model inter-comparison project, this letter analyses these synergies and (risk) trade-offs of alternative 2 °C pathways across indicators relevant for energy-related SDGs and sustainable energy objectives. We find that limiting the availability of key mitigation technologies yields some co-benefits and decreases risks specific to these technologies but greatly increases many others. Fewer synergies and substantial trade-offs across SDGs are locked into the system for weak short-term climate policies that are broadly in line with current Intended Nationally Determined Contributions (INDCs), particularly when combined with constraints on technologies. Lowering energy demand growth is key to managing these trade-offs and creating synergies across multiple energy-related SD dimensions. We argue that SD considerations are central for choosing socially acceptable 2 °C pathways: the prospects of meeting other SDGs need not dwindle and can even be enhanced for some goals if appropriate climate policy choices are made. Progress on the climate policy and SDG agendas should therefore be tracked within a unified framework.

Journal ArticleDOI
TL;DR: In this article, the authors synthesize 28 multidisciplinary studies which provide field evidence, remote sensing observations, and modeling results on various scales to understand how permafrost interacts with ecosystems and climate on various spatial and temporal scales.
Abstract: The permafrost component of the cryosphere is changing dramatically, but the permafrost region is not well monitored and the consequences of change are not well understood. Changing permafrost interacts with ecosystems and climate on various spatial and temporal scales. The feedbacks resulting from these interactions range from local impacts on topography, hydrology, and biology to complex influences on global scale biogeochemical cycling. This review contributes to this focus issue by synthesizing its 28 multidisciplinary studies which provide field evidence, remote sensing observations, and modeling results on various scales. We synthesize study results from a diverse range of permafrost landscapes and ecosystems by reporting key observations and modeling outcomes for permafrost thaw dynamics, identifying feedbacks between permafrost and ecosystem processes, and highlighting biogeochemical feedbacks from permafrost thaw. We complete our synthesis by discussing the progress made, stressing remaining challenges and knowledge gaps, and providing an outlook on future needs and research opportunities in the study of permafrost–ecosystem–climate interactions.

Journal ArticleDOI
TL;DR: In this article, the authors quantify the magnitude and the spatial extent of the most extreme heat waves experienced in Africa between 1979 and October 2015 across different seasons, and show that in the recent years Africa experienced hotter, longer and more extent heat waves than in the last two decades of the 20th century.
Abstract: Africa is one of the most vulnerable continents to climate change. In the upcoming decades the occurrence of longer, hotter and more frequent heat waves could have a strong impact on human mortality and crop production. Here, by applying the heat wave magnitude index daily to temperature reanalysis data, we quantify the magnitude and the spatial extent of the most extreme heat waves experienced in Africa between 1979 and October 2015 across different seasons. Results show that in the recent years Africa experienced hotter, longer and more extent heat waves than in the last two decades of the 20th century. In the future, 50% of regional climateprojections suggest that heat waves that are unusual under present climate conditions will occur on a regular basis by 2040 under the most severe IPCC AR5 scenario (i.e. RCP8.5).

Journal ArticleDOI
TL;DR: In this article, the authors analyzed side effects of these transitions on total dissolved nitrogen (TDN) and phosphorus (TDP) inputs to rivers and found that direct manure discharge accounts for over two-thirds of nutrients in the northern rivers and for 20% to 95% of nutrients on the central and southern rivers.
Abstract: Transitions in Chinese agriculture resulted in industrial animal production systems, disconnected from crop production. We analyzed side-effects of these transitions on total dissolved nitrogen (TDN) and phosphorus (TDP) inputs to rivers. In 2000, when transitions were ongoing, 30%–70% of the manure was directly discharged to rivers (range for sub-basins). Before the transition (1970) this was only 5%. Meanwhile, animal numbers more than doubled. As a result, TDN and TDP inputs to rivers increased 2- to 45-fold (range for sub-basins) during 1970–2000. Direct manure discharge accounts for over two-thirds of nutrients in the northern rivers and for 20%–95% of nutrients in the central and southern rivers. Environmental concern is growing in China. However, in the future, direct manure inputs may increase. Animal production is the largest cause of aquatic eutrophication. Our study is a warning signal and an urgent call for action to recycle animal manure in arable farming.

Journal ArticleDOI
TL;DR: Moher et al. as discussed by the authors synthesised 242 references from peer-reviewed and grey literature published between 1945 and mid-2015 and analysed secondary data to examine the evidence on the ecosystem services provided by this grassland biodiversity hotspot and the way they are affected by land use changes and their drivers.
Abstract: New livestock production models need to simultaneously meet the increasing global demand for meat and preserve biodiversity and ecosystem services. Since the 16th century beef cattle has been produced on the Pampas and Campos native grasslands in southern South America, with only small amounts of external inputs. We synthesised 242 references from peer-reviewed and grey literature published between 1945 and mid-2015 and analysed secondary data to examine the evidence on the ecosystem services provided by this grassland biodiversity hotspot and the way they are affected by land use changes and their drivers. The analysis followed the requirements of systematic review from the PRISMA statement (Moher et al 2009 Acad. Clin. Ann. Intern. Med. 151 264–9). The Pampas and Campos provide feed for 43 million heads of cattle and 14 million sheep. The biome is habitat of 4000 native plant species, 300 species of birds, 29 species of mammals, 49 species of reptiles and 35 species of amphibians. The soils of the region stock 5% of the soil organic carbon of Latin America on 3% of its area. Driven by high prices of soybean, the soybean area increased by 210% between 2000 and 2010, at the expense of 2 million ha (5%) of native grassland, mostly in the Pampas. Intensification of livestock production was apparent in two spatially distinct forms. In subregions where cropping increased, intensification of livestock production was reflected in an increased use of grains for feed as part of feedlots. In subregions dominated by native grasslands, stocking rates increased. The review showed that land use change and grazing regimes with low forage allowances were predominantly associated with negative effects on ecosystem service provision by reducing soil organic carbon stocks and the diversity of plants, birds and mammals, and by increasing soil erosion. We found little quantitative information on changes in the ecosystem services water provision, nutrient cycling and erosion control. We discuss how changing grazing regimes to higher forage allowance can contribute to greater meat production and enhancing ecosystem services from native grasslands. This would require working with farmers on changing their management strategies and creating enabling economic conditions. (Resume d'auteur)