scispace - formally typeset
Search or ask a question

Showing papers in "Environmental Science & Technology in 2019"


Journal ArticleDOI
TL;DR: This work critically discusses the advantages and disadvantages of a unified terminology, proposes a definition and categorization framework, and highlights areas of uncertainty on how to define and categorize plastic debris.
Abstract: The accumulation of plastic litter in natural environments is a global issue. Concerns over potential negative impacts on the economy, wildlife, and human health provide strong incentives for improving the sustainable use of plastics. Despite the many voices raised on the issue, we lack a consensus on how to define and categorize plastic debris. This is evident for microplastics, where inconsistent size classes are used and where the materials to be included are under debate. While this is inherent in an emerging research field, an ambiguous terminology results in confusion and miscommunication that may compromise progress in research and mitigation measures. Therefore, we need to be explicit on what exactly we consider plastic debris. Thus, we critically discuss the advantages and disadvantages of a unified terminology, propose a definition and categorization framework, and highlight areas of uncertainty. Going beyond size classes, our framework includes physicochemical properties (polymer composition, solid state, solubility) as defining criteria and size, shape, color, and origin as classifiers for categorization. Acknowledging the rapid evolution of our knowledge on plastic pollution, our framework will promote consensus building within the scientific and regulatory community based on a solid scientific foundation.

1,119 citations


Journal ArticleDOI
TL;DR: Focusing on the American diet, the number of microplastic particles in commonly consumed foods in relation to their recommended daily intake is evaluated and it is estimated that annual microplastics consumption ranges from 39000 to 52000 particles depending on age and sex.
Abstract: Microplastics are ubiquitous across ecosystems, yet the exposure risk to humans is unresolved. Focusing on the American diet, we evaluated the number of microplastic particles in commonly consumed ...

1,001 citations


Journal ArticleDOI
TL;DR: The findings reported here imply that the pervasive microplastic contamination in soil may have consequences for plant performance and thus for agroecosystems and terrestrial biodiversity.
Abstract: Microplastics can affect biophysical properties of the soil. However, little is known about the cascade of events in fundamental levels of terrestrial ecosystems, i.e., starting with the changes in soil abiotic properties and propagating across the various components of soil-plant interactions, including soil microbial communities and plant traits. We investigated here the effects of six different microplastics (polyester fibers, polyamide beads, and four fragment types: polyethylene, polyester terephthalate, polypropylene, and polystyrene) on a broad suite of proxies for soil health and performance of spring onion ( Allium fistulosum). Significant changes were observed in plant biomass, tissue elemental composition, root traits, and soil microbial activities. These plant and soil responses to microplastic exposure were used to propose a causal model for the mechanism of the effects. Impacts were dependent on particle type, i.e., microplastics with a shape similar to other natural soil particles elicited smaller differences from control. Changes in soil structure and water dynamics may explain the observed results in which polyester fibers and polyamide beads triggered the most pronounced impacts on plant traits and function. The findings reported here imply that the pervasive microplastic contamination in soil may have consequences for plant performance and thus for agroecosystems and terrestrial biodiversity.

785 citations


Journal ArticleDOI
TL;DR: One-dimension manganese dioxides (α- and β-MnO2) were discovered as effective PDS activators among the diverse manganes oxides for selective degradation of organic contaminants in wastewater and provides a novel catalytic system for selective removal of organic contamination in wastewater.
Abstract: Minerals and transitional metal oxides of earth-abundant elements are desirable catalysts for in situ chemical oxidation in environmental remediation. However, catalytic activation of peroxydisulfate (PDS) by manganese oxides was barely investigated. In this study, one-dimension manganese dioxides (α- and β-MnO2) were discovered as effective PDS activators among the diverse manganese oxides for selective degradation of organic contaminants. Compared with other chemical states and crystallographic structures of manganese oxide, β-MnO2 nanorods exhibited the highest phenol degradation rate (0.044 min-1, 180 min) by activating PDS. A comprehensive study was conducted utilizing electron paramagnetic resonance, chemical probes, radical scavengers, and different solvents to identity the reactive oxygen species (ROS). Singlet oxygen (1O2) was unveiled to be the primary ROS, which was generated by direct oxidation or recombination of superoxide ions and radicals from a metastable manganese intermediate at neutral pH. The study dedicates to the first mechanistic study into PDS activation over manganese oxides and provides a novel catalytic system for selective removal of organic contaminants in wastewater.

733 citations


Journal ArticleDOI
TL;DR: The influence of particle size and surface chemistry are discussed, in order to understand the possible risks of nanoplastics for humans and provide recommendations for future studies.
Abstract: On account of environmental concerns, the fate and adverse effects of plastics have attracted considerable interest in the past few years. Recent studies have indicated the potential for fragmentation of plastic materials into nanoparticles, i.e., "nanoplastics," and their possible accumulation in the environment. Nanoparticles can show markedly different chemical and physical properties than their bulk material form. Therefore possible risks and hazards to the environment need to be considered and addressed. However, the fate and effect of nanoplastics in the (aquatic) environment has so far been little explored. In this review, we aim to provide an overview of the literature on this emerging topic, with an emphasis on the reported impacts of nanoplastics on human health, including the challenges involved in detecting plastics in a biological environment. We first discuss the possible sources of nanoplastics and their fates and effects in the environment and then describe the possible entry routes of these particles into the human body, as well as their uptake mechanisms at the cellular level. Since the potential risks of environmental nanoplastics to humans have not yet been extensively studied, we focus on studies demonstrating cell responses induced by polystyrene nanoparticles. In particular, the influence of particle size and surface chemistry are discussed, in order to understand the possible risks of nanoplastics for humans and provide recommendations for future studies.

