scispace - formally typeset
Search or ask a question

Showing papers in "Eukaryotic Cell in 2007"


Journal ArticleDOI
TL;DR: It is demonstrated that C. neoformans produces extracellular vesicles during in vitro growth and animal infection and implies a novel mechanism for the release of the major virulence factor of C. Neoformans whereby polysaccharide packaged in lipid vesicle crosses the cell wall and the capsule network to reach the Extracellular environment.
Abstract: The mechanisms by which macromolecules are transported through the cell wall of fungi are not known. A central question in the biology of Cryptococcus neoformans, the causative agent of cryptococcosis, is the mechanism by which capsular polysaccharide synthesized inside the cell is exported to the extracellular environment for capsule assembly and release. We demonstrate that C. neoformans produces extracellular vesicles during in vitro growth and animal infection. Vesicular compartments, which are transferred to the extracellular space by cell wall passage, contain glucuronoxylomannan (GXM), a component of the cryptococcal capsule, and key lipids, such as glucosylceramide and sterols. A correlation between GXM-containing vesicles and capsule expression was observed. The results imply a novel mechanism for the release of the major virulence factor of C. neoformans whereby polysaccharide packaged in lipid vesicles crosses the cell wall and the capsule network to reach the extracellular environment.

413 citations


Journal ArticleDOI
TL;DR: It is shown that deletion of hdaA, encoding an Aspergillus nidulans histone deacetylase (HDAC), causes transcriptional activation of two telomere-proximal gene clusters—and subsequent increased levels of the corresponding molecules (toxin and antibiotic)—but not of a telomeres-distal cluster.
Abstract: Bioactive small molecules are critical in Aspergillus species during their development and interaction with other organisms. Genes dedicated to their production are encoded in clusters that can be located throughout the genome. We show that deletion of hdaA, encoding an Aspergillus nidulans histone deacetylase (HDAC), causes transcriptional activation of two telomere-proximal gene clusters—and subsequent increased levels of the corresponding molecules (toxin and antibiotic)—but not of a telomere-distal cluster. Introduction of two additional HDAC mutant alleles in a ΔhdaA background had minimal effects on expression of the two HdaA-regulated clusters. Treatment of other fungal genera with HDAC inhibitors resulted in overproduction of several metabolites, suggesting a conserved mechanism of HDAC repression of some secondary-metabolite gene clusters. Chromatin regulation of small-molecule gene clusters may enable filamentous fungi to successfully exploit environmental resources by modifying chemical diversity.

355 citations


Journal ArticleDOI
TL;DR: Utilizing a collection of chitin/polysaccharide deacetylase deletion strains, it is determined that during vegetative growth, chitosan helps to maintain cell integrity and aids in bud separation.
Abstract: Cryptococcus neoformans is an opportunistic fungal pathogen that causes cryptococcal meningoencephalitis, particularly in immunocompromised patients. The fungal cell wall is an excellent target for antifungal therapies as it is an essential organelle that provides cell structure and integrity, it is needed for the localization or attachment of known virulence factors, including the polysaccharide capsule, melanin, and phospholipase, and it is critical for host-pathogen interactions. In C. neoformans, chitosan produced by the enzymatic removal of acetyl groups from nascent chitin polymers has been implicated as an important component of the vegetative cell wall. In this study, we identify four putative chitin/polysaccharide deacetylases in C. neoformans. We have demonstrated that three of these deacetylases, Cda1, Cda2, and Cda3, can account for all of the chitosan produced during vegetative growth in culture, but the function for one, Fpd1, remains undetermined. The data suggest a model for chitosan production in vegetatively growing C. neoformans where the three chitin deacetylases convert chitin generated by the chitin synthase Chs3 into chitosan. Utilizing a collection of chitin/polysaccharide deacetylase deletion strains, we determined that during vegetative growth, chitosan helps to maintain cell integrity and aids in bud separation. Additionally, chitosan is necessary for maintaining normal capsule width and the lack of chitosan results in a “leaky melanin” phenotype. Our analysis indicates that chitin deacetylases and the chitosan made by them may prove to be excellent antifungal targets.

314 citations


Journal ArticleDOI
TL;DR: In eukaryotic cells, a family of serine/threonine protein kinases known as mitogen-activated protein (MAP) kinases (MAPKs) is involved in the transduction of a variety of extracellular signals and the regulation of different developmental processes as mentioned in this paper.
Abstract: In eukaryotic cells, a family of serine/threonine protein kinases known as mitogen-activated protein (MAP) kinases (MAPKs) is involved in the transduction of a variety of extracellular signals and the regulation of different developmental processes The MAPK is activated by dual phosphorylation of the TXY motif by MAPK kinase (MEK or MAPKK), which is activated in turn by MEK kinase (MEKK or MAPKKK) The sequential activation of the MAPK cascade eventually results in the activation of transcription factors and the expression of specific sets of genes in response to environmental stimuli In the budding yeast Saccharomyces cerevisiae, five MAPK pathways are known to regulate mating, invasive growth, cell wall integrity, hyperosmoregulation, and ascospore formation (50) In the past decade, MAPKs in various plant and human pathogenic fungi have been characterized In this review, we will compare their functions in different fungal pathogens with a focus on infection-related morphogenesis and virulence