611 citations


Journal ArticleDOI
TL;DR: Evidence is provided that microplastics manufactured of HDPE and PLA, and synthetic fibers can affect the development of L. perenne, health of A. rosea and basic, but crucial soil properties, with potential further impacts on soil ecosystem functioning.
Abstract: Environmental contamination by microplastics is now considered an emerging threat to biodiversity and ecosystem functioning. Soil ecosystems, particularly agricultural land, have been recognized as a major sink of microplastics, but the impacts of microplastics on soil ecosystems (e.g., above and below ground) remain largely unknown. In this study, different types of microplastics [biodegradable polylactic acid (PLA)], conventional high-density polyethylene (HDPE), and microplastic clothing fibers were added to soil containing the endogeic Aporrectodea rosea (rosy-tipped earthworm) and planted with Lolium perenne (perennial ryegrass) to assess the biophysical soil response in a mesocosm experiment. When exposed to fibers or PLA microplastics, fewer seeds germinated. There was also a reduction in shoot height with PLA. The biomass of A. rosea exposed to HDPE was significantly reduced compared to control samples. Furthermore, with HDPE present there was a decrease in soil pH. The size distribution of water-stable soil aggregates was altered when microplastics were present, suggesting potential alterations of soil stability. This study provides evidence that microplastics manufactured of HDPE and PLA, and synthetic fibers can affect the development of L. perenne, health of A. rosea and basic, but crucial soil properties, with potential further impacts on soil ecosystem functioning.

576 citations


Journal ArticleDOI
TL;DR: It is shown that steeping a single plastic teabag at brewing temperature (95 °C) releases approximately 11.6 billion microplastics and 3.1 billion nanoplastics into a single cup of the beverage.
Abstract: The increasing presence of micro- and nano-sized plastics in the environment and food chain is of growing concern. Although mindful consumers are promoting the reduction of single-use plastics, some manufacturers are creating new plastic packaging to replace traditional paper uses, such as plastic teabags. The objective of this study was to determine whether plastic teabags could release microplastics and/or nanoplastics during a typical steeping process. We show that steeping a single plastic teabag at brewing temperature (95 °C) releases approximately 11.6 billion microplastics and 3.1 billion nanoplastics into a single cup of the beverage. The composition of the released particles is matched to the original teabags (nylon and polyethylene terephthalate) using Fourier-transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). The levels of nylon and polyethylene terephthalate particles released from the teabag packaging are several orders of magnitude higher than plastic loads pr...

495 citations


Journal ArticleDOI
TL;DR: A critical examination of the trajectory of photocatalytic water treatment research is undertaken, assessing the viability of proposed applications and identifying those with the most promising future.
Abstract: Advanced oxidation processes via semiconductor photocatalysis for water treatment have been the subject of extensive research over the past three decades, producing many scientific reports focused on elucidating mechanisms and enhancing kinetics for the treatment of contaminants in water. Many of these reports imply that the ultimate goal of the research is to apply photocatalysis in municipal water treatment operations. However, this ignores immense technology transfer problems, perpetuating a widening gap between academic advocation and industrial application. In this Feature, we undertake a critical examination of the trajectory of photocatalytic water treatment research, assessing the viability of proposed applications and identifying those with the most promising future. Several strategies are proposed for scientists and engineers who aim to support research efforts to bring industrially relevant photocatalytic water treatment processes to fruition. Although the reassessed potential may not live up to initial academic hype, an unfavorable assessment in some areas does not preclude the transfer of photocatalysis for water treatment to other niche applications as the technology retains substantive and unique benefits.

460 citations


Journal ArticleDOI
TL;DR: This review systematically summarizes the behavior and removal of different antibiotics in various biological treatment systems with discussion on their removal efficiency, removal mechanisms, critical bioreactor operating conditions affecting antibiotics removal, and recent innovative advancements.
Abstract: Antibiotics, the most frequently prescribed drugs of modern medicine, are extensively used for both human and veterinary applications. Antibiotics from different wastewater sources (e.g., municipal, hospitals, animal production, and pharmaceutical industries) ultimately are discharged into wastewater treatment plants. Sorption and biodegradation are the two major removal pathways of antibiotics during biological wastewater treatment processes. This review provides the fundamental insights into sorption mechanisms and biodegradation pathways of different classes of antibiotics with diverse physical-chemical attributes. Important factors affecting sorption and biodegradation behavior of antibiotics are also highlighted. Furthermore, this review also sheds light on the critical role of extracellular polymeric substances on antibiotics adsorption and their removal in engineered biological wastewater treatment systems. Despite major advancements, engineered biological wastewater treatment systems are only moderately effective (48-77%) in the removal of antibiotics. In this review, we systematically summarize the behavior and removal of different antibiotics in various biological treatment systems with discussion on their removal efficiency, removal mechanisms, critical bioreactor operating conditions affecting antibiotics removal, and recent innovative advancements. Besides, relevant background information including antibiotics classification, physical-chemical properties, and their occurrence in the environment from different sources is also briefly covered. This review aims to advance our understanding of the fate of various classes of antibiotics in engineered biological wastewater treatment systems and outlines future research directions.