299 citations


Journal ArticleDOI
TL;DR: Fungi are a large and evolutionarily successful group of organisms of enormous ecological importance and have a considerable impact on the economy because they serve as bio-factories for the industrial production of proteins.
Abstract: Filamentous fungi are a large and evolutionarily successful group of organisms of enormous ecological importance ([27][1], [114][2]). Fungi also have a considerable impact on our economy because they serve as bio-factories for the industrial production of proteins ([90][3], [130][4]) and because

295 citations


Journal ArticleDOI
TL;DR: This work shows that azole resistance was due not only to the presence of specific mutations in azoles resistance genes but also to their increase in copy number by LOH and to the addition of extra Chr 5 copies.
Abstract: TAC1 (for transcriptional activator of CDR genes) is critical for the upregulation of the ABC transporters CDR1 and CDR2, which mediate azole resistance in Candida albicans. While a wild-type TAC1 allele drives high expression of CDR1/2 in response to inducers, we showed previously that TAC1 can be hyperactive by a gain-of-function (GOF) point mutation responsible for constitutive high expression of CDR1/2. High azole resistance levels are achieved when C. albicans carries hyperactive alleles only as a consequence of loss of heterozygosity (LOH) at the TAC1 locus on chromosome 5 (Chr 5), which is linked to the mating-type-like (MTL) locus. Both are located on the Chr 5 left arm along with ERG11 (target of azoles). In this work, five groups of related isolates containing azole-susceptible and -resistant strains were analyzed for the TAC1 and ERG11 alleles and for Chr 5 alterations. While recovered ERG11 alleles contained known mutations, 17 new TAC1 alleles were isolated, including 7 hyperactive alleles with five separate new GOF mutations. Single-nucleotide-polymorphism analysis of Chr 5 revealed that azole-resistant strains acquired TAC1 hyperactive alleles and, in most cases, ERG11 mutant alleles by LOH events not systematically including the MTL locus. TAC1 LOH resulted from mitotic recombination of the left arm of Chr 5, gene conversion within the TAC1 locus, or the loss and reduplication of the entire Chr 5. In one case, two independent TAC1 hyperactive alleles were acquired. Comparative genome hybridization and karyotype analysis revealed the presence of isochromosome 5L [i(5L)] in two azole-resistant strains. i(5L) leads to increased copy numbers of azole resistance genes present on the left arm of Chr 5, among them TAC1 and ERG11. Our work shows that azole resistance was due not only to the presence of specific mutations in azole resistance genes (at least ERG11 and TAC1) but also to their increase in copy number by LOH and to the addition of extra Chr 5 copies. With the combination of these different modifications, sophisticated genotypes were obtained. The development of azole resistance in C. albicans is therefore a powerful instrument for generating genetic diversity.

285 citations


Journal ArticleDOI
TL;DR: It is demonstrated that as well as allowing adhesion to insects, MAD1 at the surface of M. anisopliae conidia or blastospores is required to orientate the cytoskeleton and stimulate the expression of genes involved in the cell cycle, which controls the functional distinction between Mad1 and Mad2 and enable M. thespian cells to adapt their adhesive properties to different habitats.
Abstract: Metarhizium anisopliae is a fungus of considerable metabolic and ecological versatility, being a potent insect pathogen that can also colonize plant roots. The mechanistic details of these interactions are unresolved. We provide evidence that M. anisopliae adheres to insects and plants using two different proteins, MAD1 and MAD2, that are differentially induced in insect hemolymph and plant root exudates, respectively, and produce regional localization of adhesive conidial surfaces. Expression of Mad1 in Saccharomyces cerevisiae allowed this yeast to adhere to insect cuticle. Expression of Mad2 caused yeast cells to adhere to a plant surface. Our study demonstrated that as well as allowing adhesion to insects, MAD1 at the surface of M. anisopliae conidia or blastospores is required to orientate the cytoskeleton and stimulate the expression of genes involved in the cell cycle. Consequently, the disruption of Mad1 in M. anisopliae delayed germination, suppressed blastospore formation, and greatly reduced virulence to caterpillars. The disruption of Mad2 blocked the adhesion of M. anisopliae to plant epidermis but had no effects on fungal differentiation and entomopathogenicity. Thus, regulation, localization, and specificity control the functional distinction between Mad1 and Mad2 and enable M. anisopliae cells to adapt their adhesive properties to different habitats.

281 citations


Journal ArticleDOI
TL;DR: The authors analyzed data on multilocus sequence typing (MLST), ABC typing, mating type-like locus (MAT) status, and antifungal susceptibility for a panel of 1,391 Candida albicans isolates.
Abstract: We analyzed data on multilocus sequence typing (MLST), ABC typing, mating type-like locus (MAT) status, and antifungal susceptibility for a panel of 1,391 Candida albicans isolates. Almost all (96.7%) of the isolates could be assigned by MLST to one of 17 clades. eBURST analysis revealed 53 clonal clusters. Diploid sequence type 69 was the most common MLST strain type and the founder of the largest clonal cluster, and examples were found among isolates from all parts of the world. ABC types and geographical origins showed statistically significant variations among clades by univariate analysis of variance, but anatomical source and antifungal susceptibility data were not significantly associated. A separate analysis limited to European isolates, thereby minimizing geographical effects, showed significant differences in the proportions of isolates from blood, commensal carriage, and superficial infections among the five most populous clades. The proportion of isolates with low antifungal susceptibility was highest for MAT homozygous a/a types and then α/α types and was lowest for heterozygous a/α types. The tree of clades defined by MLST was not congruent with trees generated from the individual gene fragments sequenced, implying a separate evolutionary history for each fragment. Analysis of nucleic acid variation among loci and within loci supported recombination. Computational haplotype analysis showed a high frequency of recombination events, suggesting that isolates had mixed evolutionary histories resembling those of a sexually reproducing species.

280 citations


Journal ArticleDOI
TL;DR: The first challenge is presented by the properties of ribulose bisphosphate carboxylase-oxygenase (Rubisco), which accounts for almost 50% of the world's photosynthesis as discussed by the authors.
Abstract: Aquatic photosynthetic microorganisms account for almost 50% of the world's photosynthesis ([19][1]). These organisms face several challenges in acquiring CO2 from the environment. The first challenge is presented by the properties of ribulose bisphosphate carboxylase-oxygenase (Rubisco). Rubisco is

269 citations


Journal ArticleDOI
Xiao-Hong Liu1, Jian-Ping Lu1, Lei Zhang1, Bo Dong1, Hang Min1, Fu-Cheng Lin1 
TL;DR: As a result of lower turgor pressure of the appressorium, the ΔMgatg1 mutant lost its ability to penetrate and infect the two host plants, namely, rice and barley, and normal values of the parameters and infective abilities were restored on reintroducing an intact copy of the MgATG1 gene into the mutant.
Abstract: We isolated an MgATG1 gene encoding a serine/threonine protein kinase from the rice blast fungus Magnaporthe grisea. In the ΔMgatg1 mutant, in which the MgATG1 gene had been deleted, autophagy was blocked; the mutant also showed fewer lipid droplets in its conidia, lower turgor pressure of the appressorium, and such defects in morphogenesis as delayed initiation and slower germination of conidia. As a result of lower turgor pressure of the appressorium, the ΔMgatg1 mutant lost its ability to penetrate and infect the two host plants, namely, rice and barley. However, normal values of the parameters and infective abilities were restored on reintroducing an intact copy of the MgATG1 gene into the mutant. Autophagy is thus necessary for turnover of organic matter during the formation of conidia and appressoria and for normal development and pathogenicity in M. grisea.

240 citations


Journal ArticleDOI
TL;DR: The types of hosts that are susceptible to invasive aspergillosis and the lack of unique pathways conserved among pathogenic fungi underscore the importance of the host contribution to pathogenesis.
Abstract: Aspergillus fumigatus is a ubiquitous saprophytic mold (67) that forms airborne spores (conidia). Humans inhale, on average, hundreds of these infectious propagules daily. In immune competent hosts, these encounters are of no further significance—conidia are killed and cleared by cells of the pulmonary immune system. However, disease occurs when the host response is either too strong or too weak. Thus, understanding how the host interacts with the organism to define this balance is a critical goal, the successful pursuit of which requires recognition of the dynamic nature of both fungal and host molecular participants. In immunocompromised hosts, A. fumigatus represents a major cause of morbidity and mortality. This patient population is expanding due to the increasing use of transplantation for end organ disease, the development of immunosuppressive and myeloablative therapies for autoimmune and neoplastic disease, and the human immunodeficiency virus/AIDS pandemic (38). A. fumigatus is the most common invasive mold infection in these patients, and mortality rates exceed 50% in high-risk groups, such as leukemic patients and hematopoietic stem cell transplant recipients (74). Sensitivity to A. fumigatus antigens is associated with asthma, the prevalence of which is increasing in the developed world, though proving causation has been difficult (49, 54). Regardless, this increased prevalence brings a parallel rise in the number of individuals predisposed to allergic bronchopulmonary aspergillosis, a disease associated with aberrant responses to Aspergillus antigens in the setting of chronic inflammation. The spectrum of invasive, semi-invasive, and allergic disease caused by A. fumigatus is reviewed in several outstanding articles (9, 94). The study of A. fumigatus molecules involved in virulence has been hampered by the lack of an identifiable sexual cycle, limiting classical genetic analysis (21). A recent study, however, indicates that A. fumigatus encodes distinct mating-type loci and the pheromone machinery required for sexual mating (103). Nonetheless, within the past decade, researchers have developed and refined experimental tools to generate mutant strains by homologous recombination (21, 35, 62, 152, 154), utilized RNA interference to repress endogenous transcripts (95), and expressed heterologous genes in A. fumigatus under the control of drug-inducible regulatory elements (145). The completion of the A. fumigatus genome (98) has accelerated gene structure and function studies and made possible comparative genomic analyses with other sequenced Aspergillus species (Aspergillus oryzae and Aspergillus nidulans), as well as other genera of pathogenic (e.g., Candida albicans and Cryptococcus neoformans) and nonpathogenic (e.g., Saccharomyces cerevisiae) fungi. An important insight from the genomes has been that A. fumigatus does not share a common set of genes with other fungal pathogens (98). The types of hosts that are susceptible to invasive aspergillosis and the lack of unique pathways conserved among pathogenic fungi underscore the importance of the host contribution to pathogenesis. Damage from A. fumigatus can result from fungal growth and tissue invasion or from inflammatory cells recruited to sites of infection (130). Included in the latter are responses that are ineffective in clearing the organism, occur in the process of immune reconstitution, or are associated with allergy. For example, in a murine model of chronic granulomatous disease, in which mice have defective phagocyte oxidase systems, administration of killed hyphae results in chronic inflammation due to persistence of fungal elements (92). From the perspective of the mammalian immune system, A. fumigatus represents an organism with continuous respiratory tract exposure that must be cleared from terminal airways with an immune response calibrated to avoid fungal tissue invasion, as well as inflammation-induced tissue damage. Here, we review our growing understanding of the interface between A. fumigatus and host defense mechanisms, with an emphasis on invasive disease in humans and small animal models.