454 citations


Journal ArticleDOI
Peng Liu1, Li Qian1, Hanyu Wang1, Xin Zhan1, Kun Lu1, Cheng Gu1, Shixiang Gao1 
TL;DR: This study investigated the alteration properties of polystyrene and high-density polyethylene microplastics by heat-activated K2S2O8 and Fenton treatments to improve the understanding of their long-term natural aging in aquatic environments and indicated that the O/C ratio was an alternative parameter to the carbonyl index (CI) to quantitatively describe the surface alteration properties.
Abstract: In the environment, microplastics are subjected to multiple aging processes; however, information regarding the impact of aging on the environmental behavior of microplastics is still lacking. This study investigated the alteration properties of polystyrene and high-density polyethylene microplastics by heat-activated K2S2O8 and Fenton treatments to improve the understanding of their long-term natural aging in aquatic environments. Our results indicated that the O/C ratio was an alternative parameter to the carbonyl index (CI) to quantitatively describe the surface alteration properties of microplastics. The correlation model of the O/C ratio or CI versus alteration time was developed and compared by natural alteration of microplastics in freshwater samples. Moreover, the regression equation of the equilibrium adsorption capacity of altered microplastics versus the O/C ratio and average size was proposed. This study is the first effort in differentiating the relationships between the alteration properties and alteration time/adsorption capacity of microplastics, which would be helpful for predicting the weathering degree and accumulation of hydrophilic antibiotics onto aged microplastics in aquatic environments. This research develops promising strategies to accelerate the aging reactions using advanced oxidation processes, which would provide further information to assess the microplastic pollution in actual environments.

431 citations


Journal ArticleDOI
TL;DR: This work develops geoscience-derived estimates of PM2.5 composition from a chemical transport model and satellite observations of aerosol optical depth and statistically fuse these estimates with ground-based observations using a geographically weighted regression over North America to produce a spatially complete representation.
Abstract: An accurate fine-resolution surface of the chemical composition of fine particulate matter (PM2.5) would offer valuable information for epidemiological studies and health impact assessments. We develop geoscience-derived estimates of PM2.5 composition from a chemical transport model (GEOS-Chem) and satellite observations of aerosol optical depth, and statistically fuse these estimates with ground-based observations using a geographically weighted regression over North America to produce a spatially complete representation of sulfate, nitrate, ammonium, black carbon, organic matter, mineral dust, and sea-salt over 2000-2016. Significant long-term agreement is found with cross-validation sites over North America (R2 = 0.57-0.96), with the strongest agreement for sulfate (R2 = 0.96), nitrate (R2 = 0.90), and ammonium (R2 = 0.86). We find that North American decreases in population-weighted fine particulate matter (PM2.5) concentrations since 2000 have been most heavily influenced by regional changes in sulfate and organic matter. Regionally, the relative importance of several chemical components are found to change with PM2.5 concentration, such as higher PM2.5 concentrations having a larger proportion of nitrate and a smaller proportion of sulfate. This data set offers information for research into the health effects of PM2.5 chemical components.

Journal ArticleDOI
TL;DR: This study proposed an electrochemical technique for investigating the nonradical oxidation pathway of organics in carbon nanotubes-catalyzed peroxydisulfate (PDS) activation, and the nature of nonradical pathway was unveiled to be an electron-transfer regime without singlet oxygenation process.
Abstract: This study proposed an electrochemical technique for investigating the mechanism of nonradical oxidation of organics with peroxydisulfate (PDS) activated by carbon nanotubes (CNT). The electrochemical property of twelve phenolic compounds (PCs) was evaluated by their half-wave potentials, which were then correlated to their kinetic rate constants in the PDS/CNT system. Integrated with quantitative structure-activity relationships (QSARs), electron paramagnetic resonance (EPR), and radical scavenging tests, the nature of nonradical pathways of phenolic compound oxidation was unveiled to be an electron-transfer regime other than a singlet oxygenation process. The QSARs were established according to their standard electrode potentials, activation energy, and pre-exponential factor. A facile electrochemical analysis method (chronopotentiometry combined with chronoamperometry) was also employed to probe the mechanism, suggesting that PDS was catalyzed initially by CNT to form a CNT surface-confined and -activated PDS (CNT-PDS*) complex with a high redox potential. Then, the CNT-PDS* complex selectively abstracted electrons from the co-adsorbed PCs to initiate the oxidation. Finally, a comparison of PDS/CNT and graphite anodic oxidation under constant potentials was comprehensively analyzed to unveil the relative activity of the nonradical CNT-PDS* complex toward the oxidation of different PCs, which was found to be dependent on the oxidative potentials of the CNT-PDS* complex and the adsorbed organics.