Journal ArticleDOI
TL;DR: It is confirmed that gliotoxin is an important virulence determinant of A. fumigatus and that the type of immunosuppression regimen used is important to reveal the pathogenic potential of gliot toxin.
Abstract: Gliotoxin is an immunosuppressive mycotoxin long suspected to be a potential virulence factor of Aspergillus fumigatus. Recent studies using mutants lacking gliotoxin production, however, suggested that the mycotoxin is not important for pathogenesis of A. fumigatus in neutropenic mice resulting from treatment with cyclophosphomide and hydrocortisone. In this study, we report on the pathobiological role of gliotoxin in two different mouse strains, 129/Sv and BALB/c, that were immunosuppressed by hydrocortisone alone to avoid neutropenia. These strains of mice were infected using the isogenic set of a wild type strain (B-5233) and its mutant strain (gliPΔ) and the the glip reconstituted strain (gliPR). The gliP gene encodes a nonribosomal peptide synthase that catalyzes the first step in gliotoxin biosynthesis. The gliPΔ strain was significantly less virulent than strain B-5233 or gliPR in both mouse models. In vitro assays with culture filtrates (CFs) of B-5233, gliPΔ, and gliPR strains showed the following: (i) deletion of gliP abrogated gliotoxin production, as determined by high-performance liquid chromatography analysis; (ii) unlike the CFs from strains B-5233 and gliPR, gliPΔ CFs failed to induce proapoptotic processes in EL4 thymoma cells, as tested by Bak conformational change, mitochondrial-membrane potential disruption, superoxide production, caspase 3 activation, and phosphatidylserine translocation. Furthermore, superoxide production in human neutrophils was strongly inhibited by CFs from strain B-5233 and the gliPR strain, but not the gliPΔ strain. Our study confirms that gliotoxin is an important virulence determinant of A. fumigatus and that the type of immunosuppression regimen used is important to reveal the pathogenic potential of gliotoxin.

Journal ArticleDOI
TL;DR: The hypothesis that ROI such as superoxide anions and peroxides play a direct role in killing of A. fumigatus in an immunocompromised host is challenged.
Abstract: Macrophages and neutrophils kill the airborne fungal pathogen Aspergillus fumigatus. The dependency of this killing process on reactive oxygen intermediates (ROI) has been strongly suggested. Therefore, we investigated the enzymatic ROI detoxifying system by proteome analysis of A. fumigatus challenged by H(2)O(2). Since many of the identified proteins and genes are apparently regulated by a putative Saccharomyces cerevisiae Yap1 homolog, the corresponding gene of A. fumigatus was identified and designated Afyap1. Nuclear localization of a functional AfYap1-eGFP fusion was stress dependent. Deletion of the Afyap1 gene led to drastically increased sensitivity of the deletion mutant against H(2)O(2) and menadione, but not against diamide and NO radicals. Proteome analysis of the DeltaAfyap1 mutant strain challenged with 2 mM H(2)O(2) indicated that 29 proteins are controlled directly or indirectly by AfYap1, including catalase 2. Despite its importance for defense against reactive agents, the Afyap1 deletion mutant did not show attenuated virulence in a murine model of Aspergillus infection. These data challenge the hypothesis that ROI such as superoxide anions and peroxides play a direct role in killing of A. fumigatus in an immunocompromised host. This conclusion was further supported by the finding that killing of A. fumigatus wild-type and DeltaAfyap1 mutant germlings by human neutrophilic granulocytes worked equally well irrespective of whether the ROI scavenger glutathione or an NADPH-oxidase inhibitor was added to the cells.

Journal ArticleDOI
TL;DR: Data indicate that in B. cinerea the stress-activated MAPK cascade is involved in essential differentiation programs, and mutants are significantly impaired in vegetative and pathogenic development.
Abstract: The gene bcsak1, encoding a mitogen-activated protein kinase (MAPK) of Botrytis cinerea, was cloned and characterized. The protein has high homology to the yeast Hog1 and to corresponding MAPKs from filamentous fungi, but it shows unique functional features. The protein is phosphorylated under osmotic stress, specific fungicides, and oxidative stress mediated by H(2)O(2) and menadione. Northern blot analyses indicate that only a subset of typical oxidative stress response genes is regulated by BcSAK1. In contrast to most other fungal systems, Deltabcsak1 mutants are significantly impaired in vegetative and pathogenic development: they are blocked in conidia formation, show increased sclerotial development, and are unable to penetrate unwounded plant tissue. These data indicate that in B. cinerea the stress-activated MAPK cascade is involved in essential differentiation programs.

Journal ArticleDOI
TL;DR: A previously undescribed gene (FUM21) was identified located adjacent to the fumonisin polyketide synthase gene, FUM1, and the presence of a Zn(II)2Cys6 DNA-binding domain in the predicted protein suggested that FUM21 was involved in transcriptional regulation.
Abstract: Fumonisins are mycotoxins produced by some Fusarium species and can contaminate maize or maize products. Ingestion of fumonisins is associated with diseases, including cancer and neural tube defects, in humans and animals. In fungi, genes involved in the synthesis of mycotoxins and other secondary metabolites are often located adjacent to each other in gene clusters. Such genes can encode structural enzymes, regulatory proteins, and/or proteins that provide self-protection. The fumonisin biosynthetic gene cluster includes 16 genes, none of which appear to play a role in regulation. In this study, we identified a previously undescribed gene (FUM21) located adjacent to the fumonisin polyketide synthase gene, FUM1. The presence of a Zn(II)2Cys6 DNA-binding domain in the predicted protein suggested that FUM21 was involved in transcriptional regulation. FUM21 deletion (Deltafum21) mutants produce little to no fumonisin in cracked maize cultures but some FUM1 and FUM8 transcripts in a liquid GYAM medium. Complementation of a Deltafum21 mutant with a wild-type copy of the gene restored fumonisin production. Analysis of FUM21 cDNAs identified four alternative splice forms (ASFs), and microarray analysis indicated the ASFs were differentially expressed. Based on these data, we present a model for how FUM21 ASFs may regulate fumonisin biosynthesis.

Journal ArticleDOI
TL;DR: Plasmodium falciparum imposes an enormous burden upon the developing world, with 300 to 500 million cases and 1 to 2 million deaths per year ([94]].
Abstract: Plasmodium falciparum imposes an enormous burden upon the developing world, with 300 to 500 million cases and 1 to 2 million deaths per year ([94][1]). Despite extensive research efforts, development of parasite drug resistance is a growing problem, and an effective vaccine is still lacking.

Journal ArticleDOI
TL;DR: The use of a modified membrane protein hyperexpression system to characterize three classes of fungal membrane proteins that contribute to the drug resistance phenotypes of five pathogenic fungi and to express human P glycoprotein.
Abstract: The study of eukaryotic membrane proteins has been hampered by a paucity of systems that achieve consistent high-level functional protein expression. We report the use of a modified membrane protein hyperexpression system to characterize three classes of fungal membrane proteins (ABC transporters Pdr5p, CaCdr1p, CaCdr2p, CgCdr1p, CgPdh1p, CkAbc1p, and CneMdr1p, the major facilitator superfamily transporter CaMdr1p, and the cytochrome P450 enzyme CaErg11p) that contribute to the drug resistance phenotypes of five pathogenic fungi and to express human P glycoprotein (HsAbcb1p). The hyperexpression system consists of a set of plasmids that direct the stable integration of a single copy of the expression cassette at the chromosomal PDR5 locus of a modified host Saccharomyces cerevisiae strain, ADDelta. Overexpression of heterologous proteins at levels of up to 29% of plasma membrane protein was achieved. Membrane proteins were expressed with or without green fluorescent protein (GFP), monomeric red fluorescent protein, His, FLAG/His, Cys, or His/Cys tags. Most GFP-tagged proteins tested were correctly trafficked within the cell, and His-tagged proteins could be affinity purified. Kinetic analysis of ABC transporters indicated that the apparent K(m) value and the V(max) value of ATPase activities were not significantly affected by the addition of His tags. The efflux properties of seven fungal drug pumps were characterized by their substrate specificities and their unique patterns of inhibition by eight xenobiotics that chemosensitized S. cerevisiae strains overexpressing ABC drug pumps to fluconazole. The modified hyperexpression system has wide application for the study of eukaryotic membrane proteins and could also be used in the pharmaceutical industry for drug screening.