Journal ArticleDOI
TL;DR: A molybdenum cocatalytic Fenton system is developed, which can realize the transformation from •O2- to 1O2 on the premise of minimizing •OH and provide a promising REDOX Fenton-like system for water treatment.
Abstract: As an important reactive oxygen species (ROS) with selective oxidation, singlet oxygen (1O2) has wide application prospects in biology and the environment. However, the mechanism of 1O2 formation, especially the conversion of superoxide radicals (·O2-) to 1O2, has been a great controversy. This process is often disturbed by hydroxyl radicals (·OH). Here, we develop a molybdenum cocatalytic Fenton system, which can realize the transformation from ·O2- to 1O2 on the premise of minimizing ·OH. The Mo0 exposed on the surface of molybdenum powder can significantly improve the Fe3+/Fe2+ cycling efficiency and weaken the production of ·OH, leading to the generation of ·O2-. Meanwhile, the exposed Mo6+ can realize the transformation of ·O2- to 1O2. The molybdenum cocatalytic effect makes the conventional Fenton reaction have high oxidation activity for the remediation of organic pollutants and prompts the inactivation of Staphylococcus aureus, as well as the adsorption and reduction of heavy metal ions (Cu2+, Ni2+, and Cr6+). Compared with iron powder, molybdenum powder is more likely to promote the conversion from Fe3+ to Fe2+ during the Fenton reaction, resulting in a higher Fe2+/Fe3+ ratio and better activity regarding the remediation of organics. Our findings clarify the transformation mechanism from ·O2- to 1O2 during the Fenton-like reaction and provide a promising REDOX Fenton-like system for water treatment.

Journal ArticleDOI
TL;DR: It is shown that fungicides occur widely in aquatic systems, that the accuracy of predicted environmental concentrations is debatable, and that fungicide exposure can be effectively mitigated, andThat fungicides can be highly toxic to a broad range of organisms and can pose a risk to aquatic biota.
Abstract: Fungicides are indispensable to global food security and their use is forecasted to intensify. Fungicides can reach aquatic ecosystems and occur in surface water bodies in agricultural catchments throughout the entire growing season due to their frequent, prophylactic application. However, in comparison to herbicides and insecticides, the exposure to and effects of fungicides have received less attention. We provide an overview of the risk of fungicides to aquatic ecosystems covering fungicide exposure (i.e., environmental fate, exposure modeling, and mitigation measures) as well as direct and indirect effects of fungicides on microorganisms, macrophytes, invertebrates, and vertebrates. We show that fungicides occur widely in aquatic systems, that the accuracy of predicted environmental concentrations is debatable, and that fungicide exposure can be effectively mitigated. We additionally demonstrate that fungicides can be highly toxic to a broad range of organisms and can pose a risk to aquatic biota. Finally, we outline central research gaps that currently challenge our ability to predict fungicide exposure and effects, promising research avenues, and shortcomings of the current environmental risk assessment for fungicides.

Journal ArticleDOI
TL;DR: Though more work is needed, OP assays show promise for health studies as they integrate the impacts of PM species and properties on catalytic redox reactions into one measurement, and current work highlights the importance of metals, organic carbon, vehicles, and biomass burning emissions to PM exposures that could impact health.
Abstract: Oxidative stress is a potential mechanism of action for particulate matter (PM) toxicity and can occur when the body's antioxidant capacity cannot counteract or detoxify harmful effects of reactive oxygen species (ROS) due to an excess presence of ROS. ROS are introduced to the body via inhalation of PM with these species present on and/or within the particles (particle-bound ROS) and/or through catalytic generation of ROS in vivo after inhaling redox-active PM species (oxidative potential, OP). The recent development of acellular OP measurement techniques has led to a surge in research across the globe. In this review, particle-bound ROS techniques are discussed briefly while OP measurements are the focus due to an increasing number of epidemiologic studies using OP measurements showing associations with adverse health effects in some studies. The most common OP measurement techniques, including the dithiothreitol assay, glutathione assay, and ascorbic acid assay, are discussed along with evidence for utility of OP measurements in epidemiologic studies and PM characteristics that drive different responses between assay types (such as species composition, emission source, and photochemistry). Overall, most OP assays respond to metals like copper than can be found in emission sources like vehicles. Some OP assays respond to organics, especially photochemically aged organics, from sources like biomass burning. Select OP measurements have significant associations with certain cardiorespiratory end points, such as asthma, congestive heart disease, and lung cancer. In fact, multiple studies have found that exposure to OP measured using the dithiothreitol and glutathione assays drives higher risk ratios for certain cardiorespiratory outcomes than PM mass, suggesting OP measurements may be integrating the health-relevant fraction of PM and will be useful tools for future health analyses. The compositional impacts, including species and emission sources, on OP could have serious implications for health-relevant PM exposure. Though more work is needed, OP assays show promise for health studies as they integrate the impacts of PM species and properties on catalytic redox reactions into one measurement, and current work highlights the importance of metals, organic carbon, vehicles, and biomass burning emissions to PM exposures that could impact health.