Journal ArticleDOI
TL;DR: The delivery of parasite effector proteins via the rhoptries provides a novel mechanism for Toxoplasma to directly access the command center of its host cell during infection by the parasite.
Abstract: Intracellular pathogens have evolved a wide array of mechanisms to invade and co-opt their host cells for intracellular survival. Apicomplexan parasites such as Toxoplasma gondii employ the action of unique secretory organelles named rhoptries for internalization of the parasite and formation of a specialized niche within the host cell. We demonstrate that Toxoplasma gondii also uses secretion from the rhoptries during invasion to deliver a parasite-derived protein phosphatase 2C (PP2C-hn) into the host cell and direct it to the host nucleus. Delivery to the host nucleus does not require completion of invasion, as evidenced by the fact that parasites blocked in the initial stages of invasion with cytochalasin D are able to target PP2C-hn to the host nucleus. We have disrupted the gene encoding PP2C-hn and shown that PP2C-hn-knockout parasites exhibit a mild growth defect that can be rescued by complementation with the wild-type gene. The delivery of parasite effector proteins via the rhoptries provides a novel mechanism for Toxoplasma to directly access the command center of its host cell during infection by the parasite.

Journal ArticleDOI
TL;DR: Pigeon guano supported the growth of both species, and a brown pigment related to melanin, a key virulence factor, was produced, suggesting that an ancestral Cryptococcus strain gained the ability to sexually reproduce in pigeon guano and then swept the globe.
Abstract: The ecological niche that a species can occupy is determined by its resource requirements and the physical conditions necessary for survival. The niche to which an organism is most highly adapted is the realized niche, whereas the complete range of habitats that an organism can occupy represents the fundamental niche. The growth and development of Cryptococcus neoformans and Cryptococcus gattii on pigeon guano were examined to determine whether these two species occupy the same or different ecological niches. C. neoformans is a cosmopolitan pathogenic yeast that infects predominantly immunocompromised individuals, exists in two varieties (grubii [serotype A] and neoformans [serotype D]), and is commonly isolated from pigeon guano worldwide. By contrast, C. gattii often infects immunocompetent individuals and is associated with geographically restricted environments, most notably, eucalyptus trees. Pigeon guano supported the growth of both species, and a brown pigment related to melanin, a key virulence factor, was produced. C. neoformans exhibited prolific mating on pigeon guano, whereas C. gattii did not. The observations that C. neoformans completes the life cycle on pigeon guano but that C. gattii does not indicates that pigeon guano could represent the realized ecological niche for C. neoformans. Because C. gattii grows on pigeon guano but cannot sexually reproduce, pigeon guano represents a fundamental but not a realized niche for C. gattii. Based on these studies, we hypothesize that an ancestral Cryptococcus strain gained the ability to sexually reproduce in pigeon guano and then swept the globe.

Journal ArticleDOI
TL;DR: The unicellular alga Chlamydomonas reinhardtii exhibited a strong acclimation response to rose bengal, a photosensitizing dye that produces singlet oxygen, and microarray analysis of RNA levels indicated that a relatively small number of genes respond to sublethal levels of singinglet oxygen.
Abstract: In an aerobic environment, responding to oxidative cues is critical for physiological adaptation (acclimation) to changing environmental conditions. The unicellular alga Chlamydomonas reinhardtii was tested for the ability to acclimate to specific forms of oxidative stress. Acclimation was defined as the ability of a sublethal pretreatment with a reactive oxygen species to activate defense responses that subsequently enhance survival of that stress. C. reinhardtii exhibited a strong acclimation response to rose bengal, a photosensitizing dye that produces singlet oxygen. This acclimation was dependent upon photosensitization and occurred only when pretreatment was administered in the light. Shifting cells from low light to high light also enhanced resistance to singlet oxygen, suggesting an overlap in high-light and singlet oxygen response pathways. Microarray analysis of RNA levels indicated that a relatively small number of genes respond to sublethal levels of singlet oxygen. Constitutive overexpression of either of two such genes, a glutathione peroxidase gene and a glutathione S-transferase gene, was sufficient to enhance singlet oxygen resistance. Escherichia coli and Saccharomyces cerevisiae exhibit well-defined responses to reactive oxygen but did not acclimate to singlet oxygen, possibly reflecting the relative importance of singlet oxygen stress for photosynthetic organisms.

Journal ArticleDOI
TL;DR: One of the major advances serving to define the beginning of the era of modern medicine was the development of penicillin in the early 1940s as the first widely used antibiotic effective against microorganisms.
Abstract: One of the major advances serving to define the beginning of the era of modern medicine was the development of penicillin in the early 1940s as the first widely used antibiotic effective against microorganisms (reviewed in reference [111][1]). In what has become an all-too-common trend, antibiotic-

Journal ArticleDOI
TL;DR: In vivo, fox2Δ mutants show a moderate but significant reduction in virulence in a mouse model of disseminated candidiasis, while disruption of the glyoxylate cycle or gluconeogenesis confers a severe attenuation in this model.
Abstract: The interaction between Candida albicans and cells of the innate immune system is a key determinant of disease progression. Transcriptional profiling has revealed that C. albicans has a complex response to phagocytosis, much of which is similar to carbon starvation. This suggests that nutrient limitation is a significant stress in vivo, and we have shown that glyoxylate cycle mutants are less virulent in mice. To examine whether other aspects of carbon metabolism are important in vivo during an infection, we have constructed strains lacking FOX2 and FBP1, which encode key components of fatty acid beta-oxidation and gluconeogenesis, respectively. As expected, fox2Delta mutants failed to utilize several fatty acids as carbon sources. Surprisingly, however, these mutants also failed to grow in the presence of several other carbon sources, whose assimilation is independent of beta-oxidation, including ethanol and citric acid. Mutants lacking the glyoxylate enzyme ICL1 also had more severe carbon utilization phenotypes than were expected. These results suggest that the regulation of alternative carbon metabolism in C. albicans is significantly different from that in other fungi. In vivo, fox2Delta mutants show a moderate but significant reduction in virulence in a mouse model of disseminated candidiasis, while disruption of the glyoxylate cycle or gluconeogenesis confers a severe attenuation in this model. These data indicate that C. albicans often encounters carbon-poor conditions during growth in the host and that the ability to efficiently utilize multiple nonfermentable carbon sources is a virulence determinant. Consistent with this in vivo requirement, C. albicans uniquely regulates carbon metabolism in a more integrated manner than in Saccharomyces cerevisiae, such that defects in one part of the machinery have wider impacts than expected. These aspects of alternative carbon metabolism may then be useful as targets for therapeutic intervention.