Journal ArticleDOI
TL;DR: It is found that light and bacterial exposure increased the total amount of PAEs released from PVC-cables by a factor of up to 5, whereas they had no influence in the case of PE-bags.
Abstract: Plastic debris in the environment contains plasticizers, such as phthalates (PAEs), that can be released during plastic aging. Here, two common plastic materials, an insulation layer of electric cables (polyvinyl chloride, PVC-cables) and plastic garbage bag (polyethylene, PE-bags), were incubated in natural seawater under laboratory conditions, and the PAE migration to the seawater phase was studied with varying light and bacterial conditions over a 90-day time course. Free PAEs diluted in seawater were also studied for bacterial degradation. Our results showed that, within the first month of incubation, both plastic materials significantly leached out PAEs into the surrounding water. We found that di-isobutyl phthalate (DiBP) and di- n-butyl phthalate (DnBP) were the main PAEs released from the PE-bags, with the highest values of 83.4 ± 12.5 and 120.1 ± 18.0 ng g-1 of plastic, respectively. Furthermore, dimethyl phthalate (DMP) and diethyl phthalate (DEP) were the main PAEs released from PVC-cables, with mass fractions as high as 9.5 ± 1.4 and 68.9 ± 10.3 ng g-1, respectively. Additionally, we found that light and bacterial exposure increased the total amount of PAEs released from PVC-cables by a factor of up to 5, whereas they had no influence in the case of PE-bags.

Journal ArticleDOI
TL;DR: This work highlights the synergistic removal of radionuclides, heavy metals, and persistent organic pollutants by C3N4, which is crucial for the design and application of a high-performance photocatalyst in actual environmental cleanup.
Abstract: The effect of Cr(VI) and bisphenol A (BPA) on U(VI) photoreduction by C3N4 photocatalyst was demonstrated by the batch experiments, electron spin resonance (ESR), X-ray photoelectron spectroscopy (XPS), X-ray absorption near edge structure (XANES), and extended X-ray absorption fine structure (EXAFS) techniques. The batch experiments manifested that Cr(VI) and BPA enhanced the photocatalytic activity of C3N4 for U(VI) photoreduction, whereas U(VI) photoreduction was significantly diminished with increased pH from 4.0 to 8.0. According to radical scavengers and ESR analysis, U(VI) was photoreduced to U(IV) by photogenerated electrons of conduction band edge, whereas Cr(VI) was reduced to Cr(III) by H2O2. BPA and its products such as organic acid and alcohols can capture photoinduced holes, which resulted in the enhancement of U(VI) photoreduction to U(IV). XPS and XANES analyses demonstrated that U(VI) was gradually photoreduced to U(IV) by C3N4 within irradiation 60 min, whereas U(IV) was reoxidized to U(VI) with increasing irradiation time. EXAFS analysis determined that the dominant interaction mechanisms of U(VI) on C3N4 after irradiation for 240 min were reductive precipitation and inner-sphere surface complexation. This work highlights the synergistic removal of radionuclides, heavy metals, and persistent organic pollutants by C3N4, which is crucial for the design and application of a high-performance photocatalyst in actual environmental cleanup.

Journal ArticleDOI
TL;DR: Observations provide field-based evidence that suspended atmospheric microplastics are an important source of microplastic pollution in the ocean, especially the pollution caused by textile microfibers.
Abstract: Although atmospheric transport and deposition could be an important pathway of terrestrial pollutants to the ocean, little information concerning the presence and distribution of these suspended atmospheric microplastics in marine air is available. We investigated, for the first time, the occurrence and distribution of suspended atmospheric microplastics (SAMPs) in the west Pacific Ocean. In this study, the spatial distribution, morphological appearance, and chemical composition of suspended atmospheric microplastics were studied through continuous sampling during a cruise. SAMPs abundance ranged from 0 to 1.37 n/m3, the median of 0.01 n/m3. Fiber, fragment, and granule SAMPs quantitively constituted 60%, 31%, and 8% of all MPs, respectively. Interestingly, plastic microbeads with numerical proportion of 5% were also observed. A high suspended atmospheric microplastics abundance was found in the coastal area (0.13 ± 0.24 n/m3), while there was less amount detected in the pelagic area (0.01 ± 0.01 n/m3). The amount of suspended atmospheric microplastics collected during the daytime (0.45 ± 0.46 n/m3) was twice the amount collected at night (0.22 ± 0.19 n/m3), on average. Our observations provide field-based evidence that suspended atmospheric microplastics are an important source of microplastics pollution in the ocean, especially the pollution caused by textile microfibers.

Journal ArticleDOI
TL;DR: It is demonstrated that sulfate radical is the primary oxidant generated via PMS activation on Co-Black TNT, leading to the degradation of selected organic pollutants when compared to other TNTs and other Co-based materials.
Abstract: Cobalt-mediated activation of peroxymonosulfate (PMS) has been widely investigated for the oxidation of organic pollutants. Herein, we employ cobalt-doped Black TiO_2 nanotubes (Co-Black TNT) for the efficient, stable, and reusable activator of PMS for the degradation of organic pollutants. Co-Black TNTs induce the activation of PMS by itself and stabilized oxygen vacancies that enhance the bonding with PMS and provide catalytic active sites for PMS activation. A relatively high electronic conductivity associated with the coexistence of Ti^(4+) and Ti^(3+) in Co-Black TNT enables an efficient electron transfer between PMS and the catalyst. As a result, Co-Black TNT is an effective catalyst for PMS activation, leading to the degradation of selected organic pollutants when compared to other TNTs (TNT, Co-TNT, and Black TNT) and other Co-based materials (Co_3O_4, Co-TiO_2, CoFe_2O_4, and Co_3O_4/rGO). The observed organic compound degradation kinetics are retarded in the presence of methanol and natural organic matter as sulfate radical scavengers. These results demonstrate that sulfate radical is the primary oxidant generated via PMS activation on Co-Black TNT. The strong interaction between Co and TiO_2 through Co–O–Ti bonds and rapid redox cycle of Co^(2+)/Co^(3+) in Co-Black TNT prevents cobalt leaching and enhances catalyst stability over a wide pH range and repetitive uses of the catalyst. Electrode-supported Co-Black TNT facilitates the recovery of the catalyst from the treated water.

Journal ArticleDOI
Wei Wei1, Qi-Su Huang1, Jing Sun1, Jun-Yue Wang1, Shu-Lin Wu1, Bing-Jie Ni1 
TL;DR: PVC microplastic caused negative effects on WAS anaerobic digestion through leaching the toxic BPA, causing significant inhibitory effects on the hydrolysis-acidification process and the long-term effects of PVC microplastics revealed that the microbial community was shifted in the direction against hydroly digestion and methanation.
Abstract: The retention of polyvinyl chloride (PVC) microplastics in sewage sludge during wastewater treatment raises concerns. However, the effects of PVC microplastics on methane production from anaerobic digestion of waste activated sludge (WAS) have never been documented. In this work, the effects of PVC microplastics (1 mm, 10-60 particles/g TS) on anaerobic methane production from WAS were investigated. The presence of 10 particles/g TS of PVC microplastics significantly ( P = 0.041) increased methane production by 5.9 ± 0.1%, but higher levels of PVC microplastics (i.e., 20, 40, and 60 particles/g TS) inhibited methane production to 90.6 ± 0.3%, 80.5 ± 0.1%, and 75.8 ± 0.2% of the control, respectively. Model-based analysis indicated that PVC microplastics at >20 particles/g TS decreased both methane potential (B0) and hydrolysis coefficient (k) of WAS. The mechanistic studies showed that bisphenol A (BPA) leaching from PVC microplastics was the primary reason for the decreased methane production, causing significant ( P = 0.037, 0.01, 0.004) inhibitory effects on the hydrolysis-acidification process. The long-term effects of PVC microplastics revealed that the microbial community was shifted in the direction against hydrolysis-acidification and methanation. In conclusion, PVC microplastic caused negative effects on WAS anaerobic digestion through leaching the toxic BPA.

Journal ArticleDOI
TL;DR: Investigating critical structure-reactivity relationships within 34 representative per- and polyfluoroalkyl substances (PFASs) undergoing defluorination with UV-generated hydrated electrons provides critical information for developing PFAS treatment processes and technologies to destruct a wide scope of PFAS pollutants and for designing fluorochemical formulations to avoid releasing recalcitrant PFASs into the environment.
Abstract: This study investigates critical structure–reactivity relationships within 34 representative per- and polyfluoroalkyl substances (PFASs) undergoing defluorination with UV-generated hydrated electrons. While CnF2n+1–COO– with variable fluoroalkyl chain lengths (n = 2 to 10) exhibited a similar rate and extent of parent compound decay and defluorination, the reactions of telomeric CnF2n+1–CH2CH2–COO– and CnF2n+1–SO3– showed an apparent dependence on the length of the fluoroalkyl chain. Cross comparison of experimental results, including different rates of decay and defluorination of specific PFAS categories, the incomplete defluorination from most PFAS structures, and the surprising 100% defluorination from CF3COO–, leads to the elucidation of new mechanistic insights into PFAS degradation. Theoretical calculations on the C–F bond dissociation energies (BDEs) of all PFAS structures reveal strong relationships among (i) the rate and extent of decay and defluorination, (ii) head functional groups, (iii) fluor...