Journal ArticleDOI
TL;DR: This work has shown that during cell division, eukaryotic cells must faithfully pass on their genetic material to the next generation during mitosis through an open mitosis in which the nuclear is switched off.
Abstract: During cell division, eukaryotic cells must faithfully pass on their genetic material to the next generation during mitosis. It has long been known that lower eukaryotes and higher eukaryotes achieve this in strikingly different ways. Higher eukaryotes undergo an open mitosis in which the nuclear

Journal ArticleDOI
TL;DR: It is shown that a single kinesin-13 homolog regulates flagellar length dynamics, as well as other interphase and mitotic dynamics in Giardia intestinalis, a widespread parasitic diplomonad protist, and suggested that axonemal microtubules are subject to the same regulation of microtubule dynamics as other dynamicmicrotubule arrays.
Abstract: Microtubule depolymerization dynamics in the spindle are regulated by kinesin-13, a nonprocessive kinesin motor protein that depolymerizes microtubules at the plus and minus ends. Here we show that a single kinesin-13 homolog regulates flagellar length dynamics, as well as other interphase and mitotic dynamics in Giardia intestinalis, a widespread parasitic diplomonad protist. Both green fluorescent protein-tagged kinesin-13 and EB1 (a plus-end tracking protein) localize to the plus ends of mitotic and interphase microtubules, including a novel localization to the eight flagellar tips, cytoplasmic anterior axonemes, and the median body. The ectopic expression of a kinesin-13 (S280N) rigor mutant construct caused significant elongation of the eight flagella with significant decreases in the median body volume and resulted in mitotic defects. Notably, drugs that disrupt normal interphase and mitotic microtubule dynamics also affected flagellar length in Giardia. Our study extends recent work on interphase and mitotic kinesin-13 functioning in metazoans to include a role in regulating flagellar length dynamics. We suggest that kinesin-13 universally regulates both mitotic and interphase microtubule dynamics in diverse microbial eukaryotes and propose that axonemal microtubules are subject to the same regulation of microtubule dynamics as other dynamic microtubule arrays. Finally, the present study represents the first use of a dominant-negative strategy to disrupt normal protein function in Giardia and provides important insights into giardial microtubule dynamics with relevance to the development of antigiardial compounds that target critical functions of kinesins in the giardial life cycle.

Journal ArticleDOI
TL;DR: The transcriptional regulation of mpkA and of CWGs via CWIS in A. nidulans differs significantly from that in S. cerevisiae, and MPkA transcription seems to be autoregulated by CWIS via MpkA but not by RlmA or AnSwi4-AnSwi6.
Abstract: Cell wall integrity signaling (CWIS) maintains cell wall biogenesis in fungi, but only a few transcription factors (TFs) and target genes downstream of the CWIS cascade in filamentous fungi are known. Because a mitogen-activated protein kinase (MpkA) is a key CWIS enzyme, the transcriptional regulation of mpkA and of cell wall-related genes (CWGs) is important in cell wall biogenesis. We cloned Aspergillus nidulans mpkA; rlmA, a TF gene orthologous to Saccharomyces cerevisiae RLM1 that encodes Rlm1p, a major Mpk1p-dependent TF that regulates the transcription of MPK1 besides that of CWGs; and Answi4 and Answi6, homologous to S. cerevisiae SWI4 and SWI6, encoding the Mpk1p-activating TF complex Swi4p-Swi6p, which regulates CWG transcription in a cell cycle-dependent manner. A. nidulans rlmA and mpkA cDNA functionally complemented S. cerevisiae rlm1Δ and mpk1Δ mutants, respectively, but Answi4 and Answi6 cDNA did not complement swi4Δ and swi6Δ mutants. We constructed A. nidulans rlmA, Answi4 and Answi6, and mpkA disruptants (rlmAΔ, Answi4Δ Answi6Δ, and mpkAΔ strains) and analyzed mpkA and CWG transcripts after treatment with a β-1,3-glucan synthase inhibitor (micafungin) that could activate MpkA via CWIS. Levels of mpkA transcripts in the mutants as well as those in the wild type were changed after micafungin treatment. The β-glucuronidase reporter gene controlled by the mpkA promoter was expressed in the wild type but not in the mpkAΔ strain. Thus, mpkA transcription seems to be autoregulated by CWIS via MpkA but not by RlmA or AnSwi4-AnSwi6. The transcription of most CWGs except α-1,3-glucan synthase genes (agsA and agsB) was independent of RlmA and AnSwi4-AnSwi6 and seemed to be regulated by non-MpkA signaling. The transcriptional regulation of mpkA and of CWGs via CWIS in A. nidulans differs significantly from that in S. cerevisiae.