Journal ArticleDOI
TL;DR: The results showed that none of the bags could be relied upon to show any substantial deterioration over a 3 year period in all of the environments, and it is therefore not clear that the oxo-biodegradable or biodesgradable formulations provide sufficiently advanced rates of deterioration to be advantageous in the context of reducing marine litter, compared to conventional bags.
Abstract: There is clear evidence that discarded single-use carrier bags are accumulating in the environment. As a result, various plastic formulations have been developed which state they deteriorate faster and/or have fewer impacts on the environment because their persistence is shorter. This study examined biodegradable, oxo-biodegradable, compostable, and high-density polyethylene (i.e., a conventional plastic carrier bag) materials over a 3 year period. These materials were exposed in three natural environments; open-air, buried in soil, and submersed in seawater, as well as in controlled laboratory conditions. In the marine environment, the compostable bag completely disappeared within 3 months. However, the same compostable bag type was still present in the soil environment after 27 months but could no longer hold weight without tearing. After 9 months exposure in the open-air, all bag materials had disintegrated into fragments. Collectively, our results showed that none of the bags could be relied upon to show any substantial deterioration over a 3 year period in all of the environments. It is therefore not clear that the oxo-biodegradable or biodegradable formulations provide sufficiently advanced rates of deterioration to be advantageous in the context of reducing marine litter, compared to conventional bags.

Journal ArticleDOI
TL;DR: This study is among the first to characterize the reaction of peracetic acid (PAA) with Fe(II) ion and apply theFe(II)/PAA AOP for degradation of micropollutants and demonstrates Fe( II/PAA to be a feasible advanced oxidation technology.
Abstract: Fe(II) is an excellent promoter for advanced oxidation processes (AOPs) because of its environmental ubiquity and low toxicity. This study is among the first to characterize the reaction of peracet...

Journal ArticleDOI
TL;DR: This study aged four types of virgin MPs, including polystyrene (PS), phenol-formaldehyde resin (PF), polyethylene (PE), and polyvinyl chloride (PVC), under simulated solar light irradiation to provide a novel insight to evaluate the potential hazards of MPs to organisms and ecosystems.
Abstract: Microplastics (MPs) are presumed to be inert during aging under ambient conditions. In this study, four types of virgin MPs, including polystyrene (PS), phenol-formaldehyde resin (PF), polyethylene (PE), and polyvinyl chloride (PVC), were aged under simulated solar light irradiation. Surprisingly, several environmentally persistent free radicals (EPFRs), which are considered to be a type of emerging contaminant, were detected on the irradiated PS and PF, rather than PE and PVC, by electron paramagnetic resonance (EPR) spectroscopy. Depending on the photoaging duration time, the characteristic g-factors of the EPFRs produced on PS and PF were 2.0044-2.0049 and 2.0043-2.0044, respectively. The generated EPFRs on PS and PF decayed rapidly at the initial stage and then slowly disappeared with the elapsed aging time. Analyses by attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), nuclear magnetic resonance (NMR), and gel permeation chromatography (GPC) suggested that MPs might experience chemical chain scission, O2/H2O addition, and EPFR formation under the light irradiation. Accompanying with the formation of EPFRs, reactive oxygen species, such as O2•- and •OH, were also observed. The findings provide a novel insight to evaluate the potential hazards of MPs to organisms and ecosystems.

Journal ArticleDOI
TL;DR: Cl and Cl2- radicals contribute to the degradation of trace organic contaminants (TrOCs) such as pharmaceutical and personal care products (PPCPs) and endocrine disrupting chemicals (EDCs) and little is known about their reaction rate constants and mechanisms.
Abstract: Cl• and Cl2•– radicals contribute to the degradation of trace organic contaminants (TrOCs) such as pharmaceutical and personal care products and endocrine-disrupting chemicals. However, little is k...

Journal ArticleDOI
TL;DR: It is shown that aging by UV or O3 exposure drastically enhanced the mobility and contaminant-mobilizing ability of spherical polystyrene nanoplastics (PSNPs) in saturated loamy sand.
Abstract: Plastic debris, in particular, microplastics and nanoplastics, is becoming an emerging class of pollutants of global concern. Aging can significantly affect the physicochemical properties of plasti...

Journal ArticleDOI
TL;DR: This work highlights a new strategy for the design of efficient metal/CeO2 catalysts by engineering morphology and associated surface facet of CeO2 support for the elimination of light alkane pollutants and other volatile organic compounds.
Abstract: Tailoring the interfaces between active metal centers and supporting materials is an efficient strategy to obtain a superior catalyst for a certain reaction. Herein, an active interface between Ru and CeO2 was identified and constructed by adjusting the morphology of CeO2 support, such as rods (R), cubes (C), and octahedra (O), to optimize both the activity and the stability of Ru/CeO2 catalyst for propane combustion. We found that the morphology of CeO2 support does not significantly affect the chemical states of Ru species but controls the interaction between the Ru and CeO2, leading to the tuning of oxygen vacancy in the CeO2 surface around the Ru-CeO2 interface. The Ru/CeO2 catalyst possesses more oxygen vacancy when CeO2-R with predominantly exposed CeO2{110} surface facets is used, providing a higher ability to adsorb and activate oxygen and propane. As a result, the Ru/CeO2-R catalyst exhibits higher catalytic activity and stability for propane combustion compared with the Ru/CeO2-C and Ru/CeO2-O catalysts. This work highlights a new strategy for the design of efficient metal/CeO2 catalysts by engineering morphology and associated surface facet of CeO2 support for the elimination of light alkane pollutants and other volatile organic compounds.