Journal ArticleDOI
TL;DR: The germ theory of disease was proposed in this work as a guide to the selection of hosts for virulent microbes and the role of immune checkpoints in microbial pathogenesis.
Abstract: Why do only certain microbes have the capacity to be virulent, and why are certain microbes virulent only in certain hosts? These fundamental questions have shaped and directed the thinking of microbiologists and the field of microbial pathogenesis since the germ theory of disease was proposed in

Journal ArticleDOI
TL;DR: There are two types of membrane proteins: the integral membrane proteins and the lipid-anchored proteins, which are composed only of the proteins that contain a C-terminal signal sequence that allows for linkage to a glycosylphosphatidylinositol (GPI) anchor.
Abstract: There are two types of membrane proteins: the integral membrane proteins and the lipid-anchored proteins. Integral membrane proteins contain one or several transmembrane domains that allow for the formation of hydrophobic α-helices, which ultimately embed the protein in a lipid bilayer. We count

Journal ArticleDOI
TL;DR: An analytical method based on liquid chromatography-electrospray ionization-tandem mass spectrometry using multiple reaction monitoring and a review of the literature was used to define the routes to these important metabolites and to annotate relevant genes in the trypanosomatid genomes.
Abstract: The cell surface glycoconjugates of trypanosomatid parasites are intimately involved in parasite survival, infectivity, and virulence in their insect vectors and mammalian hosts. Although there is a considerable body of work describing their structure, biosynthesis, and function, little is known about the sugar nucleotide pools that fuel their biosynthesis. In order to identify and quantify parasite sugar nucleotides, we developed an analytical method based on liquid chromatography-electrospray ionization-tandem mass spectrometry using multiple reaction monitoring. This method was applied to the bloodstream and procyclic forms of Trypanosoma brucei, the epimastigote form of T. cruzi, and the promastigote form of Leishmania major. Five sugar nucleotides, GDP-α-d-mannose, UDP-α-d-N-acetylglucosamine, UDP-α-d-glucose, UDP-α-galactopyranose, and GDP-β-l-fucose, were common to all three species; one, UDP-α-d-galactofuranose, was common to T. cruzi and L. major; three, UDP-β-l-rhamnopyranose, UDP-α-d-xylose, and UDP-α-d-glucuronic acid, were found only in T. cruzi; and one, GDP-α-d-arabinopyranose, was found only in L. major. The estimated demands for each monosaccharide suggest that sugar nucleotide pools are turned over at very different rates, from seconds to hours. The sugar nucleotide survey, together with a review of the literature, was used to define the routes to these important metabolites and to annotate relevant genes in the trypanosomatid genomes.

Journal ArticleDOI
TL;DR: It is shown that concentration of C. neoformans culture supernatants by ultrafiltration results in the formation of highly viscous films containing pure polysaccharide, providing a novel, nondenaturing, and extremely rapid method to isolate extracellular GXM.
Abstract: The capsular components of the human pathogen Cryptococcus neoformans are transported to the extracellular space and then used for capsule enlargement by distal growth. It is not clear, however, how the glucuronoxylomannan (GXM) fibers are incorporated into the capsule. In the present study, we show that concentration of C. neoformans culture supernatants by ultrafiltration results in the formation of highly viscous films containing pure polysaccharide, providing a novel, nondenaturing, and extremely rapid method to isolate extracellular GXM. The weight-averaged molecular mass of GXM in the film, determined using multiangle laser light scattering, was ninefold smaller than that of GXM purified from culture supernatants by differential precipitation with cetyl trimethyl ammonium bromide (CTAB). Polysaccharides obtained either by ultrafiltration or by CTAB-mediated precipitation showed different reactivities with GXM-specific monoclonal antibodies. Viscosity analysis associated with inductively coupled plasma mass spectrometry and measurements of zeta potential in the presence of different ions implied that polysaccharide aggregation was a consequence of the interaction between the carboxyl groups of glucuronic acid and divalent cations. Consistent with this observation, capsule enlargement in living C. neoformans cells was influenced by Ca(2+) in the culture medium. These results suggest that capsular assembly in C. neoformans results from divalent cation-mediated self-aggregation of extracellularly accumulated GXM molecules.

Journal ArticleDOI
TL;DR: The structure and role of sterol- and sphingolipid-rich raft domains in eukaryotic plasma membrane segregation suggest that they play important roles in dynamic processes, including protein synthesis.
Abstract: Concepts regarding the eukaryotic plasma membrane have been evolving in light of growing evidence that it is segregated into distinct lateral domains known as lipid rafts. These sterol- and sphingolipid-rich raft domains are thought to play important roles in dynamic processes, including protein