Journal ArticleDOI
TL;DR: Byproducts produced when treating perfluorooctanoic acid (PFOA) and PFOS in water using a plasma treatment process intentionally operated to treat these compounds slowly to allow for byproduct accumulation were quantified.
Abstract: Byproducts produced when treating perfluorooctanoic acid (PFOA) and perfluorooctanesulfonate (PFOS) in water using a plasma treatment process intentionally operated to treat these compounds slowly to allow for byproduct accumulation were quantified. Several linear chain perfluoroalkyl carboxylic acids (PFCAs) (C4 to C7) were identified as byproducts of both PFOA and PFOS treatment. PFOA, perfluorohexanesulfonate (PFHxS), and perfluorobutanesulfonate (PFBS) were also found to be byproducts from PFOS degradation. Significant concentrations of fluoride ions, inorganic carbon, and smaller organic acids (trifluoroacetic acid, acetic acid, and formic acid) were also identified. In addition to PFCAs, PFHxS, and PFBS, trace amounts of 43 PFOA-related and 35 PFOS-related byproducts were also identified using a screening and search-based algorithm. Minor concentrations of gas-phase byproducts were also identified (<2.5% of the F originally associated with the parent molecules) some of which are reported for the first time in perfluoroalkyl substance degradation experiments including cyclic perfluoroalkanes (C4F8, C5F10, C6F12, C7F14, and C8F16). The short chain PFCAs detected suggest the occurrence of a stepwise reduction of the parent perfluoroalkyl substances (PFAS) molecule, followed by oxidation of intermediates, perfluoroalkyl radicals, and perfluoro alcohols/ketones. Using a fluorine mass balance, 77% of the fluorine associated with the parent PFOA and 58% of the fluorine associated with the parent PFOS were identified. The bulk of the remaining fluorine was determined to be sorbed to reactor walls and tubing using sorption experiments in which plasma was not generated.

Journal ArticleDOI
TL;DR: The Fe(VI)-CaSO3 process with Fe(IV)/Fe(V) as reactive oxidants may be a promising method for abating various micropollutants in water treatment.
Abstract: Although the Fe(VI)-sulfite process has shown great potential for the rapid removal of organic contaminants, the major active oxidants (Fe(IV)/Fe(V) versus SO4•-/•OH) involved in this process are still under debate. By employing sparingly soluble CaSO3 as a slow-releasing source of SO32-, this study evaluated the oxidation performance of the Fe(VI)-CaSO3 process and identified the active oxidants involved in this process. The process exhibited efficient oxidation of a variety of compounds, including antibiotics, pharmaceuticals, and pesticides, at rates that were 6.1-173.7-fold faster than those measured for Fe(VI) alone, depending on pH, CaSO3 dosage, and the properties of organic contaminants. Many lines of evidence verified that neither SO4•- nor •OH was the active species in the Fe(VI)-CaSO3 process. The accelerating effect of CaSO3 was ascribed to the direct generation of Fe(IV)/Fe(V) species from the reaction of Fe(VI) with soluble SO32- via one-electron steps as well as the indirect generation of Fe(IV)/Fe(V) species from the self-decay of Fe(VI) and Fe(VI) reaction with H2O2, which could be catalyzed by uncomplexed Fe(III). Besides, the Fe(VI)-CaSO3 process exhibited satisfactory removal of organic contaminants in real water, and inorganic anions showed negligible effects on organic contaminant decomposition in this process. Thus, the Fe(VI)-CaSO3 process with Fe(IV)/Fe(V) as reactive oxidants may be a promising method for abating various micropollutants in water treatment.

Journal ArticleDOI
TL;DR: The aggregate results from this study highlight the suitability of the PDI-sunlight photocatalytic system to treat antibiotics in real water and wastewater systems.
Abstract: This study describes a promising sunlight-driven photocatalyst for the treatment of ofloxacin and other fluoroquinolone antibiotics in water and wastewater. Perylene diimide (PDI) supramolecular nanofibers, which absorb a broad spectrum of sunlight, were prepared via a facile acidification polymerization protocol. Under natural sunlight, the PDI photocatalysts achieved rapid treatment of fluoroquinolone antibiotics, including ciprofloxacin, enrofloxacin, norfloxacin, and ofloxacin. The fastest degradation was observed for ofloxacin, which had a half-life of 2.08 min for the investigated conditions. Various light sources emitting in the UV-vis spectrum were tested, and blue light was found to exhibit the fastest ofloxacin transformation kinetics due to the strong absorption by the PDI catalyst. Reactive species, namely, h+, 1O2, and O2•-, comprised the primary photocatalytic mechanisms for ofloxacin degradation. Frontier electron density calculations and mass spectrometry were used to verify the major degradation pathways of ofloxacin by the PDI-sunlight photocatalytic system and identify the transformation products of ofloxacin, respectively. Degradation mainly occurred through demethylation at the piperazine ring, ketone formation at the morpholine moiety, and aldehyde reaction at the piperazinyl group. An overall mechanism was proposed for ofloxacin degradation in the PDI-sunlight photocatalytic system, and the effects of water quality constituents were examined to determine performance in real water/wastewater systems. Ultimately, the aggregate results from this study highlight the suitability of the PDI-sunlight photocatalytic system to treat antibiotics in real water and wastewater systems.